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RESUMEN

Para simular un nimero de fenémenos atmosféricos, se usa un modelo cuasinodivergente de dos niveles, que consta
de 12 componentes espectrales en un plano-beta rectangular. El modelo no-lineal contiene dos componentes que
describen el flujo zonal a cada nivel permitiendo vientos zonales con dos miximos y dos minimos. Los campos
torbellinarios a los dos niveles contienen cuatro componentes elegidas de tal manera que los campos torbellinarios
tienen transportes de calor sensible y momento. El modelo permite una descripcién completa de generaciones
de energia, conversiones y disipaciones, porque las componentes torbellinarias son elegidas con tales nimeros de
onda que tienen lugar interacciones entre los torbellinos y los campos zonales. Calentamiento diabdtico, efectos
topograficos y disipacién de energia cinética son tomados en cuenta por el modelo. Una limitante del mismo es que
consta de solamente un nimero de onda en la direccién zonal.

El modelo se usa para ilustrar desarrollos no-lineales de ondas baroclinicas, en varias escalas horizontales, en un
caso de forzamiento sobre sélo las componentes zonales. Con un canal largo es posible simular el desarrollo de ondas
largas, estacionarias, forzadas por la topografia y/o el calentamiento. Para definiciones especiales del calentamiento
en ambos modos zonal y torbellinario, uno puede simular la formacién y conservacién de las situaciones de bloqueo,
como resultado de las interacciones entre las componentes zonales y los torbellinos.

Las componentes torbellinarias normalmente entrardn en movimiento periédico o cuasiperiédico en el dominio
de fases, a menos que el modelo esté forzado por el calentamiento, la topograffa y la friccién. Dichos movimientos
no forzados y sus periodos son investigados. Demostramos, asimismo, que el tipo de circulacién atmosférica puede
cambiar significativamente, en funcién de'la posicién del calentamiento miximo en la direccién sur-norte, ilutrando
un cambio de sencillo a doble chorro y la alteracién resultante en la intensidad y posicién de las ondas.

ABSTRACT

A two-level quasi-nondivergent model containing 12 spectral components on a rectangular beta-plane is used to
simulate a number of atmospheric phenomena. The nonlinear model contains two components that describe the
zonal flow at each level permitting zonal winds with two maxima and two minima. The eddy fields at the two levels
contain four components selected in such a way that the resulting eddy fields have transports of both sensible heat
and momentum. The model permits a full description of energy generations, conversions and dissipations, because
the eddy components are selected with such wave numbers that interactions take place between the eddies and the
zonal fields. Diabatic heating, topographical effects and dissipation of kinetic energy are included in the model. A
limitation of the model is that it contains only one wave number in the zonal direction.

The model is used to illustrate nonlinear developments of baroclinic waves on various horizontal scales in a
case of forcing on the zonal components alone. With a long channel it is possible to simulate the development
of long stationary waves forced by topography and/or heating. For special definitions of the heating on both the
zonal and the eddy modes one may simulate the formation and maintenance of blocking situations as a result of
interactions between the zonal components and the eddies. The eddy components will normally go into periodic or
almost periodic motion in the phase domain unless the model is forced by heating, topography and friction. These
unforced motions and their periods are investigated. We also show that the type of atmospheric circulation may
change significantly as a function of the position of the maximum heating in the south-north direction, illustrating
a change from single to double jets and the resulting change in the intensity and position of the waves.
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1. Introduction

The atmosphere is a nonlinear system. Nevertheless, most of the theories represented in the
standard textbooks are linear and based on perturbation theory. While the linear theory has
given much insight in the creation of a number of atmospheric structures, it is based on the
theory of small perturbations. As long as this theory is applied to stability investigations we
face the problem that unstable perturbations grow exponentially. Therefore, after a certain
time they will violate the basic assumptions of the theory, i.e the neglect of second order terms.
Various attempts exemplified by the investigations of Charney (1959), Stuart (1960), Watson
(1960) and Yang (1967) have been made to expand the investigations to include at least some
aspects of nonlinearity.

The full nonlinear properties of the atmosphere are incorporated in prediction models and the
models of the general circulations, also called climate models. Global, multilevel models, contain-
ing all aspects of external forcing and dissipation through parameterized processes, are used for
short- and medium-range forecasting, for simulating the present climate and for investigations
of certain limited aspects of climate change. The design of such models requires a specification
of topographical effects and a number of other physical processes that contribute to the forcing
of the atmosphere. The aim of these models is therefore to be as realistic as possible.

When it comes to the understanding of the essential physical processes driving the atmosphere,
we should recall that the advanced general circulation models are almost as complicated as the
atmosphere itself. A detailed analysis of the model output is necessary in order to compare
the model behavior with the atmosphere. It may thus be very difficult to isolate the essential
mechanisms for the creation of specific atmospheric structures and their change in time. For this
reason one may be motivated to develop simplified models with only a few degrees of freedom as
compared to the very large number of degrees of freedom of the global comprehensive models.
With the help of such low-order models it is possible to achieve an increased understanding of
various elements of the atmospheric system.

Quite a number of low-order models have been created over the last 3 to 4 decades starting
with an extremely simple model by Lorenz (1960), who arrived at a maximum simplification of
the dynamic equations for convection between two horizontal plates. A barotropic six component
model used both for a stability analysis and for numerical integrations was designed by Wiin-
Nielsen (1961). The famous three component model (Lorenz, 1963) leading to the strange
attractor and to the concept of limited predictability of nonlinear systems, identical to chaos,
created a general interest in nonlinear systems and their behavior in several branches of physics.
Other simple models with forcing and dissipation were formulated and analysed for multiple
steady states and their stability (Wiin-Nielsen, 1975, Charney and DeVore, 1979 and Wiin-
Nielsen, 1979). The last two papers also attempted to create an understanding of the blocking
phenomenon as a result of forcing by topography or heating. The block appeared as a high
amplitude, stable steady state created by a nonlinear interaction between the zonal current and
the waves. At a later time (Christensen, 1984 and Christensen and Wiin-Nielsen, 1996) it was
shown that blocking could also be created as a nonlinear phenomenon through the interaction
among the planetary waves with wave numbers 1, 2 and 3.

Low-order models may be designed for various kinds of geometry. The rectangular beta-plane
has been used many times. Platzman (1960) formulated the barotropic vorticity equation on
the sphere by using spherical harmonics as a set of orthogonal functions for this domain. Lorenz
(1962) used low-order models to explain the essential aspects of rotating basin experiments
and gave an explanation of vacillations. Wiin-Nielsen (1990, 1991a, 1991b, 1994a, 1994b) used
a number of these models to discuss the atmospheric flow and its response to heating and
topography on the Earth and on Mars. All these models were, however, simplified in such a way
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that they contain either the transport of sensible heat or the transport of momentum by the
atmospheric waves, but not both of them in the same model. A main purpose of the present
paper is to present a low-order, nonlinear, baroclinic two-level model containing both of these
important transport processes.

The model will be able to include the effects of topography, heating and dissipation in simple
formulations. The inclusion of eddy momentum transports requires at least two meridional wave
numbers at each level in a spectral formulation. The wave numbers describing the zonal part
of the flow should be selected in such a way that they will interact with the eddy components.
To achieve this will require the inclusion of 8 components (4 at each level) in the real domain
of both trigonometric functions. At each level we shall need two components to describe the
zonal flow. Consequently, we require 12 components for the minimal model. Since the model
includes heating, topography and dissipation it is also a minimal model for the description of
all the processes in the energy diagram formulated by Lorenz (1955). The spectral components
are selected in such a way that the boundary conditions at the northern and southern walls are
satisfied, while the flow is periodic in the west-east direction.

A model of the above kind will be able to give a schematic flow pattern only. A limitation
of the model is that it permits only wind profiles that are symmetric around the middle of the
channel. Having only one wave number in the west-east direction the maps of the streamfunction
will at most have a single low and a single high for a given value of the south-north coordinate.
No attempt has been made in the present paper to analyse the model for barotropic/baroclinic
stability using analytical methods. Some aspects of instability for a low-order, barotropic model
may be found in a paper by Marsh et al. (1995). With respect to the periodic behavior of large-
scale waves we refer to the paper by Christensen and Wiin-Nielsen (1996) and by Wiin-Nielsen
(1997).

2. Brief description of the model

No detailed description of the derivation of the model equations will be given in the paper
because it follows standard procedures using orthogonal sets of functions. All model equations
are, however, given in detail in the appendix, including all the quantities that are constants in
a specific integration. The length of the beta-plane is L and the width is D. The basic wave
numbers are k = 27/L and A = n/D. The meridional wave numbers included in the eddies are
wave numbers 1 and 3, while the wave numbers in the zonal flow are 2 and 4 as specified in eq.
(3) to (6) in the appendix. The specific form in which we have written the streamfunctions for
both the zonal flow and the eddies is such that the dependent variables in the model have the
dimension of velocities measured in m per s. The equations in the appendix are written without
the terms related to heating, topography and dissipation, but the terms necessary to be added
to the right hand sides of the basic equations are given separately.

Subscripts 1 and 3 refer to the two levels which are located at 250 and 750 hPa, respectively.
As is custommary we have added and subtracted the two basic equations. The subscripts * and
T refer to half the sum and half the difference between the same quantities at levels 1 and 3.

Using the model for a specific purpose it is necessary to specify the length and the width of
the channel and the six components of the heating and the mountain heigth to be used in the
integration. The values of the coefficients specifying the dissipation have been the same in the
examples given in the paper. All integrations have been carried out using Heun’s scheme for the
time integration. Normally, we have used a timestep of one hour, but in extreme cases it has
occasionally been necessary to decrease the size of the timestep to secure numerical stability. The
total length of the integration varies from case to case. Normally we have started all integrations
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from a state of rest. This procedure requires a spin-up time, anc since we are interested in
reaching a possible steady state integrations can be quite long. Frequently it required a total
integration time corresponding to 2 years.

For each integration graphs have been prepared showing the development of the wind compo-
nents, the zonal and eddy forms of the available potential and the kinetic energy, and the gen-
erations, conversions and dissipations of these energies. Energy diagrams are given for specific
times or for the average over a period. While examples of these figures are given later in the pa-
per we have abstained from producing a very large number of figures to illustrate the examples.
The model may be used in two slightly different forms. One of these contain the heating itself,
while the other has been formulated using a Newtonian form of heating as given at the end of
the appendix. The use of the two forms is determined by the problem under consideration.

3. The creation of waves

From the classical linear theory we know that baroclinic waves will be generated for certain
wavelengths if the vertical wind shear is sufficiently large. Using a two-level, quasi-nondivergent
model it is found that very short waves are stable due to the effects of the static stability, and
that very long waves are stable due to the beta-effect. We know also from linear theory that
barotropic flow is unstable for sufficiently large horizontal wind shears. It is therefore natural
to let the first numerical experiment with the present low-order model deal with the extention
of these linear theories into the nonlinear domain.

In the first example we shall look at the creation of waves using a forcing that appear on
the first component zp s only (see the section on heating terms in the appendix). Such an
experiment is similar to the famous experiment carried out by Phillips (1956). He used a simple
linear heating function with heating in the southern and cooling in the northern half of the
region. In our case the heating is on a single trigonometric component. We expect then that the
heating will gradually create a growing temperature gradient which eventually will be so large
that barotropic/baroclinic waves are created. In the first experiment we use 275 = 20 m per s,
and we set the wavelength equal to 6000 km.

Figure 3.1 shows the streamfunction after 2900 time steps. It is seen that a well developed
wave pattern has been created. An investigation of the development in time indicates that the
waves are transient. However, Figure 3.2 containing the zonal available potential and the zonal
kinetic energies, indicate that these two forms of energy become almost constant after about
4000 time steps. As shown in Figure 3.3 the same statement can be made for the eddy available
potential and the eddy kinetic energies. This means that the transient waves should be almost
periodic. Figure 3.4 shows that this is indeed the case since the component Ex; plotted against
F.3 results in a closed curve.

We reproduce in Figure 3.5 the energy diagram for the experiment where it should be noted
that a negative number means that the energy flow is in the opposite direction of the arrow in
the figure. We notice that the energy diagram with respect to the directions is in agreement with
those obtained from observational studies and especially that the energy conversion C (Ke, K2)
is positive and, thus, gives a contribution to the maintenance of the zonal flow. On the other
hand, the amounts given in the diagram are typically smaller than those based on observations.
One obvious reason is, of course that only one west-east component is contained in the model,
but the results depends also on the choice of the west-east wavelength.

For this reason the experiment was repeated with a wavelength of 4000 km. Figure 3.6
shows the diagram, and in this case we note that the generations, conversions and dissipations
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are generally larger than in the previous case although the directions are the same in the two
figures.

It may also be of interest to test whether or not very long waves are stable in this example.
An integration with zry = 20 m per s and L = 14000 km was integrated with the result that
no waves were generated during an integration of 180 days. Similar integrations with the same
forcing, but for wavelengths of 1000 km and 2000 km showed that no waves were generated in
these cases.

Fig. 3.1. Streamfunction after 2900 time steps with zr; = 20 m per 8 and L = 6000 km
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Fig. 3.2. Zonal available and zonal kinetic energies. Parameters as in Fig. 3.1.



48 P. MARCUSSEN and A. WIIN-NIELSEN

2000
Energy
T — Ag¢
- - Ke
1800 —
1200 —
& 4
g
S~
~—
X 800
e
o
o 4
L)
L 1 T ..
400 —
0 [ T I T T T I T }
0 4000 120900 16000 20000

8000,
Time step (h)
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Fig. 3.4. A demonstration of the periodic eddy motion. Parameters as in Fig. 3.1.
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Fig. 3.5. The energy diagram for the experiment described in Fig. 3.1-Fig. 3.4.
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Fig. 3.6. The energy diagram for an experiment with 27y = 20 m per 8 and L = 4000 km.

4. Simulations of blocking situations

It was suggested by Charney and DeVore (1979) using an equivalent barotropic low-order model
with Newtonian heating, topographical forcing and dissipations that among the multiple steady
states one state was similar to a blocking situation. Their model was formulated on the beta-
plane. Independently, Wiin-Nielsen (1979) investigated the multiple steady states of a model
forced by heating and including dissipation. He also found that one of the stable steady states
could be similar to a blocking situation. This study was formulated on the sphere and therefore
used Legendre functions in the formulation of the low-order model. In these studies, dealing only
with steady states and their stability, the blocking situation is a result of a nonlinear interaction
between the zonal flow and the eddies.

In a later study, inspired to a large degree by the observational investigations of blocking
situations by Austin (1980), Christensen (1984) determined that a blocking situation could also
be a result of wave-wave interaction among the planetary waves with wave numbers 1, 2 and
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3. Christensen and Wiin-Nielsen (1996) used these results to show a better agreement with
observations than was found in the case of interactions between the zonal flow and the eddies.
These results were obtained by comparing the theoretical eddy kinetic energy amounts with the
same quantity obtained by observational studies.

We shall investigate if a blocking pattern may be obtained by integration of the model equa-
tions for the 12 component model. If such a schematic simulation can be created, it will be
another example of blocking generated by interaction between the zonal flow and the eddies
simply because the present model has only one wave number in the west-east direction.
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Fig. 4.2. The steady state streamfunction on level 3 for zr; = 22, wry =15, e;y = —15, fi; =15, esy =20 and
Jay = =20, hm = 0.
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It turns out that stationary flow pattern similar to blocking may be generated for a large
variety of forcing parameters provided that the wavelength is large. We have used 14000 km for
the wavelength corresponding to wave number 2 in middle latitudes. Common for the heating
functions, resulting in a stationary state similar to blocking is that it has to contain rather large
amounts of heating on the eddy components. We show an example where zpy = 20, wry =
10, fiy = —20 and f37 = 10, all in m per s, while all the other forcing components are zero.
The mountain height was 2000 m, and the south-north length of the channel was 6000 km. It
is known from other studies of blocking (Christensen and Wiin-Nielsen, 1996) that the typical
length in this direction has to be smaller than the distance from equator to pole. The integration
started from an initial state of rest, and the integration was carried out long enough to obtain a
steady state. Figure 4.1 shows the result for the streamfunction at level 3, where one recognizes
the typical ‘omega’-shape characteristic of blocking anticyclones.

In the second example we have used the following values: zry; = 22, wpy = 15, €15 =
—15, fif =15, egy = 20 and f35 = —20, all in m per s. The topography was excluded in this
experiment, i.e. hm = 0. Figure 4.2 displays the steady state streamfunction on level 3, where
one once again notices the ‘omega’-shape. Figure 4.3 gives the energy conversion C (Ke, Kz) as
a function of time for the same case. Based on observational studies the long term mean of this
quantity is positive, but for some blocking situations it has been found to be negative, i.e. the
conversion is going from K. to K. meaning that the zonal kinetic energy must be maintained
by the conversion C (Az, Kz).
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Fig. 4.3. The energy conversion C(K,, K;) as a function of time for the case shown in Fig. 4.2.

When the eddy heating values given above are decreased the steady state will eventually
disappear. Replacing the steady state one obtains a quasi-periodic oscillation where the energy
conversion C (K¢, K:) oscillate between small positive and somewhat larger negative values. A
possible interpretation of this behavior is that the blocking situations are established from time
to time and are maintained for a limited time only after which they break down. Thereafter the



52 P. MARCUSSEN and A. WIIN-NIELSEN

energy conversion from K¢ to K. increases to small positive values, but since the heating that
is held constant in time the model atmosphere will again establish a block and so on. Such a
development is illustrated in Figure 4.4 showing the energy conversion C (Ke, K2) as a function
of time in a case where the heating parameters are: 2rf = 22, wpy = 15, e;y = -7, fif =
7, esf =12 and f3f = —12.
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Fig. 4.4. The energy conversion C(Ke, K.) for a case with zry =22, wry =15, ey = =7, fiy = -7, ezy =12
and f3f = —12.

5. Periodic and quasi-periodic nonlinear oscillations

Plaut and Vautard (1994) have made an observational study of occasional low frequency oscilla-
tions in the Northern Hemisphere. They find quasi-periods of 30-35 days, 40- 45 days and about
70 days. Such phenomena may be called intermonthly oscillations.

The oscillations with periods of 30-35 days were reproduced by Christensen and Wiin-Nielsen
(1996) using a wave-wave interaction, low-order model with six components. A simple model
based on a one-dimensional, nonlinear equation of motion with Newtonian forcing was used in
a low-order configuration by Wiin-Nielsen (1996) to show that limit cycles with the periods
mentioned above could be reproduced by this wave-wave interaction model provided the forcing
has the correct order of magnitude. The observed periods may thus be reproduced. On the
other hand, different periods appear for other values of the forcing as well, and it remains to be
seen why the atmosphere does not contain these periods.

In a second study, Wiin-Nielsen (1997), a nine component model including heating and dis-
sipation, expanded to apply to two-dimensional flow on the beta-plane, was used to investigate
the intermonthly oscillations. It was possible to reproduce all the observed periods. In all the
models mentioned so far it was assumed that wave-wave interactions take place among waves
on the planetary scale, i.e. wave numbers 1, 2 and 3. The time scales found in the theoretical
studies mentioned above is thus dictated by the time scales present in cascade processes.
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The model treated in the present paper does not contain such interactions, but only inter-
actions between the zonal flow and waves of a given wave number. Any time scales that may
be found are therefore related to the conversions of zonal available potential energy to eddy
available energy and to the conversion of eddy kinetic to zonal kinetic energy. The first question
is therefore if the present model is capable of displaying inter-monthly oscillations.
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Fig. 5.1. The period, measured in days, as a function of the intensity of the forcing characterized by the parameter
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Fig. 5.2. The two components E1T and F1T, measured in m per s, as a function of time. v = 1.35 x 1076571,

The model was integrated with zpy = 20, wry = 15 and f;7 = 28 (all in m per s) while the
forcing on the other eddy components was zero. The intensity of the heating may be controlled
by changing the coefficient - in the Newtonian heating. The coefficient was varied from a low
value of 1.0 x 107% s7! to a high value of 1.5 x 107% s~! with changes of 0.05 from one value to
the next. For each value of 4 periodic variations were found. The period of the oscillations were
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found. Figure 5.1 shows the periods as a function of +. It is seen that the period increases with
the intensity of the heating, and that period from 26 to 174 days were determined. Figure (5.2)

shows Ej; and Fy; as a function of time, measured in hours, for a case with ¥ =1.35x 1076

s~ The period of the oscillation is about 70 days. Figure 5.3 from the same integration shows
the energy conversions C (Az, A¢) as a function of time with the same period, while Figure 5.4
displays the energy generations G(A;) and G(A.) indicating the same period.
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Fig. 5.3. The energy conversion C(A,, A¢) as a function of time.
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Fig. 5.4. The energy generations G(A.) and G(A.) as a function of time.
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The length of the channel was equal to 6000 km in the integrations. We are thus in the region
of the combined barotropic/baroclinic instability. As indicated by Figure 5.1 the oscillation
period is determined by the size of the heating parameter. One should therefore expect that if
the forcing on the eddy components are zero we should also find a periodic oscillation in this case.
Figure 5.5 is prepared with no heating on any of the wave components and with vy =1.35 X 1076
s~!. With eddy forcing we found a period of 70 days. Without the eddy forcing the period is
reduced to 38 days.

22f=20, w2£=15, gamma=1.35 10*

3 ¥ T T T T T T T

PERE v
;Ll,l iy 4 “£|.J 4L S IJL JEARA T, AT TR | I
bR l

e l i 'ﬂ“f T

| T A

Eand B (m/s)

3rF 4

_4 1 1 1 A 1 L 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (hours)

Fig. 5.5. E1T and F1T as functions of time with no eddy forcing.

It therefore appears that the periodic motion found with the present model is of a different
kind than the one found using the wave-wave interaction models, simply because the oscillations
are found in the region of instability, while the wave-wave interaction models operate on the
planetary scale. Thus, it would be desirable to make observational studies to investigate the
intermonthly oscillations in wave number space. The other remaining question is to determine
why the atmosphere selects the observed periods and not other periods. The answer could
probably be obtained by a calculation of the heating fields from observations during the time of
the oscillations.

6. Responses to changes in the heating

The atmosphere responds to the changes in the heating fields. The most well known example is
the seasonal variations, where we observe a time delay of 1 to 2 months between the astronomical
cycle and the seasonal cycle (Wiin-Nielsen, 1970). The present model may be used to investigate
some connections between the heating field and the resulting circulation. For these purposes it
is more convenient to use the model in the form where the heating parameters are given directly

and not in the Newtonian form. In general, the heating field is a function of the two space
¢oordinates x and y. We shall limit ourselves to the case where h = h(y). Within the limits of
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the model we express the heating field in the form:

h = hysin(2Ay) + hgsin(42y)
= hq(sin(27n) + esin(47n))

hy y

_h o _y 6.1
By differentiating eq. (6.1) with respect to h we may determine € in such a way that the

heating profile has an extreme value at n.. We find that

_ _ cos(2mm,)
T 2cos(4mn,) (6.2)

Using this value of € we next determine the values of e for which the extreme value is a
maximum, whereafter we normalize the expression in (6.1) in such a way that the maximum is
ho which we require to be positive. In addition we decide to use only such heating parameters
that the heating is positive in the southern part and negative in the northern part. A small
amount of numerical experimentation using (6.1) and (6.2) shows that these requirement are
satisfied for 0.16 < ne < 0.34. The heating profiles for the values 0.17, 0.25 and 0.33 are shown
in Figure 6.1. For a channel width of 7000 km the position of the maximum may change by
about 1000 km.

12 component model
1.0 T T T

Normalized heating with max at .17, 0.25 and 0.33
<

_1'0 L 1 1
0 0.2 0.4 0.6 0.8 1.0

y/D
Fig. 6.1. Heating profiles for n = 0.17, 0.25 and 0.33.

For ne = 0.33 and hy = 1.5 X 10737 kg_l s~! we show in Figure 6.2 the streamfunction at
level 3 after an integration of 720 days. The state is characterized by a well developed low in the
northern half and a high in the southern half. Going to the other extreme, ne = 0.17, but with
the same value of hg, we find in Figure 6.3 an entirely different kind of flow pattern showing
again the streamfunction at level 3. The waves are now in the middle of the channel and are
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less developed. The change between the two kinds of flow pattern seems to appear at 1 = 0.30
which is the smallest value for which closed isohypses appear in the northern and southern part

of the region.

Fig. 6.2. The streamfunction at level 3 for ne = 0.33 and kg = 1.5 X 10737 kg_1 g7 !

N 25 . ‘

20-

15+

w E
Fig. 6.3. The streamfunction at level 3 for ne = 0.17 and the same heating as in Fig. 6.2.

It is also of interest to investigate the importance of the magnitude of hy for the final shape of
the isohypses. Figure 6.4 shows the streamfunction at level 3 at the same time as the previous
figure, but for the value of hg = 1.545 % 10737 kg—1 s~ ! or 3% larger than the value related to the
previous figure and for n. = 0.33. We notice the similarity with the map in Figure 6.2, but also
the large displacement in the position of the low and the high on the two maps. This experiment
shows the large sensitivity to small changes in the initial forcing for the position of the major
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Fig. 6.4. The streamfunction at level 3 for ne = 0.33, but hy = 1.545 x 10~3 J kg"1 s~ 1.
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Fig. 6.5. The streamfunction at level 3 for n. = 0.17, but hy = 1.545 x 10™3 J kg'1 s~ 1.

features in the streamfunction field. A similar difference is found by comparing Figure 6.3 with
Figure 6.5. The maximum heating appears in both figures for ne = 0.17, but in producing
Figure 6.5 the value hy =1.545 x 1073 J kg_1 s™! was used. We have thus demonstrated the
sensitivity to the position of the maximum heating and cooling in the south-north direction and
the sensitivity to small changes in the forcing in the model.

7. Long waves created by heating and topography

Linear studies by Charney and Eliassen (1949) and Smagorinsky (1953) show that stationary,
very long waves are generated by topographical effects and diabatic heating. The topographical
forcing, taken in isolation, will generate anticyclonic flow over the mountains and cyclonic flow
on the lee side and downstream as measured from the mountain ridge. The diabatic heating
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will create cyclonic flow in relation to the maximum heating and anticyclonic flow related to
the cooling, but due to the imposed zonal flow in the basic state for the linear perturbation
studies the results show also significant phase differences between the heating and cooling and
the trough and ridge in the resulting streamfunction.

Several later studies, notably by D56s (1962), have tested the results described above by using
different models and by determining the sensitivity of the results to the parameters in the model.
It has for example been shown by Derome (1968) that the amplitude of the stationary flow is
sensitive to the width of the channel when the investigation uses a beta-plane.

In this section we shall use the low-order model to generalize the linear studies. To simulate
the two effects in the low-order nonlinear model it is impossible to separate them completely
because the topographical effect requires a flow over the mountains, and this flow is generated
in the model by the differential heating in the meridional direction. On the other hand, these
integrations of the model equations use a large length of the channel, say 14000 km. On this
scale the model will not generate transient waves by barotropic/baroclinic instability, and the
generated waves are then due to the topography. It may be useful to imagine that the rectangular
region is divided in a western continental region and an eastern oceanic region, but with only
one longitudinal wave number the topography will stretch over the whole domain.

60—

Zonal Wind level | (m/s)

Zonal wind
—  BI
---Cl
T I i I I I i } |}
0 4000 8000 12000 18000

Fig. 7.1. Zonal wind components B; and C) as a function of time for Az = 2 X 1073 J kg~ ! s7! and hy = 5000
m.

In the experiments we use a heating specified by hy = 2 X 107317 kg_1 s~ and a mountain

height of h,m = 5000 m. Figure 7.1 indicates that an asymptotic steady state is reached after
about 250 days. As shown by Figure 7.2 the result is a cyclonic circulation over the western part
and an anticyclonic circulation over the eastern part.
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Fig. 7.3. Streamfunction at level 3 for hf; = hfs = —9.0x 10™%J kg_1 s_l, hm = 0, and no heating from other
components.

To simulate the heating effect we set the heating parameters to hif = h3zy = —9.0 x 1074

kg_1 s71 ; while the mountain parameter and all other eddy components of the heating field are
set to zero. With these specifications there will be cooling over the western and heating over the
eastern part of the region. The integration to a steady state is shown in Figure 7.3. The essential
part of the flow is an anticyclonic circulation to the west and a cyclonic circulation to the east.
Figure 7.4 shows what happens when we change the sign on the two heating components. The
cyclonic circulation is to the west and the anticylonic to the east.

In the following integrations we shall include topographical and heating effects in the model.
Many combinations are possible. We shall restrict ourselves to a few cases with Ay = 5 km.
The first case has cooling over the western side and heating over the eastern side with the
values h;; = h3y = —9.0 x 1074 kg"l s”1. The integration leads to a steady state, shown
in Figure 7.5. In this case we expect that the heating effect and the topographical effect will
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reinforce each other, since both of them will tend to create anticyclonic flow in the western and
cyclonic flow in the eastern part. This expectation is verified by Figure 7.5. In the next case
we change the sign on the two heating component given above. In this case the two effects will
counteract each other, and the final result will depend on their relative strengths. Figure 7.6
shows a cyclonic circulation near the middle of the channel and somewhat to the east of the
coastline located at £ = 24. Over the western half we find anticyclonic flow in the middle of
the channel, but the cyclonic circulation stretches into the north-westerly region. Therefore, we
conclude that the topographical effect dominates over the heating effect.

Fig. 7.5. The streamfunction at level 3 for hf; = hfz3 = —9.0 x 10™* and hm = 5000 m.

In the final experiment in this section we increase the forcing to the values hy; = h3y =

48x1073 ) kg_1 s1. The steady state is given in Figure 7.7. In this case the mountaing effect
still dominates since the western part has anticyclonic flow, while the eastern part has cyclonic
flow.
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Fig. 7.7. Streamfunction at level 3 for hf; = hfs = 4.8 x 10737 kg'1 8! and hm = 5000 m.

The cases in this section may be considered as an expansion of the linear theory into the
nonlinear domain, where as usual one has to rely on steady states obtained as asymptotic states
after a numerical integration of sufficient length.

8. Summary and concluding remarks

The purpose of the paper has been to use a 12 component, low-order, quasi-nondivergent, two
'level model to simulate a number of nonlinear atmospheric processes. The model is a minimal
model in the sense that models with fewer components will not be able to include both the
meridional transports of sensible heat and of momentum. At the same time, the model permits
a calculation of all energy generations, conversions and dissipations cycle as given by the at-
mospheric four box energy diagram. The model may have heating on all components expressed
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either directly or through a Newtonian heating. Topographical forcing is also included in the
model, but the topography is represented by a single trigonometric term.

All investigations have been done by numerical experiments, and no analytical work has been
included. The long integrations have been carried out using the Heun scheme for the time
integrations, normally with a time step of 1 hour. For each integration it is possible to calculate
the energetics of the model and to obtain all quantities as functions of time. The program also
permits the production of maps of the various field distributions.

The model with its few components as compared to any large-scale, global model of the general
circulation of the atmosphere is still capable of illustrating a number of important atmospheric
processes, e.g. the creation of atmospheric waves by barotropic/baroclinic instabilities, the
development of these waves in the nonlinear domain, a study of the creation of blocking structures
through nonlinear interactions between the zonal flow and the eddies, the atmospheric response
to changes in the heating, both with respect to the intensity of the forcing and to changes in the
position of the maximum heating in the south-north direction, with the result that a maximum
heating located well to the south will result in an entirely different flow configuration compared
with a more northerly position of the maximum heating, and, finally, a study of the creation of
long stationary waves as influenced by both diabatic heating and topography.

Some important processes are naturally excluded from the model. With only one wave number
in the zonal direction and a few components to describe the meridional behavior the model
cannot represent any cascade processes of any kind. Thus, the produced maps are of a schematic
character.

It has not been attempted to ascribe the heating to specific physical processes. The reason
is that any attempt in this direction will lead to additional time-dependent variables such as a
description of moisture, clouds, sea-surface temperatures, etc. A move in this direction seems
to be counterproductive to the main idea embedded in the model.

APPENDIX 1

In this appendix we discuss the 12 component model and give the equations and constants
entering the equations. The model is a two level, quasi-nondivergent model based on a vorticity
equation for the vertical mean flow which may be identified with the 500 hPa level and a thermal
vorticity equation that describes the development in a layer with a pressure difference of 250 hPa.
The region is rectangular with the length L in the west-east direction and the width D in the
south-north direction. We use the notation k = 2x/L,A = x/D and ¢* = (21%)/(a P?), where
the last quantity is the stability parameter. In all calculations we have used q2 =4x10"
m~2 and a value of 8 = 1.6 x 10711 m? s_l, where 8 is the variation of the Coriolis parameter
with latitude. We recall that ¥4« and ¥ are half the sum and half the difference between the
streamfunctions at 250 hPa and 750 hPa.

The zonal parts of the streamfunctions are given by:

(0.)z = ;_,\ sin(2\y) + ;"_A sin(4\y) (1)

(¥7)z = ;—§ sin(2Ay) + % sin(4Ay) (2)
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The eddy parts of the streamfunction are given by
1. .
(¥4)g = o sin(Ay)(z+1 cos(kz) + ys1 sin(kz))

+% sin(3Ay)(z.3 cos(kz) + y,3 sin(kz)) (3)

(¥1)5 = 1 sin(\w)(ary cos(kz) + yr sin(kz))

+% sin(3Ay)(z3 cos(kz) + yr3 sin(kz)) (4)

The following notations for the transport quantities, appearing in the final equations, are
introduced:

Ty = 271951 — Tsa1¥YT1
M = 7.19:3 — Tu3¥41
Mr = z71y13 — 2T3YTI1
M7 = ZT3ys1 — T4197T3

T
M, =z.3yr1 — ZT1¥e3 ()

O
[l
%

=
I
Tl=

S

[ L]

(6)

T
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The twelve equations are:

dz
'd—t* = —ai (Mt + MT)
dws

dt = al(M* + MT)

d
-—Z;—l = az(z+ys1 + zryr1) + a3(2+Ys3 + 2TYT13)

+ag(weyss + wryrs) + b1y

dyu

e —ag(zxzy1 + 2:271) — a3(2+ 243 + 27TT3)

—ag(wizy3 + wpzrs) — b1Z41

d
% = as(weys1 + wryr1) — a6(2+Ye1 + 2ry71) + b2Ys3

d
%3-' = —a5(wszs1 + wpzy) + a6(2+Ta1 + 27271) — b2243

‘_1;7T = a7M7*~ + agME{l1 —a4Ty

dwr
dt

65

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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del
dt

= @112xYT1 T G122+ YT3013WYT3

+a142TY+1 + Q1527 Y43 + a16WT Y43 + b3yT)

d
1‘/1::‘1 TG112+TT] — 8122+TT3 — G13WsIT3

—Q142TT,1 — Q152TT+3 — G16WT T3 — b3z

dzp
dt

3 _
= @17WsYP1 — G182+ YT

+a19WT Y1 — 82027 Y41 + bayTs

dyrs

ar TWIT1 + a8z«

—a19WT Ty + a2027T+1 — baTpy

The list of constants for each integration is:

a) = 2kQ

a —k——3Q-1
2717 Q)

L 5Q+1
ﬂ1+Q)

_19-1
=20+

(16)

(17)

(18)

(19)

(21)

(22)
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o 15Q -1
%= 5+ Q)

3@ -1
%= kM 19Q)

L 2Q+5;/4
1 =kT15,/4

2Q — 51 /4
= k= -
%= ¥s,/4

_ ., Si/4

% = kT s,/4
_ 2Q+Sl/4

a0 = kg 16
3Q -8 —1
—k——
MERaFe+s)
gy — g9 tS1+1
Z=M0+Q+ S
L, 1Q-5 -1
8=k T+ 5)
. 3Q+5 -1
W=k reTs)
a5 =k 5Q + S +1

21+ Q+51)

67

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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age = k;—?_%% (34)
o1 =k T o0 T 8 (35)
h1s = k2(31Q+_96§1+_ sll) (36)
%19 = 2??3;5 l+_s:) (37)
20 = k2€1Q+zc§1n: sll) (38)
by = % (39)

b2 =1 +R9Q (40)
b3:1+6§+sl (41)
by = 1_+9‘g+—sl (42)

The twelve equations for the model as given above apply to the case of no forcing, no dissipa-
tion and no mountains. In general these effects should of course be present, but for convenience
we give below separately the expressions that have to be added to the right hand side of each
equation.
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I Heating terms

The heating in the model is of a Newtonian type. Denoting an arbitrary dependent variables
by v and the forcing on this component by v; one has to add to equations (13) to (18) incl. a
term of the form:

V(vy —v)

Example: For the variable 2y one adds the term:

Y(zrf — 2r1)

The standard value of v = 1.0 X 1078571,

II Dissipation terms

For the first six equations one has to add the terms:

—€e(z+ — 227)

—e(ws — 2wy)

—&(z14 — 2217)

—&(y1s — 2y17)

—&(z3. — 2z37)

—&(y3« — 2y3T)

The standard value of € = 2.0 x 107% 571,

A

For the last six equations one has to add the terms:
7. [e(zx — 227) —er2r]/(1+ S2/4)

8 [e(ws — 2wr) — epwr)/(1+ S,/16)

9: [e(z1+ — 2217) — erz17|(1 + Q)/(1 + Q + S1)
10: [e(y1s — 2y17) — eryiT|(1 + Q)/ (1 + Q + S1)
11: [e(zs. — 2z37) — erzar)(1 +9Q)/(1+9Q + 5y)
12: [e(y3« — 2y37) — erysr](1 +9Q)/(1 + 9Q + Sy)
The standard value of e = 6.0 X 1071 g7,

II1 Mountain terms

To keep the model as simple as possible we shall not treat the general problem, but shall
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restrict the mountains to have the form:

h = hm sin(Ay) sin(kz) (43)

This means that we consider a case where the continent with the mountain is in the western
part of the region. As in the previous case we make a list of the terms that should be added to
the right hand side of the 12 equations, i.e. (7) to (18):

1: —emhm(zys — 23 — 217 + 237) /4

2: —cmhm(z3s — z37)/4

3: emhm(zs — 27)/(2(1 + Q))

4: 0

5: —cmhm(zs — we — zp + wp)/(2(1 + 9Q))
6: 0

7: emhm(z14 — 23« — 717 + 237)/(2(4 + S2))
8: cmhm(z3« — z37)/(16 + S2))

9: —cmhm(zs — 27)/(2(1+ Q + 51))

10: 0

11: cmhm(z: — we — 27 +wp)/(2(1 + 9Q + Sy))
12: 0

The constant ¢y = gfo/(RTs) = 1.1856 x 1078 m~! 57!,

IV Typical values of other constants

D = 7.0 X 10® m (the width of the region)

B=16x10"11m1g71 (8 = 20 cos(lat)/a with @ = 7.29 x 107°% 871 a = 6371 km,
lat = 45 degrees.

R=2870m? s 2 K™!

g=98m s~2

qQ? =4.0x 10712 @2
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Appendix 2
Sect. | Lx10* | zy wy | ey fie ey £ hy,
km
3 6 20 0 0 0 0 0 0
3 4 20 0 0 0 0 0 0
3 14 20 0 0 0 0 0 0
3 1 20 0 0 0 0 0 0
3 2 20 0 0 0 0 0 0
4 14 20 | 10 0 20 | © 10 | 2000
4 14 2| 15 -15 | 15 20 [ -20 0
4 14 2| 15 -7 7 12 | -12 0
5 6 20 | 15 0 28 0 0 0
5 6 20 | 15 0 0 0 0 0
7 14 | 133] o0 0 0 0 0 | sooo
7 14 | 133] 0 -6 0 -6 0 0
7 14 | 133} 0 -6 0 -6 0 | 5000
7 14 | 133] 0 6 0 6 0 | 5000
7 14 | 133] 0 321 0 321 0 |s5000

Note: The last five experiments were done specifying the heating. The values in the table has
been found by using the conversion:

%5

q
= h
YT Sy

with D = 6000 km, v = 1.5 X 10~° 571 and standard values for the other parameters.

REFERENCES

Austin, J. F., 1980. The blocking of middle latitude westerly winds by planetary waves, Quart.
Jour. of the Roy. Met. Soc., 106, 327-350.

Charney, J. G., 1959. On the general circulation of the atmosphere, The Atmosphere and Sea
in Motion, The Rockefeller Institute Press, 178-193.

Charney, J. G. and A. Eliassen, 1949. A numerical method for predicting the perturbations of
the middle latitude westerlies, Tellus, 1, 38-54.

Charney, J. G. and J. G. DeVore, 1979. Multiple flow equilibria in the atmosphere and blocking,
J. Atmos. Sci., 836, 1205-1216.



7 P. MARCUSSEN and A. WIIN-NIELSEN

Christensen, C. Wiin, 1984. Blocking, M. Sc. diss, Dept. of Geophys., Univ. of Copenhagen,
106 pp.

Christensen, C. Wiin and A. Wiin-Nielsen, 1996. Blocking as a wave-wave interaction, Tellus,
48A, 254-271.

Derome, J. F., 1968. The maintenance of the time-averaged state of the atmosphere, Ph.D.
thesis, Univ. of Michigan, 129 pp.

Doos, B. R., 1962. The influence of exchange of sensible heat with the Earth’s surface on the
planetary flow, Tellus, 14, 133-147.

Lorenz, E. N., 1955. Available potential energy and the maintenance of the general circulation,
Tellus, 7, 157-167.

Lorenz, E. N., 1960. Maximum simplification of the dynamic equations, Tellus, 12, 243-254.

Lorenz, E. N., 1962. Simplified dynamic equations applied to rotating basin experiments, J.
Atmos. Sci., 19, 39-51.

Lorenz, E. N., 1963. Deterministic non-periodic flow, J. Atmos. Sci., 20, 130-141.
Lorenz, E. N., 1963. The mechanics of vacillation, J. Atmos. Sci., 20, 448-464.

Marsh, N., I. A. Mogensen and A. Wiin-Nielsen, 1995. On the stability of single and double jets,
Geophysica, 31(2), 47-57.

Phillips, N. A., 1956. The general circulation of the atmosphere: A numerical experiment, Quart.
Jour. of the Roy. Met. Soc., 82, 123-164.

Plaut, G. and R. Vautard, 1994. Spells of low-frequency oscillations and weather regimes in the
Northern Hemisphere, J. Atmos. Sci., 51, 210-236.

Platzman, G. W., 1960. The spectral form of the vorticity equation, Jour. Meteor., 17, 635-644.

Smagorinsky, J., 1953. The dynamical influence of large-scale heat sources and sinks on the
quasi-stationary mean motions in the atmosphere, Quart. Jour. of the Roy. Met. Soc., 97,
342-386.

Stuart, J. T., 1960. On the nonlinear mechanics of wave disturbances in stable and unstable
parallel flow, Part 1, The basic behavior in plane Poisuille flow, J. of Fluid Mech., 9, 353-370.

Watson, J., 1960. On the nonlinear mechanics of wave disturbances in stable and unstable
parallel flow, Part 2, The development of a solution for plane Poiseuille flow and plane Couette
flow, J. of Fluid Mech., 9. 371-380.

Wiin-Nielsen, A., 1961. On short- and long-term variations in quasi-barotropic flow, Mo. Wea.
Rev., 89, 461-476.

Wiin-Nielsen, A., 1970. A theoretical study of the annual variation of atmospheric energy, Tellus,
22, 1-16.

Wiin-Nielsen, A., 1975. Predictability and climate variation illustrated by a low-order system,
ECMWF Seminar on Scientific Foundation of Medium-Range Forecasts, 258-306.

Wiin-Nielsen, A., 1979. Steady states and stability properties of a low-order, barotropic system
with forcing and dissipation, Tellus, 81, 375-386.

Wiin-Nielsen, A., 1990. A study of large-scale atmospheric waves and the response to external
forcing, Geophysica, 26, 1-28.

Wiin-Nielsen, A., 1991a. Comparisons of low-order atmospheric dynamic systems, Atmdsfera, 5,
135-155.



A numerical investigation of a simple spectral 73

Wiin-Nielsen, A., 1991b. Low-order baroclinic models forced by meridional and zonal heating,
Geophysica, 27, 13-40.

Wiin-Nielsen, A., 1994a. On equilibrium between orography and atmosphere, Atmdsfera, 7, 3-20.
Wiin-Nielsen, A., 1994b. Nonlinear studies of quasi-geostrophic systems, Physica D, 77, 33-59.

Wiin-Nielsen A., 1996. A note on longer term oscillations in the atmosphere, Atmdsfera, 9,
222-240.

Wiin-Nielsen, A., 1997. On intermonthly oscillations in the atmosphere, Part II, Atmdsfera, 10,
23-42.

Yang, C.-H., 1967. Nonlinear aspects of large-scale motion in the atmosphere, Ph. D. Thesis,
University of Michigan, 173 pp.



