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RESUMEN

Se usa un modelo espectral numérico de la atmésfera barotrépica con el fin de simular soluciones exactas bien
conocidas de la ecuacién de vorticidad para un fluido ideal incompresible sobre una esfera en rotacién. Se enfatiza
en estudiar el comportamiento del error relativo entre la solucién exacta y la solucién numérica, y en preservar
la energfa cinética total, la enstrofia integral y la estructura geométrica de las soluciones (flujos zonales, ondas de
Rossby-Haurwitz, soluciones de Wu-Verkley, y modones bipolares de Verkley). Las integraciones realizadas con el
modelo en un intervalo de 10 dias, muestran que las soluciones exactas cldsicas se reproducen con buena precisién.
Sin embargo, la inestabilidad de unas soluciones exactas generalizadas respecto a los errores iniciales y los errores
asociados al forzamiento numérico puede ser un serio obsticulo en simular el comportamiento de dichas soluciones
a largo plazo. Si éste es el caso entonces aun el modelo espectral de alto orden de truncacién con muy pequefio
paso temporal falla en resolver el problema, y las trayectorias de las soluciones numéricas y exactas divergen de
una a otra en el tiempo. Por otra parte, la energia total y la enstrofia integral de todas las soluciones calculadas
numéricamente se conservan con un alto grado de precisién por lo menos durante los primeros diez dias.

ABSTRACT

A numerical spectral model of the barotropic atmosphere is used to simulate well-known exact solutions of the
vorticity equation for an ideal incompressible fluid on a rotating sphere. Primary emphasis is received to the
behavior of the relative error between the exact and numerical solutions as well as to preserving the total kinetic
energy, integral enstrophy, and geometric structure of the solutions (zonal flows, Rossby-Haurwitz waves, Wu-
Verkley solutions, and Verkley’s dipole modons). The 10-day integrations carried out with the model show that
the classical exact solutions (RH waves) can be calculated to a good approximation. However, the instability of
some exact generalized solutions with respect to initial errors and the errors associated with nonzero numerical
model forcing can be a serious obstacle in simulating long-time behavior of such solutions. If it is the case then
even highly truncated model with very small time step fails to resolve the problem, and the paths of the numerical
and exact solutions diverge from each other with time. Nevertheless, the total energy and integral enstrophy of all
the numerical solutions are conserved with a high degree of precision at least during first 10 days.
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1. Introduction

The motion of an ideal non-divergent fluid on the rotating unit sphere S is governed by the
barotropic vorticity equation (BVE) which can be written in the non-dimensional form as

Ay +J (Y, A +2pu) =0 (1)

where %(t, A, p) is the streamfunction, ¢ = A is the relative vorticity, A is the Laplace
operator, X is the longitude, and p is the sine of latitude. The Jacobian J (¥, Ay +2u) contains
both the nonlinear term J(1, At) and the sphere rotation term J(4, 2u) = 2¢). To the first
approximation, the same equation governs unforced and non-dissipative large-scale motions of
the barotropic atmosphere (Rossby, 1939; Haurwitz, 1940; Blinova, 1946, 1956; Silberman, 1954;
Adem, 1956), and ocean and sea (Gill, 1982; Zalesny, 1986; Bulgakov, 1996).

Physically, exact BVE solutions are helpful, since they provide an explanation for the time-
space structure of the waves existing in an ideal incompressible fluid on a rotating sphere.
Mathematically, exact BVE solutions can be used in the solution stability study (Hoskins, 1973;
McWilliams et al., 1981; McWilliams and Zabusky, 1982; Wu, 1993; Skiba, 1991, 1992a,b; Skiba
and Adem, 1998), in testing the numerical BVE models, etc. The simplest example of the exact
BVE solution is any zonal flow t(u). Haurwitz (1940) was the first who generalized Rossby’s
(1939) wave solutions to the spherical geometry by using the spherical harmonics Y (A, u).
In what follows, Ertel (1943), Craig (1945), Blinova (1946, 1956), Neamtan (1946) and Rochas
(1986) suggested various modifications of the Rossby-Haurwitz (RH) solutions, while Thompson
(1982) gave the most general form of a global and smooth BVE solution

W(t, A, w) =YX, p/) —wp+ Const (2)

that is the sum of a spherical harmonic Y (), u'), a term representing the sphere rigid rotation
with angular velocity w, and a constant. The primed coordinates (A', p') are related here with
a new geographical system of coordinates whose pole moves along a specific latitudinal circle of
the fixed system (A, u) with a constant velocity

c=[2+w(Z+x)/x (3)

where x is the eigenvalue of the spectral problem AY = xY for Laplace operator on the unit
sphere. In particular,

X = Xn = —n(n+1) ()

for the spherical harmonic Y (), p') of integer degree n.

In the theory of differential equations, the waves (2) are called classical solutions as differenti-
ated from the generalized solutions which are not so smooth being the weak limits of the con-
vergent sequences of smooth functions. Szeptycki (1973) was the first to prove the existence and
uniqueness of a generalized BVE solution on a sphere. The first generalized isolated solutions of
equation (1) named dipole and monopole modons were originally constructed by Tribbia (1984)
and Verkley (1984, 1987, 1989, 1990) by using two spherical harmonics of different degrees.
These modons are spherical analogues of the isolated vortex solutions constructed on the plane
by Stern (1975), Larichev and Reznik (1976), and Berestov (1979) (see also Kanehisa, 1994).
Later on, Neven (1992, 1993) has given generalized isolated solutions in the form of a quadrupole
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modon, while Wu and Verkley (1993) suggested generalized global solutions composed of two
RH waves. Characteristic of the generalized solutions is their low smoothness on a sphere: in the
general case, the derivatives of the third order of the solution streamfunction are not continuous
on the whole sphere. However, it is easy to show that a stationary dipole modon by Verkley
(1984) is the classical BVE solution. Indeed,

v

J(#, ap) =-r(X, #)57

where

1oy fexat2, if (V) u)eS;
(X #) = {CXg' +2, if (M, u)eS,.

Thus if ¢ = 0 then the Jacobian term in (1) is continuous everywhere on the sphere (Skiba,
1993). While the RH and Wu-Verkley waves have turned out to be useful in understanding
global wave structures in the atmosphere, the modons have been beneficial in interpreting some
localized stable atmospheric structures associated with blocking events (Stern, 1975; McWilliams
et al., 1981; McWilliams and Zabusky, 1982; Verkley, 1989).

In the present work, zonal flows, RH waves, Wu-Verkley solutions and dipole modons by
Verkley (1984) are simulated with a.numerical spectral barotropic atmosphere model of the
Center for Atmospheric Sciences (UNAM, Mexico). The work is considered as preliminary to
the numerical study of the asymptotic behavior and stability of solutions to a forced and dissi-
pative barotropic atmosphere model (Wiin-Nielsen, 1979; Andrews, 1984; Temam, 1988; Skiba,
1994, 1996, 1997) and low-frequency variability in the atmosphere (Branstator, 1985; Legras and
Ghil, 1985; Wu, 1993). The accuracy of reproducing the analytical solutions with the numerical
spectral model was controlled by means of four parameters: the total energy and integral enstro-
phy of the numerical solutions, and the absolute and relative errors estimated with Lg(S)-norm.
The 10-day integration results obtained show that the classical solutions (RH waves) can be cal-
culated to a good approximation. However, the instability of some exact generalized solutions
with respect to initial errors and the errors associated with nonzero numerical (artificial) model
forcing can be a serious obstacle in simulating long-time behavior of such solutions. If it is the
case then even highly truncated model with very small time step fails to resolve the problem, and
the paths of the numerical and exact solutions diverge from each other with time. Nevertheless,
the total energy and integral enstrophy of all the numerical solutions are conserved with a high
degree of precision at least during first 10 days.

2. Invariants of motion and approximation errors

It is well known that the behavior of a BVE solution is subjected to infinite number of restrictions
(Dikii, 1976). In particular, the total kinetic energy

1
K:§/|V¢|2ds, (5)

the enstrophy
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B=; [lstas=3[1a¢as, ©)

and hence, the average spectral number E/K of each BVE solution are conserved with time
(Fjortoft, 1953). Moreover, any smooth function f(A + 2u) of the absolute vorticity Ay + 2u
is also invariant of motion (Casimir function). For instance, for a natural k, the value

1/2k
| &Y +2u L, = (/ | A+ 2 |2 ds) (7)
3

is constant with time and represents the Loi-norm of the absolute vorticity. Note that the more
is k, the stronger is the norm. In the particular case that £ = 1, this norm is equivalent to

the enstrophy norm v'E or the 2-norm (14) defined below. Piterbarg (1998) has recently shown
that there exist no independent invariants for equation (1) except for the energy, enstrophy,
meridional momentum and Casimir functions.

The spectral model of the vorticity equation (1) was introduced and analyzed in many works
(Silberman, 1954; Merilees, 1968). The model is based on using Fourier-Laplace series (Topuriya,
1987). A discrete spectral model is obtained by truncating Fourier-Laplace series for the stream-
function, vorticity and Jacobian (Baer and Platzman, 1961; Platzman, 1960, 1962; Baer, 1964;
Ellsaesser, 1966; Machenhauer, 1979). We have used the triangular truncation

N n
INETNF=D. D oYy (8)
n=1lm=—n

of each function

oo n
f=3 2 Ry (9)
n=lm=-n
Thus fp represents the orthogonal projection of f on a finite dimensional subspace of the
spherical polynomials of the degree N (Richtmyer, 1981). This subspace is the orthogonal sum

of subspaces Hy of the homogeneous spherical polynomials of the degree n (Helgason, 1984).
We suppose that the spherical harmonics Yy are normalized by

<Y Y >= 6460
where
<4 P >= /S $9dS

is the inner product of two functions on the unit sphere.
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The truncation (8) introduces a spatial approximation error whose magnitude depends on the
truncation number N and smoothness of the function f. Since the spectral method consumes
a lot of computer time, it is always desirable to decrease the truncation number. However,
in a truncated spectral model, there is an artificial accumulation of the kinetic energy in the
small scales, due to nonlinear interactions (Mesinger and Arakava, 1976). This process breaks
the balanced energy cascades to the large and small scales peculiar to equation (1) (Fjortoft,
1953; Longuet-Higgins and Gill, 1967; Merilees and Warn, 1975; Boer, 1983). The problem is
aggravated as the truncation number decreases. Moreover, the discretization of the differential
barotropic atmosphere model in time introduces additional time approximation error that breaks
almost all of the infinite number of the invariants of motion characteristic of an ideal incom-
pressible fluid on a rotating sphere. In particular, the leap-frog scheme used here preserves the
global mean kinetic energy (5) and enstrophy (6) just approximately. The evolution of these
characteristics of the BVE solutions provides a useful check on the spectral BVE model and
was of decisive importance in choosing the leap-frog scheme between several explicit schemes
subjected to this test, including the second-, third- and fourth-order Adams-Bashforth methods
(Golub and Ortega, 1992). Moreover, all the exact BVE solutions known up to now conserve
its geometric form in a rotating system of coordinates (equation (1) possesses a group of zonal
translations). Thus, the conservation of the geometric structure of solutions also characterizes
the quality of the spectral BVE model. However, the absolute and relative errors of the calcula-
tion of exact solutions to the barotropic vorticity equation are the best indicators of the spectral
model quality.

In the course of integrating the spectral model truncated by a number N, we will monitor the
behavior of the global mean kinetic energy K = K /47 and global mean enstrophy E = E /47
of the numerical solution where

1 N n ) N
KN:_EZXn Z |1/}rrzn| :ZKn, (10)
n=1 m=-n n=1
1 N n 9 N
En= 2 Z Z | S':zn |*= - Z XnKn, (11)
n=1lm=-—n n=1

Yn =<9, V" >, ¢t =<, Yo' >=< Ay, Y* >, xn is defined by (4), and

n

Kn=-2xn 3 o7 (12)

2
m=-—n

is the part of the total energy concentrated in the orthogonal subspace Hy of the homogeneous
spherical polynomials of the degree n. Evidently, as truncation number N tends to infinity, the
energy sum (10) converges faster than the enstrophy sum (11). Generally, the rate of convergence
of the Fourier-Laplace series of a function f(A, u) on the sphere is estimated as

W= IN =T TN ls< NS [lsr (13)

where I is the identity operator, s is real, r is real and positive, and
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0o n 1/2
ufn,:{zxz >N 12} (14)
n=1

m=—n
is the s-norm of the function (Skiba, 1989, 1994, 1998). Note that if the norm || f ||s4r of a
function f is finite then || f || is also finite due to the inequality
—r/2
17027201 F o (15)

(Skiba, 1989). Thus the smoothness of a function f on a sphere can be characterized by the
highest number s such that norm (14) is finite, that is, the serie in (14) converges. Then, by
(13), the smoother is the function, the faster is the convergence of its Fourier series.

We now estimate the error §J introduced by truncating the Jacobian term in (1). This error
can be considered as artificial forcing in the numerical model. Let ¢ be an exact solution of
the BVE, and || Ty || be the operator norm induced by the 0-norm (14). Due to (8) and (9),
|| Tn ||< 1 Then taking into account the orthogonal decomposition f = Tnf + (I — Tn)f we
have

§J =|| J(¥, AY) —TNJI (YN, AvN) ||
<|| Tn{J (¥, A¢) = J(¢n, AYN} I+ 11 (T - TN)I (4, Ad) ||

<T@ = dn, A) ([ + 11 TN, A —9n) | + 1| (T - TN)J (b, Ad) || (16)

where || ¢ || is the O-norm (14): || ¥ ||,=< ¢, ¥ >1/2, Using the estimate

1708, @) 1< C llgllyyall 6 11172 (17)

(see formulas (16), (26) and (51) in Skiba, 1998), and inequalities (13) and (15) one can obtain

8J <C(l ¥ = ¥n lliy2ll A llyg + 1l ¥n lliy2ll AW = ¥n) ll2) + N7 {1 I (%, AT) |Ir

< NTHCAI 9 syl A% llyja + 119 1l j2ll A% llpgrj2)+ 11 I A9) lIr}

SNT(RIAY IlFpaye + 1 T8, AY [Ir). (18)

where r > 0, and C and R are some constants independent of ¢. By (18), the approximation error
decreases as both the truncation number N and the smoothness r of functions Ay and J(¥, Ay)
grow. Thus we expect that numerical error §J will be least for a smooth RH-wave solution 1,
and most for a modon solution. Moreover, such error is larger for a large-amplitude modon
rather than for a small-amplitude modon. These conclusions coincide with those previously
made by McWilliams and Zabusky (1982) and Blender (1992) for modon solutions on the plane.
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8. Simulation of analytical solutions

It should be noted that though the equation (1) and its analytical solutions are given in this
paper in the non-dimensional form, all the numerical experiments have been carried out with a
dimensional version of the model. The results presented in this section can be transformed to
the non-dimensional form using the well-known relations

t=0"1% =0y, A=da A, T=a W (19)

between the dimensional and non-dimensional (asterisked) values of the time, streamfunction,
Laplace operator, and Jacobian, respectively. Here £} = 7/43200 is the angular velocity of the
Earth rotation, and a is the Earth radius. The corresponding relationships for the total energy
(5) and enstrophy (6) are

K =d'0’Kk*, E=J0’E".

Also, instead of the non-dimensional formula ¥** = xn'¢i™ where xn is defined by (4),
Fourier’s coefficients of the dimensional streamfunction ¢ and relative vorticity ¢ = A4y are
related to each other by

o =alxnn. (20)

We now describe some results of testing the numerical spectral barotropic atmosphere model
by using a few different types of analytical BVE solutions.

1) Zonal flow. First, we have approximated zonal BVE solution % (u) by

N
ON() = ) ¥nPn(u) (21)

n=0

where Pp(u) is the Legendre polynomial of degree n. The streamfunctions of the corresponding
numerical solutions have been calculated for 240 hours. In all the experiments carried out
with various numbers N, the Jacobian term of the numerical scheme was equal to zero, and

there were no oscillations of the global mean energy and enstrophy. The geometric structure
of the numerical zonal solutions is conserved with time (not shown here), and the accuracy of
reproducing the analytical solution depends only on the truncation number N. Besides initial
truncation error (zonal perturbation) does not grow with time (Skiba and Adem, 1998).

2) Rossby-Haurwitz wave. For each n, we can find a numerical BVE solution initially equal to

n
(A, B, ) =—wp+ Y P ¥e'(A, p) (22)
m=-—n
and compare it with the corresponding analytical solution

POy )= —wpt+ Y. P Yat (A —cnt, p)

m=—n
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where cn and xn are defined by (3) and (4), respectively. The solution is a zonally propagating
RH wave of the subspace H; € Hy. In particular, the streamfunction of the numerical RH-wave

Y(A, B, t) = —wp + Yn Py () cos m(X — cnt) (23)

where n = 3, m = 1 and ¥}’ = w = 337.59 - 107° is given in Figure 1 at ¢t = 0 (a) and after
240 hours of integrating the spectral T31-model (b). Hereafter, all the streamfunction fields
presented have been premultiplied by 1077, One can see that the numerical solution moves to
the west without changing its geometric structure and is in close agreement with the analytical
solution (23). The wave makes one rotation around the Earth per about 6 days. The global
mean energy and enstrophy of the solution show very small variations not exceeding 7 - 10~4%
and 4.10_4%, respectively (Fig.1lc-d). These oscillations are due to using the leap-frog scheme
without filtering the numerical mode (Gary, 1979; Morton and Mayers, 1994). The 10-day
integrations carried out with various RH waves (different n) show that these solutions are well
reproduced. Besides, the larger is the spatial scale of the wave, the better is the accuracy. It can
be explained by the following reasons. First, there is no initial error associated with the solution
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Fig.1. The streamfunction of numerical RH solution (23) at initial moment (a}, and after 240 hours of integrating
the T31-model (b). Evolution of the global mean kinetic energy (c) and enstrophy (d) of solution (23).
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truncation (always N > n). Second, artificial numerical forcing introduced in the model by the
errors of calculating the Jacobian is almost zero. In addition, due to estimate (18), truncation
errors decrease rapidly as the truncation number NN increases, since the RH wave is an infinitely
smooth solution. And finally, the RH wave appears to be rather stable to small-scale model
errors associated with the artificial forcing. In order to test the quality of numerical results we
used the absolute and relative errors defined by

AE=|| gy — 9 | RE:%@W—H (24)

where 9y and % are the numerical and analytical streamfunction solutions, respectively. The
behavior of the relative errors for different solutions is given in Figure 6. It is seen that the
relative error for the RH wave slowly grows with time mainly due to a lag of the numerical wave
(Fig. 6, curve A).

3) Wu-Verkley solution. Also, we have reproduced numerically a Wu-Verkley (1993) solution
whose streamfunction has the form

lp(’\a KM, t) = Y;(A - Ct’l‘l‘) — wip+ Di (25)

in ¢th sphere region R;(i = 1,0, 2) where

Ry ={(A, u): pelpo, 1]}, Ro={(X, 1) : pe[—po, pol}, By ={(, p): pe[~1, —pol},
0 < po <1, w; and D; are constant, Y; is an eigenfunction of the spectral problem
AY; = xY; (26)

for the Laplace operator, and

¢ = [2+w;i(2 + xi)]/xi- (27)

Following to Wu and Verkley (1993), we have taken
Y1(A — ct, u) = Ay Pa(u) + By Py’ (1) cosm(X — ct)
Yo(A —ct, u) = AoTs (1) + BoTy" (1) cosm(A — ct)

Yp(X —ct, u) = —A1Py(—p) + B1 Py (—p) cosm(X — ct)

where P;*(u) is the associated Legendre function, and
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To render the whole solution antisymmetric we have chosen wy = wy, Ds = —Dj and x2 = X1
where

x1=—ala+1), xo=-0o(c+1). (29)

Thus the total solution (25) consists of a zonal part depending only on u and a wave part
depending on both u and A. Due to the continuity conditions (21), (22) by Wu and Verkley
(1993), both the zonal and wave parts of the streamfunction, velocity and vorticity of the Wu-
Verkley solution (25) are continuous on the whole sphere. The angular phase speed (27) of the
solution is arbitrary, since wy = wj is arbitrary, and a unique set of values for A;, A, and
D, — Dj is obtained for a given wg = w;. Note that although the ratio B,/Bj is determined by
the continuity condition, the wave amplitude of the solution is arbitrary. A solution (25) exists
only under two nonlinear constraints on m, po, « and o:

Py (po) = Tg (o) =0 (30)

For m = 2, po = sin29.998, a = 4.542, and ¢ = 5.7704672, the streamfunction of the
stationary Wu-Verkley solution calculated numerically is presented in Figure 2 at initial moment
(a), and after 48 hours (b), 96 hours (c) and 240 hours (d) of integrating the spectral T31-model.

Fig. 2. The streamfunction of numerical Wu-Verkley’s solution (25) at initial moment (a), and after 48 hours (b},
96 hours (c) and 240 hours (d) of integrating the T31-model.
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The numerical solution conserves well its geometric form during 10 days and is in reasonably good
agreement with the analytical Wu-Verkley solution (25). However, unlike the exact stationary
modon, the numerical solution moves very slowly to the west. The growth rate of the relative
error (24) for the Wu-Verkley solution is rather slow (Fig. 6, curve B), but higher than in the case
of the RH wave (Fig. 6, curve A). Moderate absolute and relative errors obtained in calculating
this solution show that it appears to be quite stable to small-size initial and model errors. It
is in good agreement with the results by Wu (1993) showing that the fastest growing normal
modes of the solution (25) possess very large scales rather than small scales. The evolution of
the global mean kinetic energy and enstrophy of the Wu-Verkley solution is shown in Fig. 3. It
is seen that variations in both the kinetic energy and the enstrophy do not exceed 5.10™°%.
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Fig. 3. Evolution of the global mean kinetic energy and enstrophy (premultiplied by 1017) of the numerical
Wu-Verkley’s solution given in Figure 2.

4) Dipole modon by Verkley (1984). This solution of vorticity equation (1) can be written as

Y,y ) =X, 4)—wp+D (31)

Here w is the angular velocity of solid-body rotation in outer region of the modon, D is a
constant, and function

XN, 1) =X u')  cos ' + X™(u') (32)

consists of a dipole and monopole components, besides,

X' = (e = w)y/1 - wdy/1 - w22, (33)

X" (W) = (¢ = w)poy/1 — pd ™ (W), (34)

where po = sin ¢°, pg = sin ¢, ¢° is the (A, u)-latitude of the modon center, ¢, is the (X', u')-
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latitude separating the inner and outer parts of the modon, ¢ is the modon velocity, w is the
angular velocity. The parts fd(p’) and f™(u') are defined as

a

1/2
P(1)1>_#); if p < pgq.

and

—bB(0,1, 1) + (1 + 8)-£=£<. _ P(0,1, - bB(0,1, if u>
fm(#) — { ( 1)+ ( )m ( pa) + bB( /"0'); . M 2 Ha, (36)
_P(l)]w—“)) if p < pa.
where
Pg (1) Plosyie(m)
B(r, s, p) = == ,  P(r, s, p) = oot 37
( ) P§(pa) ( ) Pio,s.ﬂ'k(_lla) (37)
b= (k*+)+2 d P is th iated L dre functi Th ti
= m, and Py (u) is the associated Legendre function. e equation
B(lyza“a) =b- P(1>2> _ll-a.) (38)

is the necessary condition for the modon to exist.

First we calculated a slowly moving (quasi-stationary) small-size dipole modon defined by
k = 10, « = 10, pg = sin66.14°, and D, = 0. The model time step was At = 60’. The
streamfunction of the numerical solution is given at the initial moment when the modon center
is in the point uo = 0, Ay = 270° (Fig.4a), and after 240 hours of integrating the T31-model
(Fig. 4b). There is no significant difference between the small-size modons calculated by using
truncations T20 and T31. Thus at least during 10 day-integration, the numerical modon is
in a reasonably good agreement with analytical Verkley’s solution (31) and conserves its local
geometric structure rather well. However, as follows from Figure 6, the small modon is more
unstable than the RH wave and Wu-Verkley solution, since the growth rate of its relative error
(24) is higher (Fig. 6, curve C). The similar behavior demonstrate small-scale modons on the
beta-plane. In order to test the model, we have simulated the behavior of a large-scale Verkley’s
modon (k = 2, a =3, po = 0, Ao = 270°, ug = sin16°, and D, = 0) that moves too fast
(one revolution per about 19 hours). Unlike the small modon, this rapidly moving modon holds
its form well only during 8-days if the model time step is very small: At = 20" (Fig. 4c-d).
During this period the variations in the kinetic energy and enstrophy do not exceed 2.1073%
for the small-size modon (Fig. 5a-b), and 107°% for the large-size one (Fig. 5c-d). After 8
days, variations in the kinetic energy and enstrophy become larger, there appear small-scale
distortions, and the growth rate of the modon relative error increase. The experiments show
that in order to improve the accuracy of the calculations by decreasing Courant number, it is
necessary to decrease time step and filter the numerical mode of the leap-frog scheme. The
following experiment on the interaction of modons confirms the opinion that the modon is quite
stable to small-scale perturbations (McWilliams et al., 1981; McWilliams and Zabusky, 1982).
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0 240

Fig. 4. The streamfunction of a quasi-stationary small-size modon at initial moment (a) and after 240 hours (b),
and fast moving large-size modon at initial moment (c) and after 200 hours (d). The contour intervalis 1 m?/s

(small-size modon) and 50 m?/s (large-size modon).
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Fig. 5. Evolution of the global mean kinetic energy and enstrophy of the small-size modon (a)-(b) and large-size
modon (c)-(d) presented in Fig.4.
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Fig. 6. The behavior of relative error (24) for the Rossby-Haurwitz wave (A), Wu-Verkley solution (B} and small
Verkley’s modon (C) during first 24 hours.

5) Interaction of two modons. Suppose that at the initial moment t = 0, a BVE solution Y
is the sum of two Verkley’s modons ® and ¥ whose centers are at the same latitudinal circle:
¥(0) = ®(0) + ¥(0). Then at a moment ¢, solution 1(t) can be written as

$(t) = () + ' (t) (39)

where ¢'(t) is considered as a perturbation of the modon ®(t). Obviously, ¢'(0) = ¥(0), that is

the initial perturbation has the form of the modon ¥. The perturbation '(t) is governed by a
forced equation

Ayt + (Y, Ay +2u) = F(y') = J(Ay, @)+ (a2, (40)

If the modons ® and V¥ initially are widely spaced then forcing F(l/)’) is relatively small, and
the behavior of perturbation () at the initial stage is similar in appearance to that of the
modon ¥(¢). In particular, if modons ¥(t) and ®(t) initially differ from each other only in their
locations (¥(0, A, u) = ®(0, A+ Xo, p)) then F(y') =0, and ¢'(t) = ¥(¢) for all ¢. It is a trivial
case when the sum of two solutions of the nonlinear equation (1) is also an exact solution. This
situation was numerically simulated with the T31-model when there are two equal modons of
intermediate size (k =2, a =4, po =0, pg =sin36.5°, and D, = 0) that move rather rapidly.
The streamfunction of such solution is presented in Figures 7a-d at t = 0, and after 24, 48 and
72 hours of the integration.
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We now consider the general case of two modons ® and ¥ of different size and velocity. As ®
and ¥ we take the rapidly moving large-size modon given in Figure 4c and not so rapid medium-
size modon given in Figure 7a. The integration was performed with the T31-model and very
small time step At = 20”. As long as two modons are separated, the behavior of perturbation
1,()'(t) again resembles that of the modon ¥. However after some time, due to distinct velocities,
the modons approach closely enough for nonlinear interaction to be sufficiently strong (Fig. 8a).
During the nonlinear interaction, the evolution of perturbation w'(t) is basically determined by
the nonlinear resonance excited in nonlinear equation (40) by the forcing F(¢'). It is seen that
both the amplitude and size of the medium-size modon increase at the expense of the energy
loss and amplitude decrease in the large-size modon (Fig. 8b-e). The result of the nonlinear
interaction is determined by the geometric structure of the forcing and appears as if two modons
has changed their places. Evidently, this transformation can not be explained by the advective
process, since both the modons move to the east, and after the interaction (Fig. 8e), the smaller
modon is behind its initial position given in Figure 8a. We can see that when the system
recovers from the resonance, the large-size modon survives after interaction, while the medium-
size modon disappears (Fig. 8f). This fact counts in favour of the structural stability of the
large-size modon to small-scale perturbations.

Fig. 7. The streamfunction of the BVE solution that initially is the sum of two equal medium-size modons separated
from each other: ¢ = 0 (a), ¢ = 24 hours (b), ¢ = 48 hours (c), and ¢ = 72 hours (d). The contour interval is 50

m2/s.
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Fig. 8. Nonlinear interaction of two modons. The streamfunction of the BVE solution that initially is the sum of
the medium-size modon given in Figure 7 and large-size modon given in Figure 4c at ¢ = 0 (a), t = 24 min (b),
t = 72 min (c), ¢ = 80 min (d), t = 96 min (e), and ¢ = 120 min (f).

4. Concluding remarks

Well-known exact solutions of the barotropic vorticity equation on a rotating sphere have been
simulated with the numerical spectral model of the Center for Atmospheric Sciences, UNAM.
Primary emphasis is received to preserving both the principal integral invariants of motion (ki-
netic energy and enstrophy) and the geometric structure of analytical BVE solutions on a sphere
(zonal flows, Rossby-Haurwitz waves, Wu-Verkley solutions, and Verkley’s dipole modons). As
the quantitative characteristics of the proximity of the numerical and analytical solutions we
have used the absolute and relative errors (24) estimated with Ly(S)-norm.

The 10-day integrations carried out with the triangularly truncated (T20, T31) models show
that the classical exact solutions (RH waves) can be calculated to a good approximation. Besides,
the larger is the spatial scale of the wave, the higher is the accuracy. However, the relative errors
(24) obtained in calculating the generalized solutions (Wu-Verkley waves, modons) are larger as
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compared with the classical solutions. These errors are caused not only by the truncation of
Fourier’s series that breaks the balanced energy cascade of the original differential model and
leads to the energy dispersion, but also by the initial and structural instability of the solutions.
In particular, the instability of some exact generalized solutions, notably rapidly moving dipole
modons, with respect to initial and forcing errors is a serious obstacle in simulating long-time
behavior of such solutions. If it is the case then even highly truncated model fails to resolve
the problem, and the paths of the numerical and exact solutions diverge from each other with
time. Nevertheless, the total energy and integral enstrophy of all the numerical solutions are
conserved with a high degree of precision.
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