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RESUMEN

Se disefia un modelo de la estructura zonalmente promediada de la atmésfera. Se emplean coeficientes de intercambio
para describir los transportes meridionales de las propiedades cuasiconservativas. Al contrario de los modelos
previos, los coeficientes de intercambio tienen una variacién meridional especificada que sustituyen a los coeficientes
constantes usados en los estudios anteriores. El modelo bédsico es un modelo cuasi-geostréfico de dos niveles. El
tiempo de integracién de las ecuaciones del modelo es llevado al cabo en el dominio espectral, empleando las
ecuaciones esféricas. El truncamiento de los polinomios de Legendre en el modelo es n = 10, pero puede elegirse
libremente.

Mediante la simetria alrededor del Ecuador el calentamiento de la atmdsfera se prescribe con base en los estu-
dios observacionales. Las integraciones permiten una determinacién de la variacién meridional de la temperatura
resultante, los geopotenciales de los vientos zonales en los niveles superior e inferior; asimismo de los transportes
de calor sensible para el modelo atmosférico y la velocidad vertical, ademds de los transportes de momento en los
niveles superior e inferior. Las relaciones de energia del modelo pueden también ser determinadas.

Los resultados estin razonablemente de acuerdo con la estructura zonal observada de la atmdsfera.

ABSTRACT

A model of the zonally averaged structure of the atmosphere is designed. It employs exchange coefficients to describe
the meridional transports of quasi-conservative quantities. In contrast to earlier models the exchange coefficients
have a specified meridional variation replacing the constant coefficients used in previous studies. The basic model
is the two-level, quasi-geostrophic model. The time integration of the model equations is carried out in the spectral
domain using the spherical equations. The cut-off for the Legendre polynomials in the model is n=10, but can be
selected freely.

Employing symmetry around the equator the heating of the atmosphere is prescribed based on observational
studies. The integrations permit a determination of the meridional variation of the resulting temperature, the
geopotentials, the zonal winds at the upper and the lower levels, the transports of sensible heat for the model
atmosphere, the vertical velocity and the transports of momentum at the upper and the lower levels. The energetics
of the model may also be determined.

The results are in reasonable agreement with the observed zonal structure of the atmosphere.
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1. Introduction

The previous two papers on the present subject (Wiin-Nielsen, 1994 and 1999) have considered
the zonal atmospheric structure in a two-level quasi-geostrophic model and a model consisting
of a homogeneous fluid with a free surface. In the zonal models the atmospheric eddies are
parameterized by constant exchange coefficients. The purpose of the present paper is to use the
two-level quasi-geostrophic model once more, but with exchange coefficients with a prescribed
meridional variation. The reader is referred to the first two papers in this series for a general
introduction to the subject.

The general principles for the parameterization of the transports can be expressed by as-
suming that the meridional transport of a quasi-conservative quantity may be expressed using
an exchange coefficient. If Q is a conserved quantity in adiabatic and frictionless flow then the
parameterization of the meridional transport of Q can be expressed as follows:

(Qeve): = —K ig; (1)

In the formula a is the radius of the Earth and the derivative is with respect to latitude.
The coefficient K has the dimension m? s—l, and it can in principle be a function of pressure
and latitude. The quasi-conservative quantities in quasi-nondivergent models are the potential
vorticity and the potential temperature.

The author (Wiin-Nielsen, 1994, 1999) has investigated these ideas in two cases. In the first
case the exchange coefficients were constants. In the two level, quasi-geostrophic model the
conserved quantities in the non-forced case is the potential vorticity at the upper and lower level
and the potential temperature at the middle level. Using these principles on an even simpler
model, i.e. a forced homogeneous fluid with a free surface, it was possible to obtain a qualitatively
correct meridional distribution of the zonal winds using constant exchange coefficients (Wiin-
Nielsen, 1999).

The exchange coefficients are functions of latitude with a maximum in the latitudinal band
dominated by wave generations due to barotropic and baroclinic processes and minima at the
high and low latitudes. It is likely that the maximum value of the exchange coefficient will vary
with the position of the largest barotropic and baroclinic wave activity, but so far it has not
been possible to define the values of the exchange coefficients in this way. We shall therefore
define the latitudinal variation of the exchange coefficients by giving them a fixed mathematical
form as a function of latitude.

The purpose of the paper is thus to use the two-level, quasi-geostrophic model with variable
exchange coefficient to determine the distribution of the temperatures, the geopotentials and
the zonal winds with latitude. In addition, we shall use the parameterizations to make indirect
calculations of the vertical velocity, the transports of sensible heat at the middle level and of
momentum at the upper and the lower levels. The model will also be used to determine the
zonal energetics of the model.

2. The model

The basic principles of the model has been discussed in earlier papers (Wiin-Nielsen, 1994, 1999).
It is thus sufficient to state that the two basic equations are derived by using the two-level, quasi-
geostrophic model recalling that the parameters entering the equations are all zonally averaged
quantities. As usual the equations applying at level 1 (250 hPa) and at level 3 (750 hPa) have
been added and subtracted to give equations applicable at the middle level (500 hPa) and for
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the thermal flow corresponding to a layer of 250 hPa. The heating has been introduced as an
unspecified quantity to be taken from studies based on observations. The dissipation has been
introduced partly as dissipation at the surface of the Earth, i.e. at level 4 (1000 hPa) and partly
as internal friction depending on the vertical windshear (Charney, 1959). The parameterization
of the meridional transports of the potential vorticity and of sensible heat have been introduced
in the following two equations, (2.1) and (2.2).
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f(u) is the function specifying the variation of the exchange coefficients with latitude with the
definition that u = sin(p). The coefficient is then of the form K f(u). The function f(u) is in
all cases of the paper defined by

flu) = p*(1 - p?) (2.3)

This specification results in vanishing values at equator and pole with a maximum for p =

2-1/2 corresponding to 45 degrees. The definition in (2.3) was selected because it is the most
simple function that is symmetric around the equator and that vanishes at u = 0 and at p = 1.
The specification is in qualitative agreement with the exchange coefficients determined from
observations, but while the small values of the exchange coefficients in the low latitudes seem to
be justified it is less certain that the values close to the pole are completely realistic.

The equations (2.1) and (2.2) are integrated with respect to time hopefully going to an asymp-
totic steady state. In the present case we shall use the spectral method, because relatively few
spectral components are sufficient for our purpose. The problem is thus to bring the basic equa-
tions (2.1) and (2.2) with the specification in (2.3) into the spectral domain. To do this one has
to use a number of the formulas valid for the Legendre polynomials, since we have to express
non-trivial terms involving the Legendre polynomials in sums and differences of these functions.
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The most important formulas of this kind are given below.

dP, _n(n+ 1)(

2
(1-p%) dn - antl Py1— Ppy1) (2.4)
n+1
pPn = T lpn+1 + mpn—l (2.5)

Using the first of the formulas given above we find that the Legendre polynomials will in-
volve P, 1) and P,_; and the corresponding values Py, and F,;_; where n and q are the two
counters. The multiplier 4 on each term gives formulas involving P, 2, Pn and P,_3 with
the corresponding Legendre polynomials in the counter q. Using next the orthogonality of the
Legendre polynomials and applying the normal procedure for the derivation of the spectral form
of the equations we find after some algebraic work that any of the differential terms in (2.1) or
(2.2) for a wave number n as expected will involve the Legendre polynomials with wave numbers
(n—4), (n—2), n, (n+2) and (n+4). The major steps in these derivations are given in Appendix
1. Any of these terms will be converted to an expression of the type given in (2.6) where the
variable is denoted by L.

cmd(n)L(n — 4) + em2(n)L(n — 2) — co(n)L(n)

+cp2(n)L(n + 2) + cp4(n)L(n + 4) (2.6)

The expressions for the coefficients are given in (2.7). These expressions are general, and they
may be calculated for arbitrary values of n. The coefficient ¢m4(n) will be non-zero only for
n > 4 just as ¢cm2(n) is non-zero only for n > 2. Similarly, the coefficients cp2(n) and cp4(n)
should be disregarded for n = nmqz or larger values.
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After these derivations it is sufficient to decide on the wave numbers that will be included
in the integrations. The results given in the next section are all obtained for nmasz = 10. For
this wave number the Legendre polynomial has 5 zeroes between equator and pole. The choice
of nmaz is thus sufficient to describe the expected distributions if the model is schematically
correct. The selection of the maximum number of components in the model has an influence
on the results. If nmqz is too small the results will not be representative for the observed
atmosphere. A values much larger than 10 of nmaz results also in unrealistic results. This is
due to the fact that the parameterizations contain terms that generate vorticity as well as terms
with the opposite effect as can be seen from equations (2.1) and (2.2).

In the selected case with nmez = 10 we get a system of 10 equations, 5 of them are related
to the middle level (about 500 hPa) while the remaining 5 equations describe the thermal flow.
These equations are integrated in time, and it turns out that the model approaches a steady
state after integrations over about 200 days.

The steady state solution is then used to calculated the components of the zonal winds at
the upper and the lower levels. This is done by using the balance equation for the components.
Thereafter one obtains the wind distributions by evaluation of the sum of the series expansion
in Legendre polynomials.

The meridional transports of sensible heat for the atmosphere and the momentum transports
at the upper and lower levels are also obtainable from formulas given in the previous papers
(Wiin-Nielsen, 1994, 1999).

3. The results

To test the model we have used the averaged heating of a single winter month from the global
analyses of the European Centre for Medium-Range Weather Forecasts. Based on the gridpoint
data for the zonally averaged heating the coefficients of the expansion in Legendre polynomials
were obtained. All coefficients for odd numbers of the Legendre polynomials were disregarded
to obtain a heating distribution symmetric around the equator. The coefficients for the even
components up to and including nmaz were used in the integrations for 200 days.

Figure 1 shows the heating distribution from equator (¢ = 0) to the North Pole (¢ = 100).
To obtain the latitude from this and the other figures we note that the latitude is arcsin(g/100).
As examples we find that ¢ = 50 corresponds to a latitude of 30 degrees, while ¢ = 70 is close
to 45 degrees of latitude.
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Fig. 1. The heating based on the even components of the ECMWTF heating for a winter month as a function of the
meridional coordinate.
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The temperature distribution is given in Figure 2. It shows that the total temperature dif-
ference between equator and pole is about 30 degrees K which is of a reasonable order of mag-
nitude for the winter season. The geopotentials for the vertical mean flow (solid curve) and the
thermal flow (dashed curve) are displayed in Figure 3. The model produces a larger variation in

the geopotential of the mean flow than of the thermal flow in agreement with the structure of
the real atmosphere.
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Fig. 2. The steady state temperature in degrees K as a function of the meridional coordinate.
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Fig. 3. The geopotentials at the upper (solid curve) and the lower (dashed curve) level as a function of the
meridional coordinate.

To obtain the distribution of the zonal winds (uz) at the two levels it is necessary to use the
balance equation expressed in wave number space to obtain the Legendre coefficients for the
vorticity from the corresponding numbers for the Laplacian of the geopotential. As remarked
in Wiin-Nielsen (1999) it is necessary to assume either that the coefficient of the vorticity for
wave number 1 is zero or to compute it from the second components of the heating. The latter
procedure has been used in the present example. From the coefficients for the vorticity we obtain
the corresponding values for the stream-function. These numbers are then used to calculate the
zonal winds at the required levels. They are seen in Figure 4. The winds are stronger at the
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upper level than at the lower level. A maximum wind speed of about 50 m per s is seen in the
subtropical jet located at about 25 degrees of latitude. A polar jet located around 62 degrees of
latitude has a maximum of about 30 m per s. We observe also easterlies in the low latitudes and
weak easterlies close to the pole. The winds at the lower level are much weaker with maxima
in about the same location as at the upper level. Figure 5 gives the zonally averaged winds at
level 4 (1000 hPa). Also these winds seem to have a reasonable magnitude.
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Fig. 4. The zonally averaged winds at the upper (solid curve) and the lower (dashed curve) levels as a function of
the meridional coordinate.
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Fig. 5. The zonally averaged winds at the surface of the Earth as a function of the meridional coordinate.

The estimate of the total transport of sensible heat as computed from the parameterization
is shown in Figure 6. Note that the numbers are divided by 107 to create a better figure. The
maximum heat transport is located close to 45 degrees with a value that is of the correct order
of magnitude for the winter season as can be seen by a comparison with the heat transport
for December, January and February as given (on page 66) by Wiin-Nielsen and Chen (1993).
The quantity given in Figure 6 is Hp = ¢, po(Tv)z/g, while the observational study gives
(Tv)z. Using approximative values we find that ¢p Po/g = 107. The two figures are therefore
comparable. Figure 7 shows the momentum transport as calculated from the parameterization
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of the transport of the potential vorticity at the two levels. The basic formula is given in Wiin-
Nielsen (1999). Figure 7 shows that the transport is larger at the upper than at the lower
level. The maximum northward transport is located slightly to the south of 30 degrees, while
the maximum southward transport is found at about 55 degrees of latitude. The magnitude
of the momentum transport at the upper level computed from the model is of the same order
of magnitude as the transport computed from observation for the winter months (Wiin-Nielsen
and Chen, 1993).
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Fig. 6. The meridional transport of sensible heat as a function of the meridional coordinate. Note that the amounts
have been multiplied by 10~ 7.
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Fig. 7. The momentum transports at the two levels as a function of the meridional coordinate.

Figure 8 shows the zonally averaged vertical p-velocity as computed from the steady state
thermodynamic equation. The figure indicates a Hadley type cell with rising motion at the
equator and the largest sinking motion at g=35 (about 20 deg. N). Rising motion takes place
north of 30 deg. N to 75 deg. N, while weak sinking motion is found over the polar region. The
motion is weak with a maximum that is about 0.5 mm per s.
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Symmetric heating, ECMWF data, winter
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Fig. 8. The negative vertical p-velocity computed from the steady state thermodynamic equation as a function of
the meridional coordinate.

The heating employed in the above example was computed from analyses and thus based on
observations. However, it is not necessary to have heating on all the even components to obtain
similar profiles. If we include the heating on component 2 only, in which case the distribution
of the heating is determined by the second Legendre polynomial, and repeat the integration we
obtain results with similar distributions of all the parameters. The reason for this behavior is
that the second component dominate in the distribution of the diabatic heating, and that the
steady state values for the other parameters will have non-zero values on all components included
in the integration.

The energetics of the present case may be calculated using the standard formulas for the two-
level model. It is found that Ay = 5452kJm ™2, K, = 3700kJm™2, G(A;) = 4.81Wm ™2, C(Az,
Ae) = 5.12Wm™2,C(Az, Kz) = —031Wm™ %, C(Ke,K;) = 1.90Wm™% and D(K;) = 1.59
Wm™2. These values have the correct directions and a reasonable order of magnitude.

4. Concluding remarks

The present version of the zonally averaged model with its parameterization of the transport
processes using exchange coefficients with a prescribed variation in the meridional direction gives
results that are superior to those obtained from earlier versions of the model. The improvements
are due to the exchange coefficients since all other processes have been treated in the same way
as in previous models. The results may be taken as an indication that the parameterizations of
the eddy transports of quasi- conservative quantities employed in the present model are better
than the models with constant exchange coefficients. The numerical values of K« and K were
determined in such a way that the average over all latitudes is equal to the constant values
employed earlier and based on observational studies.
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Appendix 1

All the terms are expressible in the form

gmaz

1o, 2,2dP; dPy
- — 1- ——d Al
q§:1ﬁ s(q)2/_1u e A L (4.1)

where ¢ is the running variable and n is fixed. Note that in (A.1) we have already integrated by
parts. Once we have used the differential formula in (2.4) we find the following result:

gmaz 1
1 29(g+1) n(n+1)
> 5/_1 B og+1 (Fg1 = Py1) 5 5 (Pr1 = Prya)dp (A.2)
g=1

The next step is to use the second formula given in (2.5) on each of the two parentheses in
(A.2). The following long formula gives the integral:

gmaz
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The remaining part of the evaluation is to use the orthogonality of the Legendre polynomials
recalling that the integral of a product of two Legendre polynomials is zero except when the two
indices are the same. If they are both n the value of the integral is 2/(2n+ 1). Paying attention
to the minus sign in front we find the form given in (2.6) with the formulas for the coefficients
following in (2.7).



