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RESUMEN

Se investiga la estabilidad de las cndas atmosféricas con nimero bajo de ondas, mediante un modelo quasi-geostréfico
de segunda clase. Tal modelo estd basado en la ecuacién termodindmica, la de continuidad y un empleo riguroso
de las relaciones geostréficas.

La condicién de frontera en la superficie terrestre se formula de dos maneras. Los efectos de una condicién
fronteriza a los 1000 hPa, donde la velocidad vertical P es nula, se compara con los efectos de una segunda
condicién, donde W es cero. Las dos condiciones fronterizas se usan para determinar la estabilidad de las ondas de
nimero bajo.

La segunda condicién introduce ondas grandes, tanto con velocidades de fase positivas como negativas, especial-
mente en las bajas latitudes, pero tiene también una influencia sobre la estabilidad de estas ondas.

El resultado principal de la investigacién comparativa es que entre m4s realista es la condicién de frontera, en
general producird inestabilidades mayores que la condicién de frontera mds simple.

Los tiempos de pliegue en e, obtenidos con el modelo m4s general concuerdan mejor con los resultados obtenidos
mediante las observaciones.

ABSTRACT

The stability of atmospheric waves with low wave numbers is investigated using a quasi-geostrophic model of the
second kind. Such a model is based on the thermodynamic equation, the continuity equation and a rigorous use of
the geostrophic relations.

The boundary condition at the surface of the Earth is formulated in two ways. The effects of a boundary
condition at 1000 hpa, where the vertical p-velocity is zero, is compared with the effects of a second condition,
where w is zero. The two boundary conditions are used to determine the stability of the low wave number waves.

The second condition introduces waves with large positive and negative phase velocities, especially in the low
latitudes, but has also an influence on the stability of these waves.

The main result of the comparative investigation is that the more correct boundary condition in general will
produce stronger instabilities than the simpler boundary condition. The e-folding times obtained with the more
general model is in closer agreement with the results obtained by observational studies.
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1. Introduction

The transient atmospheric waves with low wave numbers have been investigated in various ways
and for various reasons since hemispheric and global analyses of the state of the atmosphere
became possible. Some of these studies have been concerned with the amplitude and wave speed
of the observed transient waves (Deland, 1964, Deland and Lin, 1967, Eliasen and Machenhauer,
1965 and 1969, Bradley and Wiin-Nielsen, 1968). Other investigations have focused on period-
icities connected with the low wave number waves such as a 5-day periodicity (Madden and
Julian, 1972, Geisler and Dickenson 1976), while still other studies have been made of the low
wave number waves in the stratosphere (Hirota and Hirooka, 1984 and references in their paper)
and of the normal modes of the low wave number waves (Salby, 1981, a and b).

Early studies of the dynamcs of low wave number waves in simple baroclinic models were
carried out by Wiin-Nielsen (1961, a and b), Miles (1965), Bradley and Wiin-Nielsen (1968),
Wiin-Nielsen (1971) and Fisher and Wiin-Nielsen (1971). Kasahara (1976) has considered the
effect of the zonal flows on the free oscillatons in a barotropic atmosphere.

The atmosphere contains waves on many scales. The creation of waves on the middle scale is
described as a result of barotropic and baroclinic instabilities. The transient atmospheric waves
with small wave numbers are more difficult to describe using the standard quasi-geostrophic
models, partly because instabilities of the right order of magnitude are difficult to obtain, and
partly because the speed of the waves in the model is dominated by the beta-effect.

The atmospheric energy spectra in wave number space based on observations contain consider-
able energy in the low wave numbers (Wiin-Nielsen, 1967). These waves have both a stationary
and a transient part of which the stationary part to some extent is produced by a topographical
forcing (Charney and Eliassen, 1949) and from the forcing due to the stationary heat sources and
sinks (Smagorinsky, 1953). We shall be concerned with the transient part of these waves. The
spectra of atmospheric energies show in general that the small wave numbers contain considerable
amounts of both available potential and kinetic energy In spectra calculated from observations
for winter months in the Northern Hemisphere the amount of energy in the low wave numbers
may occasionally be very large. The spectra of energy conversions indicate for low wave numbers
that the transient part may give a considerable contribution to the total energy conversion (Wiin-
Nielsen and Chen, 1993, Chapter 9).

Investigations of the nonlinear exchange of energy among waves (Saltzman and Teweles, 1964,
Yang, 1967, Chen and Wiin-Nielsen, 1978) show that the eddy available energy is cascaded from
the smaller to the larger wave numbers, while kinetic energy is cascaded from wave numbers of
a medium size towards both the small and the large wave numbers. However, the amounts of
kinetic energy cascaded to the low wavenumbers is on average very small (about 0.1 W m‘z),
and it is doubtful if this process alone can account for the relatively large amount of kinetic
energy in the low wave number transient waves. The low wave number waves will loose more

available potential energy to the higher wave numbers than the kinetic energy received from the
same waves.

The transient waves with low wave numbers may also be influenced by the topography and the
heat sources and sinks. We have thus three physical processes that may influence the creation and
the behavior of the waves with small wave numbers. The purpose of the paper is to concentrate
on possible instabilities of the low wave number waves in order to account for the phase speed
and possible instabilities for these waves. It may thus be of interest to examine the baroclinic
stability of the waves with low wave numbers.

Stability investigations of atmospheric waves are mostly based on the quasi-geostrophic equa-
tions. The general quasi-geostrophic atmospheric models are valid for wave numbers of moderate
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size. For example, a perturbation analysis of a two level, quasi-geostrophic model indicates that
the speed of low wave number waves should be from east to west with considerable magnitudes
and comparable to the Rossby speeds: U — 3/ k?. These models are therefore quite unrealistic for
the low wave numbers. For waves with small wave numbers the model should employ spherical
geometry. In addition, scale analysis shows that for these waves the ordinary quasi-geostrophic
model equations should be replaced by a different set of equations (Phillps, 1963). As a first
approximation a strict use of the geostrophic relation can be applied. A model for the low wave
number waves may thus be based on the geostrophic relations, the thermodynamic equaton, the
continuity equation and the proper boundary conditions at the top of the atmosphere and at
the surface of the Earth. Such a model is called a quasi-geostrophic model of the second kind
by Phillips (loc. cit.). It should be emphasized that the described model may only be a first
approximation to a description of the transient low wave number waves, because the scale analy-
sis does not involve the meridional scales. Without forcing and dissipation the model conserves
potential energy. Burger (1958) was the first to emphasize the special conditions applicable to
the low wave number waves. He showed also that Charney’s model (1947) was unstable almost
everywhere. Burger has returned to the problem in later publications (Burger, 1988 and 1991).

The possible instability of the low wave number waves was investigated in a preliminary way by
Welander (1961) and Wiin-Nielsen (1961a, 1961b), but an expanded investigation was carried out
by Fisher and Wiin-Nielsen (1971). The latter investigation applied very simple assumptions,
because a single analytical solution of the stability problem was required for computational
reasons. Assuming that the vertical variation of the basic zonal wind is linear, and that the
basic state static stability parameter varies as p_1 , but disregarding any meridional variation of
these two parameters in the basic state, it was possible to obtain analytical solutions expressed
in hyper-geometrical functions, and numerical solutions were then produced using the so-called
shooting method.

Lynch (1979) has emphasized the lower boundary condition for the low wave number waves
and has formulated this boundary condition in terms of the geopotential. His treatment of
the lower boundary condition includes the advection term of pressure on a surface where the
geopotential is constant or the advection of the geopotential on a constant pressure surface, but
since the model applies geostrophic conditions in a strict sense, the advection term vanishes.

The purposes of the present investigation is to expand the stability studies of the low wave
number waves and to compare the solutions of the stability problem using two different lower
boundary conditions. In one of them it is assumed that the vertical p-velocity (w) vanishes at
the lower boundary, while in the other it is assumed that w = 0 at the surface of the Earth. The
latter condition is expressed as a differential equation in the vertical p-velocity.

We shall first investigate the very simple case of a constant basic zonal wind and a constant
value of the stability parameter. Although this case is unrealistic, it can serve to illustrate the
effect of a non-zero lower boundary condition on the speed of the wave and the stability. The
next cases will be a determination of the stability of the very long waves using more realistic
basic states obtained from observations or from simpler basic baroclinic states. The zonal state
of wind and temperature, averaged for January 1999, is the starting point. From the zonally
averaged, observed temperature field the static stability parameter was computed as a function
of latitude and pressure. From the observed and computed fields we use the data at 0, 250, 500,
750 and 1000 hPa for the zonal winds, while the stability parameter is needed at 250, 500 and
750 hPa.

A comparison is made between

(a) the results for a full variation of the static stability parameter and the zonal wind in the
basic state, and

(b) a case, where these parameters vary with pressure only.
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2. The basic equations and the boundary conditions

The equation for the stability problem has been derived in detail by Fisher and Wiin-Nielsen
(1971) in a form where the perturbation vertical p-velocity is the dependent variable. This
equation is given in (2.1).

2
d’w dU dw 4 sw = 0; p*:—g— (2.1)

U-c)o> - 22
(U =) dp? ~ dp. dp- Po

U and c have the dimension of m per s. In addition, the independent variable is px = p/po,
where p, is equal to 1000 hPa. The static stability parameter, s, is given in (2.2).

_ oxp} o)
2Qa sin2 ((p)

dlnd
dp

g =—«

(2.2)

The subscript 2z indicates a zonal average.

The variation of s with latitude is due to the Coriolis parameter and to the specified static
stability in the basic state. (2.1) cannot be applied at the equator. The latitude interval which
will be used is from 15 to 85 degrees north. The variation of the trigonometric part of s is shown
in Figure 1. Large values are obtained at the low latitudes and the quantity vanishes at the
North Pole. It is emphasized that latitude enters only as a parameter, and each latitude can
be treated independent of the other latitudes in the stability analysis applying, however, the
proper zonal winds and static stabilities. At each latitude we need to know the zonal wind and
the static stability parameter in the basic state as functions of pressure. This property of the
perturbation equation for the quasi-geostrophic motion of the second kind is a peculiar fact that
is a result of the scale analysis for low wave number waves, where the vorticity equation reduces
to the geostrophic relation. However, this nature of the problem does not mean that the resulting
perturbations are uncoupled with respect to latitude. The geopotentials and temperatures which
may be computed from the solution should be obtained by an integration with respect to latitude,
and these parameters will thus connect the various latitudes.
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Fig. 1. The trigonometric function appearing in the basic perturbation equation.
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The upper boundary condition will in all cases be w = 0, while the lower boundary condition
will be either w = 0 or w = 0. With good approximation we may write the linearized form of
the second version of the boundary condition as given in (2.3).

¢ 9P _
-‘a—t—“f‘wa—p =0 (2.3)

When we introduce the perturbations and eliminate the geopotential we get the lower bound-
ary expressed in terms of the vertical p-velocity. The final form is given in (2.4) applicable at
p* = 1.

dw  RTs cos(é)
cC— w =
dp* 2Qa sin2(¢)

(2.4)

In (2.4) R is the gas constant, Ts a standard value of the surface temperature and 1 the
angular velocty of the Earth. This relation, containing only the vertical p-velocity and applied
at the 1000 hpa surface, may be added to the equations where the dependent variables are the
perturbation vertical p-velocities at the selected levels. The derivative appearing in (2.4) has
to be calculated as a non-centered finite difference between the lower boundary and the model
pressure level immediately above the 1000 hPa surface, whereby the system of equations will be
closed.

It was thus decided to use vertical finite differences, but in this case the eigenvalue problem
will not be in the standard form. It was thus decided to use a relatively coarse vertical resolution.

3. Simple cases

The equations given in section 2 are first applied to the simple case where it is assumed that the
zonal wind and the static stability (o2) at a given latitude does not vary with pressure. In the
case treated below the latitudes were selected to be 15 and 45 deg. north. For this simple case
the basic equation (2.1) reduces to the one given in (3.1).

d*% s

d2p*+U'—C

& =0 (3.1)

For the case where it is assumed that the vertical p-velocity vanishes at the lower boundary
we find a solution which may be written in the form given in (3.2), where n is an integer.

)

c=U (3.2)

"~ n?x2

We have thus an infinite number of solutions, but the modes for the larger values of n will
be very close to the constant zonal velocity. The other case with the second lower boundary
condition is a little more cumbersome. We divide the discussion in two parts and consider
first solutions where ¢ < U. In this case the solutions are trigonometric functions. The upper
boundary condition requires that the coefficient of the cosine-term is zero. Using next the lower
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boundary condition, we may write the result of applying the boundary conditions at p. =1 in
the form given in (3.3).

h(z) =Uz® — s+ doz tan(z) =0

S \1/2
U-c)

2=

__ RTs cos(¢)
" 20asin’(g)

(3.3)

The real roots of H(zx) are found by numerical methods whereafter ¢ is determined by the
second relation in (3.3).

The second case is ¢ > U. In this case we have exponential solutions. Applying the upper
and the lower boundary condition at p« = 1 we may express the equation for the phase velocity
as given in (3.4).

g(z) =Uz’+ s+ doztanh(z) =0

2= (=) (3.4)

The real zeroes of g(z) are determined by numerical methods.

To illustrate the difference between the two boundary conditions we shall select evaluations
at 15 and 45 degrees of latitude. For each case the equations (3.3) and (3.4) were solved for z
by numerical procedures, whereafter ¢ was obtained from the equations relating ¢ to z. For the
case with ¢ < U it is also possible to find negative values of z, but except for a numerically large
value the negative and positive values of z have about the same absolute size. In view of this
remark one obtains the same value for the phase velocity since only z? enters in these relations.
Negative values of z have therefore not been included in the calculations. The results may be
seen in Table 1, where the values computed with the simple lower boundary condition (w = 0)
are compared with the values obtained from the more realistic differential boundary condition.

Table 1. Values of z, ¢ and ¢ (with w) at 15 and 45 deg. of lat.

15 15 15 45 45 45

X c c w. w=0 X c c w. w=0

0.77 - 1068.1 0.86 -102.4

3.03 -47.58 -42.96 3.54 15.12 13.83

6.31 4.37 4.26 7.10 18.79 18.45

9.52 13.74 13.01 10.44 19.44 19.13
12.72 16.16 16.06 13.71 19.67 19.61
15.92 17.55 17.48 16.92 19.79 19.75
19.12 18.29 18.25 20.12 19.85 15.83
22.31 18.75 18.72 23.30 19.87 19.87
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The main difference between the results from the two boundary conditions for the two selected
latitudes is that the differential condition introduces a fast moving wawe with large negative
values. The other wave speeds are comparable in size, and both sets will for the higher modes
approach the adopted value of U = 20 m per s. It is also seen that the difference between the
phase velocities for the higher modes are almost the same. It is apparent from the table that
the wave with the large wave speed is very large at the low latitude of 15 degrees.

Although we have included only the latitudes 15 and 45 degrees in the table, similar results
are obtained for all the other latitudes.

We consider next the case where ¢ > U corresponding to solutions with exponential functions,
see (3.4). With the chosen numerical values of U = 20 m per s and w = 4210~° m* s? kg™2 and
Ts = 288 K we find no real solutions to the equation. Figure 2 shows the function g(z) defined
in (3.4), and it is seen that the curve does not reach the z-axis. This result does not depend
critically on the chosen value of the static stability. It is seen from the analysis of the above
simple case that a main effect of the second boundary condition is to introduce fast moving
waves with unrealistic large velocities.

No sol. for c>U
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Fig. 2. The function g(z) showing no real roots.

The next example will illustrate the effect of the vertical wind shear. In this second simple
case we disregard the static stability factor whereafter the basic perturbation reduces to the
equation in (3.5).

d*w dU dw

ap?  dpsdpe (3.5)

(3.5) can be solved directly. After the application of the upper boundary condition we may write
the solution in the form given in (3.6).

w:K(/op* Udp« — cp«) (3.6)
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Application of the simple lower boundary condition of a vanishing vertical p-velocity gives the
result in equation (3.7).

. 1
c=U :/ Udp« (3'7)
7]
while the second lower boundary condition leads to the equation (3.8) for the phase velocity, c.

C2 + (do - Uo)C -+ doU =0 (38)

Instability will thus be present if the vertical mean velocity satisfies the inequality shown in
(3.9).

U > do(1— %)2 (3.9)

0

The critical value of the vertical mean velocity is shown in Figure 3. It is seen that for a
given value of the vertical mean velocity instability will be present in the higher latitudes. For
example a vertical mean value will as shown on the figure give instability north of about 50
degrees of latitude. Figure 4 shows the real solutions as a function of latitude, while Figure 5
gives the e-folding time in days for the unstable cases. It is seen that rather small values of the
e-folding time are found in the high latitudes. We may thus conclude from the simple cases that,
taken in isolation, the static stability is a stabilizing effect, while the vertical wind shear is a
destabilizing effect which results in instability in the high latitudes where the stabilizing effect
from the lower boundary condition is small.

Model with vert. wind shear, but stat. stab is zero
350 . . , . . § —

300
250
200
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100 .
AN
50 S~

Crit. vel. for instab., m per s

10 20 30 40 50 60 70 80 90
Latitude, deg.

Fig. 3. The two curves represent the critical values of the vertical windshear, necessary to create instability, as a
function of latitude.
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Model with vert. wind shear, but stat. stab is zero
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Fig. 4. The two curves represent the wave speeds for the case of vertical wind shear, but a vanishing static stability

as a function of latitude.

Model with vert. wind shear, but stat. stab. is zero
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Fig. 5. The e-folding times for the same case as in Figure 4.

4. The more general cases

90

We return to the basic equation for the model for the low wave numbers. We shall restrict the
considerations to a limited vertical resolution by selecting the levels at the pressure surfaces 0,
250, 500, 750 and 1000 hPa. As a basic, stationary state it was decided to use data averaged

for the month of January, 1999, for which the zonally averaged winds
available. The zonally averaged winds for the four surfaces 250, 500,

and temperatures are
750 and 1000 hPa are

shown in Figure 6 from 15 to 85 degrees of latitude, while the estimated zonal wind at the top
of the atmosphere is shown in Figure 7. All the wind data were obtained either directly or by

interpolation using the winds at pressure surfaces above and below the
winds and temperatures are available at 31 vertical levels.

level in question. The
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Zonal wind, m per s
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Fig. 6. The zonal winds in the basic state as a function of latitude and based on data from January, 1999. The
four curves from top to bottom refer to the levels 250, 500, 750 and 1000 hPa.
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Fig. 7. The estimated zonal winds at the top of the atmosphere, average for January, 1999.
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Fig. 8. The static stability parameter as a function of latitude computed from averaged temperature data for
January, 1999. The three curves refer, from top to bottom to levels 1, 2 and 3. The unit of the static stability is
m* % kg~2 x 106.
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The static stability (o) was calculated from the temperature data. The variation with latitude
of the static stability at the levels 250, 500 and 750 hPa are shown in Figure 8. The static stability
is relatively small and the dependence on latitude is also small at the levels 500 and 750 hPa,

while the variation at 250 hPa is large ranging from small values in the low latitudes to large
values at high latitudes.

In the five level model we need winds at all five levels, while the static stability parameter is
needed only at the levels 250, 500 and 750 hPa. With the boundary condition of w = 0 at p = 0
used in all calculations the finite difference equations for the levels 250, 500 and 750 hPa were
obtained giving three equations. In the case where we apply a non-zero vertical velocity at the
1000 hPa, the boundary condition will give one additional equation. For the general case we

have thus a 4 x 4 matrix for the determination of the eigen-values, while we have a 3 x 3 matrix
for the boundary condition where w = 0 at 1000 hPa.

The determinant was evaluated in the two cases resulting in a fourth and a third degree
equation with real coefficients and with the eigenvalue, ¢, as the unknown in the two cases.
These two equations were solved by numerical methods giving both real and complex roots.

Comp. of instab. with aver. data from Jan. 1999
40 —r - . . . -

35 Jl

30 1\ /| !
25 I o
20 Fo 7 .

15 | P s Vo

e-fold. time, days

10 I

i \

5 / PN
/\_ I / L
0 ~ y \

10 20 30 40 50 60 70 80 90

Latitude, deg.

Fig. 9. The e-folding times as a function of latitude for the two lower boundary conditions. The solid curve is for

the boundary condition w = 0 at p» = 1, the dashed curve for the second boundary condition. Note that the
value ‘zero’ means stability.

I\

Figure 9 shows the e-folding times for the two cases. In the numerical solutions it was decided
to use the value zero for the stable cases, since it is impossible to plot a value of infinity. The
dashed curve indicates instability from 25 to 65 degrees of latitude and also a weak instability
at 75 degrees of latitude. The e-folding times are generally large with values varying from 14 to
more than 30 days. The solid curve obtained using the non-zero boundary condition at 1000 hPa
indicates e-folding times which are much smaller from 25 to 60 degrees of latitude with values of
only a few days. This result is in general agreement with the results obtained from observational

studies by Haurwitz (1937) who finds e-folding times for the long waves of the same order of
magnitude.

It is of interest to investigate the importance of the meridional variation of the static stability.
The real variation of the static stability parameter was therefore replaced by a variation with
pressure only where the values at a given pressure level are taken as the meridional average.
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Using first the boundary condition of a vanishing vertical p-velocity at 1000 hPa the results
displayed in Figure 10a are found, where the curve shows the e- folding time with a full variation
of the static stability parameter. Figure 10b shows the curve obtained when the static stability
parameter is a function of pressure only. The simple variation gives shorter e-folding times in
the low latitudes, while minor differences appear at the other latitudes.

Full variation of static stab.

12

10

e-fold. time, days
(2]

10 20 30 40 50 60 70 80 90
Latitude, deg.

Fig. 10a. The e-folding times for the case in which the static stability has the full variation. The boundary condition
for this case is w = 0 at p. = 1.

Stat. stab. fct of pressure only

B-fold. time, days
F-N

1 [ e
0 —
10 20 30 40 50 60 70 80 90
Latitude, deg.

Fig. 10b. The e-folding time for the case where the static stability is a function of pressure only.

The use of the observed averaged state for January 1999 as a basic steady state for the zonally
averaged wind and static stability is not necessary to obtain the demonstrated instabilities. This
basic state was replaced by schematic zonal winds as shown in Figure 11. This wind distribution
simulates in a very simple and schematic way a zonal state with a subtropical and a polar jet.
The static stability was replaced by constant values for the 500 and 750 hPa surfaces. At 250
hPa the static stability varied linearly from a value of 5 x 107% m* s? kg~? at 15 degrees of
latitude to 35 x 107° m?* s? kg_2 at the North Pole. The resulting e-folding times for the two
boundary conditions are seen in Figure 12. The dashed curve applies to the vanishing p-velocity
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at the surface. Neutrality is present except at 65 degrees where a weak instability is found. The
solid curve indicates the e-folding times for the second lower boundary condition. Instabilities
with e-folding times of 2 to 5 days are found from 25 degrees to 50 degrees of latitude, and a
very weak instability is also found at 65 degrees of latitude in this case.

Simple basic state
40° . '-
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25 |
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15 ¢+

Zonal wind, m per s

10

Latitude, deg.

Fig. 11. Schematic zonal winds with two maxima at 30 and 75 degrees of latitude applying, from top to bottom,
to the level 250, 500, 750, 1000 hPa.
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Fig. 12. The e-folding times as a function of latitude, where the solid curve applies to the boundary condition given
in eq. (2.4) and the dashed curve to the boundary condition w = 0 at p. = 1.

When we replace the polar westerly jet with an easterly jet of the same strength as shown
in Figure 13 and repeat the stability investigation we find the results seen in Figure 14. The

case with a vanishing vertical p-velocity at the lower level is stable in this case as seen by the
dashed line from 15 to 85 degrees on the abscissa, while the non-zero boundary condition gives

instability from 25 to 50 degrees of latitude and weak instabilities from 60 to 85 degrees of
latitude.
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Simple basic state

40

Zonal wind, m per s
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Latitude, deg.

Fig. 13. A schematic distribution of the zonal winds applying from top to bottom to the levels 250, 500, 750
and 1000 hPa latitudes less than 60 degrees. The sign has been changed for the winds north of 60 degrees as
compared to Figure 11.

Simple wind distribution
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Fig. 14. The e-folding times for the wind distribution given in Figure 13. The solid curve is for the boundary
condition given in eq. (2.4), while the dashed curve for w = 0 shows stability everywhere.

5. Concluding remarks

The use of the quasi-geostrophic model of the second kind on the stability of the low wave
number waves has resulted in the determination of instabilities which have the smaller e-folding
times in connection with the subtropical zonal wind maximum and very weak instability in the
higher latitudes. Two different boundary conditions applied at 1000 hPa have been compared.
The general result is that the boundary condition of w = 0, resulting in the approximative
formulation given in eq. (2.4), leads to smaller e-folding times than the boundary condition
w = 0 at 1000 hPa.

Another general result is that the non-zero boundary condition introduces two fast moving
waves with positive and negative wave speeds that become particularly large in the low latitudes.
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These waves are not found in the real atmosphere. The presence of these waves will require
the use of small time steps if the basic nonlinear equations for the geostrophic model of the
second kind were to be integrated numerically. Results of the described type are obtained for
basic states based on observations or described by schematic distributions of the vertical and
meridional variations of the zonal winds and the static stability.

The analyses used in the present paper are based on the equations of a geostrophic model
of the second kind as described by Phillips (1963). The formulation of the basic equations is
based on a scale analysis for low wave number waves. It would appear, both from the remarks
by Phillips (loc.cit.) and from the results in this paper that the applied equations may be too
simplified. It may be an advantage to use a vorticity equation in which the local time derivative
is neglected, while the vorticity advection is maintained as was done by Wiin-Nielsen (1961a)
although the model was restricted to a two-level model on the beta-plane. It is hoped that the
present investigation will be expanded to such a model maintaining the spherical geometry and
a proper lower boundary condition.
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