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RESUMEN

Para ilustrar las inestabilidades y el comportamiento a largo plazo de procesos barotrépicos-baroclinicos, mezclados
en modelos sin disipaciones de friccién y forzamiento, se usan: un simple modelo baroclinico con transporte de

momentum, un modelo baroclinico sencillo con sélo transportes de calor y un modelo con ambos transportes, de
momentum y calor.

Mientras que las inestabilidades de tales modelos son bien conocidas mediante estudios analiticos de las ecuaciones
lineales de pertubacién, es claro que estos estudios no dan informacién sobre el comportamiento a largo plazo, que
pudieran ser estudiados sélo por ecuaciones no lineales. Las integraciones lineales de las ecuaciones no lineales de
orden bajo, seran empleadas para ilustrar el comportamiento a largo plazo, de los dos modelos.

Los aspectos principales de los procesos atmosféricos energéticos observados, pueden reproducirse por modelo
general de orden més bajo, usado en este estudio. Este modelo contiene transportes de calor sensible y momentum
por eddies que estén incluidas en el modelo. Con el fin de reproducir el diagrama atmosférico-energético basado en
los estudios observacionales, es necesario incluir disipaciones de fraccién y de calor.

Los ultimos dos procesos serén excluidos en el estudio presente con el fin de obtener el comportamiento a largo plazo
en modelos sin forzamiento. Las integraciones de los diversos modelos indicardn que se observa un comportamiento
casi periédico de largo plazo, con escalas de tiempo mds bien grandes. Las variaciones casi periédicas se obtienen a
partir de estas dos iniciales con valores moderados de los parametros zonales.

ABSTRACT

A barotropic model with momentum transport, a simple baroclinic model with transports of heat only and a baroclinic
model with both momentum and heat transports are used to illustrate the instabilities and the nonlinear longer term
behavior of barotropic, baroclinic and mixed barotropic-baroclinic processes in models without forcing and frictional
dissipations.

While the instabilities of such models are well known through analytical studies of the linear perturbation equa-
tions, it is obvious that these studies give no information on the long term behavior which can be studied only by
nonlinear equations. Numerical integrations of low order nonlinear equations will be used to illustrate the long term
behavior of the two models.

The main aspects of the observed atmospheric energy processes may be reproduced by the most general low-order
model used in this study. This model contains meridional transports of sensible heat and momentum by the eddies
which are included in the model. To reproduce the atmospheric energy diagram based on observational studies it
is necessary to include heating and frictional dissipations. The latter two processes will be excluded in the present
study in order to obtain the long term behavior in non-forced models. The integrations of the various models will
indicate that a long-term almost periodic behavior is observed with rather large time scales. The almost periodic
variations are obtained from initial states with moderate values of the zonal parameters.
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1. Introduction

The creation of baroclinic and barotropic waves has been demonstrated by using the perturbation methods
in which linear equations for infinitesimal disturbances on a zonal state has been solved determining the
exponential growth of the perturbations under certain conditions. The classical papers on the subject are
by Charney (1947) on baroclinic instability and by Kuo (1949). Numerous studies, too many to reference,
have since then been produced using simpler baroclinic models and various steady states. The methodology
used in perturbation studies leads to solutions which are valid for a very short time interval due to the fact
that the disturbances have been assumed to be small in order to permit the linearization of the equations.
On the other hand, the solution obtained in the unstable cases has an exponential growth.

When nonlinear models are used, it is possible to select cases of (linear) instability and perform a time
integration of the nonlinear model equations which will show what will happen over a longer time span. The
main purpose of the present paper is to show some examples of the behavior of growing waves in barotropic
and baroclinic models.

The models that will be used are low order models containing a few spectral components. Such models are
very convenient for long term integrations. The fact that the models contain only a few components in the
meridional and zonal directions exclude on the other hand such processes as the cascade of energy to smaller
and larger scales due to the nonlinear interactions between waves of different wave numbers. The cascade
processes are important because they carry energy to the smaller scales where the frictional processes take
place. Other types of models are used to simulate the cascade processes (Wiin-Nielsen, 1999).

The two low-order models to be considered in this study have been used for other purposes on earlier
occasions. The barotropic low order model is described in details by the author (Wiin-Nielsen, 1961), while
the barotropic-baroclinic model was used for several studies (Marcussen and Wiin-Nielsen, 1999). The first
of these two models contains momentum transport only, while the other model contains both momentum
and heat transports. The baroclinic model is a special case of the two-level, quasi-nondivergent models.
Since the models have been presented before, we shall refer the reader to the quoted papers for details of
the models.

2. The barotropic case

The basic model used in the study is the barotropic vorticity equation modified by the addition of an estimate
of the divergence obtained from the continuity equation for a homogeneous fluid with a free surface. The
basic equation is given in (2.1).
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where the parameter s? measures the intensity of the divergence. It has been evaluated as usual at 45 degrees
of latitude. The constant value of the geopotential is 10° m? s~2 corresponding to the approximate height
of the troposphere. ( is the relative vorticity, ¥ the streamfunction and & the meridional derivative of the
Coriolis parameter.

The starting point is the six equations for the low order model described in detail by Wiin-Nielsen (1961)
and modified by the divergence term. These equations could be used for long term integrations. However,
Thompson (1987) showed for an extremely simple two-level baroclinic model that the basic equations for
the model could be replaced by a new, but equivalent set of equations expressed in terms of the zonal
parameters, the kinetic energies of the eddy components, the eddy transport of sensible heat by the two
eddies incorporated in the model and a final dependent variable expressed as the scalar product of the 500
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hPa wind and the thermal wind in the two-level model. With this in mind it was investigated, if a similar
result could be obtained for the barotropic case. If possible, the dependent variables might be the two
components describing the zonal flow, the kinetic energies of the two eddies, the momentum transport and
possibly an extra variable corresponding to the scalar product mentioned above. The basic equations may
be written in the form shown in (2.2), where the two zonal components are denoted by z and w, while the
parameters describing the eddies are z,, y; and z3, y3. These expressions are identical to those appearing
in the paper by the author (Wiin-Nielsen, 1961) except for the addition of the divergence term.

dz _ ao(T1Ys — Z3y1) = —a,m
ai o\ZT1¥Y3 3Y1) = o
dw am
d — °

dz
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dCL‘3
- = (z 4+ w)ys + (asz — asw)yy — bays
d
Tdyti — [(z + w)z3 + (agz — asw)z1 — baza] (2.2)

In order to write the coefficients in a brief form it is convenient to introduce some notations. We denote
the west-east length of the rectangular region on the beta plane by L and the south-north width by D.
With q = A\?/k%, s; = s?/A? and sz = s?/k?, where k = 27/L and A = 7/D, we may write the coefficients
as given in (2.3).

The divergence effect is expressed through the two coefficients s; and ss. If both of the parameters are
zero, the model becomes purely barotropic.

In (2.2) we have introduced the notation M = z1y3 — z3y; as the variable measuring the momentum
transport. We use then the same technique as Thompson (1987) and arrive finally at the set of equations
given in (2.4). As expected we find that a new variable appear. It is denoted by g = z1y: + z3ys. The
parameter g is proportional to the scalar product of the eddy winds of the two eddy components.
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Ni=1+4+¢qg+s9; No=14+9q+ 32 (2.3)

In addition to these variables we find k; and k3 which are measures of the kinetic energy in the two wave

components. The dimension of the zonal components {z and w) is m per s, while the four eddy variables

have the dimension m? per s2.

dk3

T (asz — aqw)m

d
ET;- = (a12 + b1b2)g + 2(asz — aqw)k; + 2(azz + asgw)ks

d
E% = —(a1 + by — by)m (2.4)

The new model-equations are easier to handle, and they relate physical quantities to each other. Consider
the special case where the two zonal components z and w are constants. This will permit us to derive a
single second order equation for the momentum transport by differentiating the fifth equation with respect
to time and insert from the third, fourth and sixth equations. The result is given in (2.5).

2
%gl— +Cm=0
C = (a1z + by — by)? — 4(azz + azw)(asz — asw) (2.5)

The type of solution of (2.5) depends on the sign of the coefficient C. If C is positive, we have trigonometric
solutions, while a negative C indicates exponential solutions. C' depends on the constant values of z and w,
on the beta effect and on the dimensions of the rectangular region. For a given specification of z and w it
is a second degree polynomial in z and w. Figure 1 shows C as a function of wavelength, if z = 20 m per s,
w = —15 m per s and D = 7000 km. It is seen that positve values occur for L < 5000 km, while negative
values are found for 5000 km < L < 10000 km. For L > 10000 km we find positive values. The result is
thus a demonstration of the stability of the low order barotropic model. Figure 2a shows the period as a
function of wavelength for the short waves, while Figure 2b gives the periods for the long waves. The period
is small for very short waves, but increases to more than a week for a wavelength of about 5000 km. For
the long waves the period decreases with the wavelength, and the period for very long waves is 4-5 days.
Figure 3 displays the e-folding times for the unstable waves. The e-folding time becomes as small as 1 day
for the most unstable waves. The results are obtained for constant values of the two variables describing the
zonal flow. In the following we shall investigate the behavior of the model using long term integrations of
the nonlinear equations.
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Barotropic model, z=20 m per s, w=-15 m per s
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Fig. 1. The coefficient C as a function of wavelength in barotropic flow.

Barotropic model, z=20 m per s, w=-15m per s
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Fig 2a. The period, measured in days, of short barotropic waves as a function of wavelength.
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Fig. 2b. Same as Figure 2a, but for long barotropic waves.
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Barotropic model, z=20 m per s, w=-15m per s
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Fig. 3. The e-folding times, measured in days, for barotropic waves as a function of wavelength.

The nonlinear equations, containing no forcing and dissipation, will permit interactions between the zonal
flow and the eddies. From an energetical point of view we have only the energy conversion between the
zonal flow and the eddies, i.e. C(Kg,Kz). The integrations have to be carried out ‘with good accuracy to
satisfy the conservation properties of the equations such as the conservation of the sum of the two zonal
components (z+w = constant). The integration have in some cases been made with Heun’s scheme. In other
cases of high instability it was either necessary to use a small time step in Heun’s scheme or a high accuracy
formulation of the Runge-Kutta scheme. The examples have the same basic parameters as the stability
investigations described above. In the following example we have selected L = 7000 km and D = 7000 km
which is close to the most unstable wave. At ¢t = 0 we have used z = 20 m per s and w = —15 m per s,
while the remaining variables were set to a small value of 0.1 m? per s?. Since we expect a long period, the
integration was carried out for 50 days. Figure 4 contains the zonal components, z and w as a function of
time. After a while z decreases and w increases. The sum of the two variables should be constant. With the
values used in the example the sum should remain at 5.0 m per s. The sum was evaluated at each time step
to measure the accuracy of the numerical integration, and it was found that the conservation was maintained

Barotropic model, z=20 m per s, w=-15 m per s at {=0
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Fig. 4. The time variation of the two zonal components z (solid line) and w (dashed line) in the barotropic case.



Nonlinear aspects of instabilities 59

during the whole integration. The variation is obviously periodic. As it can be seen the period is close to 18
days. As shown by the author (Wiin-Nielsen, 1961) the zonal kinetic energy has a minimum when z = w,
or, in other words, the available zonal kinetic energy is proportional to (2 — w)?. Figure 4 shows that this
happens when z = w = 2.5 m per s. Figure 5 shows the eddy kinetic energies of the two waves displaying the
same periodicity. The energy £; is considerable larger than k3. Figure 6 contains the momentum transport
(m) and the scalar product (g). They are interrelated by the last equation of the system. It is seen that g
decreases as long as m is positive. For negative values of m the parameter g will increase. Figure 7 shows
the energy conversion C(Kg, Kz) as a function of time. It oscillates between positive and negative values
and reaches values as large as 8 W per m?.

Barotropic model, z=20 m per s, w=-15 m per s at t=0
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Fig. 5. The eddy kinetic energy for the two components k3 (solid line) and k3 (dashed line) as a function of time in the
barotropic case.

i: Barotropic model, z=20 m per s, w=-15 m per s at t=0
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Fig. 6. The momentum transport (solid line) and the F-function {dashed line) in barotropic flow as a function of time.
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Barotropic model, z=20, W= -15 at t=0
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Fig. 7. The energy conversion from eddy to zonal components as a function of time.

Several integrations of the barotropic system, using other initial states, have been carried out. Integrations
for very short and very long waves indicate that the periodic variations are present also in these cases, but
the amounts of energy in the two eddy components are much smaller than for wavelengths of the order of
7000 km using the same initial states as given above. The results of the stability analysis were also tested
by making several integrations with wavelengths a little smaller and little larger than 5000 km.

3. A simple baroclinic model

Turning the attention to baroclinic models it may be an advantage to start with a relatively simple case.
Such a simple model was considered by the author (Wiin-Nielsen, 1992). The meridional variation of the
thermal zonal flow is given by a single trigonometric function, and the same is true for the eddies. The
streamfunction is given in (3.1).

1P = % sin(2Ay) + ksin(Ay)(z cos(kzx) + ysin(kz)) (3.1)

The definition above is used for the streamfunction at 500 hPa (subscript ‘s’) and for the thermal stream-
function (subscript ‘T"), where the thermal streamfunction is half the difference between the streamfunctions
at 250 and 750 hPa. The coefficients are listed in (3.2). We should recall that k = 2n/L and A = n/D,
where L is the length and D the width of the channel.

. _k,\2 q° — k2302 _ Jé]
T T R2ZAN2 4 g2 T T2(R2402)0 0T T k2402
k24P —327 Jé] k2 — g% — 3\2

=k

_ _ : il Sl 3.2
) T T e T T 2k 1 A2+ D) (3:2)

The model equations are given in (3.3), where it should be noted that the mean zonal wind at 500 hPa
does not change with time reducing the model to have five dependent variables.
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The five equations may be integrated with respect to time as was done by the author (Wiin-Nielsen, 1992)
in the case with heating and dissipation. It is, however, also possible in this case to replace the five equations
listed in (3.3) by a new set using a procedure similar to the one used in the barotropic case. We note first
of all that the quantity in the parenthesis in the top equation is the amplitude of the transport of sensible
heat. The quantities, listed in (3.4), are introduced in analogy with Thompson (1987). The present model
is not identical with Thompson’s model, but the same technique can be applied.

T = 2,y — TTYs
Ks = 1/2(15? + y.z)
Kr =1/2(z% + v7)

F=zsxp +yYr (3.4)

The physical meaning of these quantities are, in addition to the heat transport, that K; and Kp are
measures of the kinetic energy of the eddies at 500 hPa and in the thermal flow, while F' is proportional
to the scalar product of the horizontal winds at 500 hPa and in the thermal field. A quantity similar to F'
is found in the model by Thompson (loc. cit). It may be called the interaction term since it, just as the
transport of sensible heat, involves both the mean flow and the thermal flow.

After some algebra we arrive at the new set of equations given in (3.5).

dZT

o =T
dK,
FTi agzpT
dK
T = —CTZTT

dt
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ar
i ((as — ar)zs — (bs — bp))F + 20527 — 2Cr27 K,

%? = —((as —aT)zs — (bs — bp))T (3.5)

These equations contain the same information as the original model equations, but they are easier to
handle from an algebraic point of view and also more convenient for numerical integrations with respect
to time. With the assumption that 2z, and 27 are given constants we may make a perturbation analysis.
When the heat transport equation is differentiated with respect to time followed by insertion from the other
equations we arrive at a single, second order equation in 7. It is given in (3.6).

d*T
W +CT =0
C = [(as — aT)zs — (bs — bp)]? + 4a,Cr22. (3.6)

The equation in (3.6) is convenient for a stability analysis in which 2z, and zp are constants determining
the zonal flow in the model. Under this assumption C' depends on the length and the width of the adopted
region and on the beta effect. If C' > 0 the solutions to (3.6) are trigonometric functions indicating stability.
In the other case (C' < 0), the solutions are exponential functions in time giving instability. It is obvious
that a necessary condition for a negative value of C is that as; and cr are of opposite sign. However, the
possible region of instability is most easily obtained by calculating C as a function of the zonal wavelength
for fixed values of the width of the channel, z; and 2.

Figure 8 gives an example of a calculation of C = C(L) computed with D = 10000 km, 8 = 1.6 x 10712
m~! s7! and a value of ¢*> = 4.0 x 107!2 m~2. It is seen that C(L) is negative in a relatively small region
around a wavelength of 4000 km, while C(L) > 0 for all other wavelengths.

simple baroclinic model, zs=30, zt=20 m per s

The coefficient C, s**-2

10 15 20 25
Wavelength, 1000 km

Fig. 8. The C-coefficient as a function of wavelength for the simple baroclinic model.
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The next step is to make a numerical integration of the equations given in (3.5). A basic wavelength of
3600 km is chosen. The initial state is set to reasonable values of z, and sy, while small values are used
for the four dependent variables related to the eddies of the model. It turns out that an integration of 100
days is necessary to determine the period of the changes in the variables. Figure 9 shows the variation of
zp with respect to time. The instability is seen after an integration covering about one week. The zonal
flow decreases indicating a conversion from the zonal flow to the eddies. As can be seen from Figure 10
the kinetic energies increase for each of the eddy components with the larger values in the 500 hPa flow.
The intensity of the eddies reaches a maximum whereafter they decrease to infinitesimal values. The same
variations take place repeatedly as the integration is extended in time. Figure 11 contains the heat transport
and the F-function as functions of time. These two functions are closely interrelated as one can see from the
fifth equation for the model. As long as the heat transport is positive, F will increase. A decrease of the
F-function starts when the heat transport turns negative. Note that the coefficient in the fifth equation is
negative in the present case.

The case illustrated in Figures 9, 10 and 11 is chosen close to the maximum instability as can be seen
from Figure 8. If L is selected outside the interval of instability very small changes are found in the eddy
quantities.

Simple baroclinic model, zs=30, zt=20 at t=0
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Fig. 9. The zonal thermal component as a function of time for the simple baroclinic model.
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Fig. 10. The kinetic energy of the two eddy components as a function of time for the simple baroclinic model.
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Simple baroclinic model, zs=30, zt=20 at t=0
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Fig. 11. The heat transport (solid line) and the F-function (dashed line) as functions of time for the simple baroclinic model.

Figure 12a shows the energy conversion C'(Az, Ae) as a function of time. When the wave is growing the
energy conversion is positive, but it changes sign during the time where the wave amplitude is decreasing.
As can be seen from Figure 12a the chosen example is very extreme. This is due to the selection of extreme
values of z, and zp. More moderate values such as z; = 20 m per s and zr = 10 m per s will give more
realistic values of the energy conversion as can be seen from Figure 12b indicating also a much longer period.

The period for the example treated above is close to 24 days as can be seen on all the figures. Periods of
the same order of magnitude is found in other examples, but the result is very dependent on the choice of
the wavelength in the region of instability and on the initial values of the two parameters determining the
zonal flow.

Simple baroctinic model, zs=30,zt=20 m per s at t=0
100 ;

C(Az,Ae), W per m*2
N
(=]

0 10 20 30 40 50 60 70 80 90 100
Time, days

Fig. 12a. The energy conversion from zonal to eddy available potential energy as a function of time for the simple baroclinic
model.



Nonlinear aspects of instabilities 65

Simple baroclinic model, zs=20, zt=10 m per s
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Fig. 12b. The same as Figure 12 a, but for lower values of the two zonal components.

4. The barotropic-baroclinic case

The model applied in this section has been described in detail in the paper by Marcussen and Wiin-Nielsen
(1999), where several cases including heating and dissipation were presented. It is a two-level, quasi-
nondivergent model with six components at each level resulting in twelve equations to be integrated. It
is realistic from the point of view that it contains both transports of sensible heat and momentum, and it
can be seen as a generalization of both the barotropic model treated in Section 2 and the simple baroclinic
model used in Section 3.

In the following example, the numerical integrations are carried out using the basic equations (Marcussen
and Wiin-Nielsen, 1999) disregarding all terms related to heating and friction. The zonal wavelength is
chosen to be 5000 km, the width of the channel of 10000 km and ¢® = 4.0 x 1072 m~2. Figure 13 shows the
zonal available potential energy (A.) and the zonal kinetic energy (K,) as a function of time over a total
integration time of 300 days. As with the simpler model we notice periodic temporary reductions of A, and
Kz followed by increases taking the parameter back to its initial value. The changes of these two energy

Barotr-baroct. model, L=5000 km, D=10000 km
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Fig. 13. The zonal available potential energy (solid line) and the zonal kinetic energy (dashed line) as functions of time.
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quantities are in phase although the variations of the zonal kinetic energy is much smaller than those for
the zonal available potential energy. This behavior indicates clearly that we have an instability of a mixed
barotropic-baroclinic nature. The period is about 80 days. Figure 14 contains the eddy available potential
energy (A.) and the eddy kinetic energy (K.) as a function of time. It is seen that A, and K, have a double
maximum before both of the variables return to very small values.

Barotr-barocl. model, L=5000 km, D=10000 km
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Fig. 14. The eddy available potential energy (solid line) and the eddy kinetic energy (dashed line) as functions of time.

Barotr-barocl. model, L=5000 km, D=10000 km
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Fig. 15. The conversions from zonal to eddy potential energy (dashed line) and from eddy to zonal kinetic energy (dots).

To describe this behavior it is useful to calculate some energy conversions. Contrary to the former models
treated in sections 2 and 3 of this paper the present model permits the calculation of all the internal energy
conversions. Figure 15 displays the energy conversions C(A,, A.) and C(K,, K,) computed independent
of each other. As can be seen the two energy conversions are identical functions of time. Both of them
oscillate between positive and negative values. The largest values are 4 to 5 W per m?. Figure 16 contains
the remaining two internal energy conversions, i.e. C(A4,, K,) and C(4., K.). We observe that these energy
conversions have opposite signs, but the same absolute value. Based on these calculations it may be concluded
that the energy conversions during half the integration time follow the directions: A, — 4, —» K. —» K, —
A., while the conversions follow the opposite directions for the remaining period. The reason for these cyclic
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Barotr-barocl. model, L=5000 km, D=10000 km
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Fig. 16. The conversion from zonal available potential energy to zonal kinetic energy (dashed line) and the conversion from
eddy available potential energy to eddy kinetic energy (dots).

changes is of course that these integrations are carried out without any heating and friction. On the other
hand, when these processes are included in the model used in this section, it was shown by Marcussen and
Wiin-Nielsen (1999) that the directions of generations, conversions and dissipations are in agreement with
the directions as found from observational studies.

5. Concluding remarks

The main purpose of the note is to investigate the stability of a few simple models. For the barotropic and
the simple baroclinic model it has been demonstrated that the equations for the basic low order model may
be transformed to a different set of equations from which the stability criteria can be easily computed. The
long term behavior of the models have been demonstrated using long integrations of the model equations.
A result of these integrations is the determination of the length of the period dominating the behavior of
the long term integrations of the model equations. The energetical behavior of the models has also been
determined.

The most general model contains the transports of sensible heat and momentum. The model equations
have been integrated with respect to time. In addition to the determination of the period for the long term
behavior it has been possible to illustrate the energetical behavior of the model. It is found that energy
conversions go through a cyclic change where a given conversion changes direction during half of the period
for the long term behavior. The reason for this behavior is that the model contains neither heating nor
friction. It is thus the inclusion of these two processes that determines an energy diagram in agreement with
observational studies.

REFERENCES

Charney, J. G., 1947. The dynamics of long waves in a baroclinic westerly current, Jour. of Meteorology, 4,
135-162.

Kuo, H. L., 1949. Dynamic instability of two-dimensional, non-divergent flow in a barotropic atmosphere,
Jour. of Meteorology, 6, 105-122.

Marcussen, P. and A. Wiin-Nielsen, 1999. A numerical investigation of a simple spectral atmospheric model,
Atmdsfera, 12, 28-43.



68 A. WIIN-NIELSEN

Thompson, P. D., 1987. Large-scale dynamical response to differential heating: Statistical equilibrium states
and amplitude vacillations, Jour. of Atmospheric Sciences, 44, 1237-1248.

Wiin-Nielsen, A., 1961. On short-and long-term variations in quasi-barotropic flow, Monthly Weather Review,
89, 461-476.

Wiin-Nielsen, A., 1992. Comparisons of low-order atmospheric dynamic systems, Atmdsfera, 5, 135-155.

Wiin-Nielsen, A., 1999. Steady state and transient solutions of the nonlinear forced shallow water equations
in one space dimension, Atmdsfera, 12, 145-160.



