
Atmósfera (2004) 171-181

The Lorenz chaotic systems as nonlinear oscillators with memory
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RESUMEN

Los sistemas no lineares dinámicos (sistemas de ecuaciones diferenciales ordinarias de 1er orden) capaces de
generar caos son no integrables analíticamente. A pesar de esto, se pueden utilizar herramientas analíticas
para extraer información útil de ellas. En este trabajo el sistema original de Lorenz y sus modificaciones se
reducen a ecuaciones oscilatorias únicas de tipo integral-diferencial con argumento retrasado. Esto lleva a la
aparición de un término “endógeno” que se interpreta como memoria para el pasado. Por otra parte, las
ecuaciones son válidas más allá del instante inicial (teóricamente en t → ∞), cuando el sistema evoluciona
hacia su conjunto atractor. Esto corresponde a las soluciones numéricas cuando una parte inicial adecuada
del iterato generalmente se descarta para eliminar a los transitorios. Además la forma de las ecuaciones
permite su tratamiento estadístico.

ABSTRACT

Nonlinear dynamical systems (systems of 1st order ordinary differential equations) capable of generating
chaos are analytically nonintegrable. Despite of this fact, analytical tools can be used to extract useful
information. In this paper the original Lorenz system and its modifications are reduced to single oscillatory
type integral-differential equations with delayed argument. This yields to appearance of an ‘‘endogenous’’
term interpreted as memory for the past. Moreover, the equations are valid far from the initial instant (theoretically
at t→∞),  when the system eventually evolves on its attractor set. This corresponds to the numerical solutions
when an appropriate initial part of the iterates is usually discarded to eliminate the transients. Besides, the
form of the equations allows statistical treatment.
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be a differential equation for u(t) with given functions v(t), w(t), initial values uo, vo and parameters
k,  l,  m, n. Alternatively,

(1.1)

(1.1a)

Let

u+ ku = l + mw( t )+ nv ( t ), k >0

M +k M = m w( t ) k n v( t ) S ( t )− ≡

(M t ) =u( t ) nv( t ) l / k− −

The general solution of (1.1a) is

t

1 10
( )1-k τ-k t

oM ( t ) = M e e S t τ d τ+ −∫

(1.2)

(1.2a)

(1.3)

According to (1.1a)

Therefore, the current time value u(t) is determined not only by S(t), but by S(t − τ) as well, the
latter being exponentially suppressed. It is reasonable to interpret the integral term in (1.2) as a kind
of memory, remaining after the transient has passed (t→∞). To characterize this effect, following
Festa et al. (2002), we introduce the memory function

Hence, the long time (t→∞) behaviour of the solution will be governed by

1 10
( )1-k τ

t
M ( t ) e S t τ d τ

∞

→∞
= −∫

or

1 10
( ) ( )1-k τ

t
u( t ) l / k+nv t e S t τ d τ

∞

→∞
= + −∫

at
( ) at

0 at ,

m(w v) m = k n, w v  
S ( t ) = m k n v w v, m k n

m =k n w v

− ≠⎧
⎪ − ≡ ≠⎨
⎪ ≡⎩

1. Introduction
In principle, any system of n first order nonlinear ordinary differential equations (ODE) can be
transformed into lower number higher order, or to integral-differential equations by means of consistent
elimination of dependent variables. In doing so in this paper, we will need some preliminary
mathematical derivations:
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with p = 1 (linear memory) or p = 2 (quadratic memory). For example, if  v(t) = sin t, then

Obviously    ∞, 1 ( t ) ≡ v ( t ),  ∞, 2 ( t ) ≡ v2 (τ), and

(1.5)

If v(t) is a random function (Panchev, 1971), )(~
, tv pq will be a random one too and can be treated

statistically (see section 4 below).
Equations of the type (1.1) and its solution (1.2) occur in the theory of motion of Stokes’ particles

in turbulent flow and of linear measurement devices with inertia, e. g. some meteorological instruments
(Panchev, 1971, ch. 8).

Here we apply the previous results to the original Lorenz low order system of ODE (section 2)
and to its modifications (section 3). In section 4 we show how the obtained solutions of the type
(1.2) can be treated statistically. Some conclusions are formulated in section 5.

2. The original Lorenz (1963) system
The system is a 3-dimensional, 3-parametric one

(2.1)

For  r >1 it has two nonzero fixed points

(2.2)

At  σ > b +1  and

(2.3)

2( ) ( sin cos ),
1q,1

qv t q t t
q

= −
+

2

1( ) ( cos 2 2 sin 2 ).
2 8 2q,2

qv t q t t
q

= − +
+

v v

1-q τ

0
q e d τ

∞
=∫

, 0X σX +σY σ=− >

, 0Y=rX Y XZ r− − >

, 0Z= bZ+XY b− >

( 0)X =Y =Z =

, 1X =Y b Z Z r=± = −

( 3) 0
1H

σ σ + br r
σ b

+
> = >

− −

1
1 10

( ) ( )-q τ p
q, pv t q e v t τ d τ

∞
= −∫ (1.4)
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the system exhibits chaotic behaviour. Otherwise chaotic regime is impossible. A combination between
X– and  Z –equations of (2.1) yields

2 21( ) ( )dZ b Z X t X t
2σ d t

+ = + (2.4)

It can be rewritten as

2( 2 1) ( )K bK b / σ X t+ = − (2.5)

where

21( ) ( ) ( )
2

K t X t Z t
σ

= −

Alternatively from (2.1) and (2.6) we derive

(2.6)

2 ( 2 ) ( )K σ K b σ Z t+ = − (2.7)

Equations (2.4) − (2.7) are of the type (1.1), so that at t→ ∞  the solution (1.2) can be used directly.
Thus,

,2

2 ,1

1 ( )
( ) 1

2 ( )

b

t
σ

X tbK t b
σ Z t→∞

⎧
⎡ ⎤ ⎪= − ⎨⎢ ⎥
⎣ ⎦ ⎪⎩

(2.8)

,2 2 ,1( ) / ( ) ,b σX t Z t b = const=      (2.9)

which is the same as

1 122
1 1 1 10 0

( ) / ( ) 2b τ σ τe X t τ d τ e Z t τ d τ σ = const.
∞ ∞− −− − =∫ ∫   (2.9a)

If b = 2σ, i.e. rH  in (2.3) does not exist, then  K(t) ≡ 0 and (2.8) yields

2 ( ) / ( ) 2 atX t Z t σ=const t= →∞ (2.10)

It is worthwhile to compare (2.9) – (2.10) with (2.2) ( bZX =2 ).

respectively. Hence, it follows that

So far, the second equation of the system (2.1) was not used. Eliminating Y(t) and Z(t) one
obtains
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which is the forced Duffing oscillator. Through (2.9) 1,2
~

σZ  can be introduced instead of )(~
2, tX b .

Equation (2.11) governs the final behaviour of the system (2.1) at t → ∞, when it lies and permanently
evolves on its attractor set, eventually oscillating around the two unstable fixed points (2.2). This
state is self-sustained by the memory term in (2.11). As it follows from (2.8), the memory is carried
either by  X– or by Z –variables in (2.1), but with different memory decay time (in the Lorenz time
units) – 1/b and 1/2σ. Besides, the memory term vanishes if b = 2σ. However, this is not the case
with the traditional Lorenz values b = 8/3, σ  = 10, r = 28, when (2.1) and consequently (2.11)
behaves chaotically.

Being in force at t → ∞, the invariant ratio (2.9) can be used as a criterion for numerical
evaluation of the practical duration of the initial transient. Moreover, how fruitful can be the
representation of (2.1) in the oscillatory form (2.11) was recently shown in Festa et al. (2002) .

3. Quasi-Lorenz systems

3
,2

1 1( 1) (1 ) ( ) 0
2 2b
bX σ X σ r σ X t X X

b
⎡ ⎤⎛ ⎞+ + + − + − + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(2.11)

X = σ X + σY εY Z− −

(3.1)Y = r X Y−
Z = b Z + X Y−

We call quasi-Lorenz systems those that are ‘‘derivatives’’ (modifications) of the original one (2.1).
Such a system was studied in Panchev (2001), and Panchev and Spassova (1999).

where σ,  ε,  r,  b > 0. Unlike (2.1), the first equation is nonlinear while the second one is linear. At
r >1 there exist two nonzero fixed points determined by

2 2 2 ( 1) /Y r X b r Z, Z = σ r ε r= = − (3.2)

Moreover, at  σ + b < 1  and

* 3 1 0
(1 )H
σ+ br > r

σ σ b
+

= >
− −

the qualitative behaviour of (3.1) follows that of (2.1) under the conditions (2.3).
The last two equations of (3.1) yield

2 21 1( ) ( )
2

dZ + b Z Y t Y t
r d t
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

(3.4)

(3.3)
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It can be written in two alternative forms:

Using again (1.2) we obtain

2( / 2 1) ( )M + b M b Y t= −

(3.8a)

(3.8)

(3.5)

and

2 ( 2) ( )M + M r b Z t= − (3.5a)

where

21( ) ( ) ( ).
2

M t Y t r Z t= − (3.6)

Hence

1
, 2

2,1

( )
( ) 1

( )2
b

t

b Y tbM t
r Z t

−

→∞

⎧⎪⎛ ⎞= − ⎨⎜ ⎟
⎝ ⎠ ⎪⎩

(3.7)

which is the same as

,2 2,1( ) / ( )bY t Z t br = const=

These expressions correspond to (2.9), (2.9a). Unlike the latter, the ratios (3.8) depend explicitly
on  r.

Eliminating X( t) and Y( t) in the first equation (3.1) by means of the second one and (3.6), (3.7)
one obtains again a Duffing  type self-forced oscillator, corresponding to (2.11):

1 122
1 1 1 10 0

( ) / ( ) 2b τ τe Y t τ d τ e Z t τ d τ r const
∞ ∞− −− − = =∫ ∫

As it is seen, the memory is carried either by Y– or by Z –variables with decay time 1/b and 1/2,
while in (2.8) we had X and Z with 1/b and 1/2σ  decay time. Moreover, it follows from (3.7) and
(3.9) that at b = 2 the memory term vanishes and (3.9) degenerates into a regular Duffing oscillator.
In this particular case (3.7) and (3.6) yield

3
, 2

2( 1) (1 ) ( ) 0
2 2b

b εY σ Y σ r ε Y t Y Y
b

⎡ ⎤−
+ + + − + + =⎢ ⎥

⎣ ⎦
(3.9)

corresponding to (2.10). As rigorous results from the initial systems (2.1) and (3.1) at t → ∞, the
invariant ratios (2.9), (3.8) and (2.10), (3.10) can be checked numerically, integrating (2.1) and
(3.1).

2 ( ) / ( ) 2Y t Z t r= (3.10)
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 where

, 0,X= σ X +σY + sV σ− >

, 0,Y =rX Y XZ r− − >

, 0,Z = bZ + XY b− >
0.V = X σV, s− − >

(3.11)

1
1 1 ,10

1( ) ( ) ( )σ τ
σ

t
V t e X t τ d τ X t

σ
∞ −

→∞
= − − = −∫ (3.12)

,1
s ( )σX = σ X + σY X t
σ

− − (3.13)

1
1 1

o

( ) ( ) ( ) ( ) ( ) ,σ τF t X t V t e X t X t τ d τ
∞

−= = − −∫ (3.14)

2
,2 ,1

1 1( ) ( ) 1 ( ) ( )
2 b b

t

b sZ t X t X t F t
σ 2σ b σb→∞

⎡ ⎤
= + − −⎢ ⎥

⎣ ⎦
(3.15)

1 22
,1 2 2 2 1 2 1 20 0 0

( ) ( ) ( ) ( )σ τ bτbτ
bF t b e F t τ d τ b e X t τ X t τ d τ d τ

∞ ∞ ∞ − −−= − = − − −τ −∫ ∫ ∫ (3.16)

,X = σ X +σY−

,Y=rX aX XZ− −
1 ( )
2

* *Z= bZ X Y +X Y− + +

(3.17)

Obviously the original Lorenz system (2.1) is embedded (built) in (3.11). However, the meaning
of the parameters is different from the previous ones (Stenflo, 1996).

The new equation in (3.11) implies that

Therefore, (3.11) is equivalent to the system (2.1) with the first equation replaced by

Consequently, a new term  −    F (t)  appears on the right-hand side of equation (2.4), where

Hence, we derive the extended version of the equation (2.8)

Obviously, )(~ tF is a more complicated quadratic type memory (secondary, or mixed one).
The second example is the generalized Lorenz system in the complex domain (Fowler et al.,

1983)

Many other systems can be classified as quasi-Lorenz ones. We shall consider two more examples
only. The first one is the  four dimensional system of meteorological origin, derived in Stenflo (1996)

s
σ
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2 21
2

dZ= bZ+ X X
σ d t

− + (3.18)

2

,2

1 1( ) ( ) 0
2 2b

bX + σ+a X + σ a r σ X X X X
b

⎡ ⎤⎡ ⎤− + − + =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
(3.19)

(4.1)

where X(t), Y(t), a, r are complex functions and parameters, Z(t) is a real function, σ, b are real
parameters and the asterisk (*) denote complex conjugate. Thus, in real quantities (3.17) is a five-
dimensional dynamical system. It occurs in the theory of nonlinear baroclinic instability in the
atmosphere, a problem of great meteorological significance, and also in the laser physics (Rauh et
al., 1996).
Formally, (3.17) differs from (2.1) by the Z –equation. However, the latter is easy transformed into
a form identical to (2.4)

~

( ) ,v t v = const=

2( ) ( ) ( ) ( )v v v v vv t v t + τ B τ σ R′ ′ = = τ

1
,1 1 10

( ) ( )q τ
qv t q e v t τ d τ

∞ −′ ′= −∫

2
,1 2 20

( ) ( )q τ
qv t+τ q e v t + τ τ d τ

∞ −′ ′= −∫

1
,1 10

( ) q τ
qv t q e v d τ v =const

∞ −= =∫

where |X|2 = XX * = X1
2 + X2

2, (X =  X1 + iX2). Therefore, all equations (2.5) – (2.10) remain in
force if X(t) is replaced by )(tX . The equation (2.11) now takes the form

It is a nonautonomous complex Duffing type equation. In the real domain it is equivalent to two
coupled equations of the same type.

4. An example of statistical treatment
Let v(t) be a random (chaotic) function.  Then the memory  function vq,1 (t) is a random  (chaotic)
one too. In addition we assume that v(t) is a statistically stationary function (Panchev, 1971), i.e.

where v´ (t) = v (t) - 〈v〉 is the deviation from the mean value 〈v〉. Obviously Bvv (0) = σv
2 = const,

is the dispersion of v′ . Under these assumptions it follows that

and
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(4.2)

(4.3)

(4.4)

(4.5)

1 2 2( )2
1 2 1 2 2 20 0

( ) ( ) ( )q τ τ q τ
v v v v v v0

B τ q e B τ τ +τ d τ d τ q e B τ+τ d τ
∞ ∞ ∞− + −= − =∫ ∫ ∫

2 2

0
(0) ( ) (0) .q τ

v v v v v v v vB σ q e B τ d τ<B σ
∞ −= = =∫

122
1 10

1 ( ) ( ) ( 2 ) ( ) .
2

στX t Z t b σ e Z t τ d τ
σ

∞ −= + − −∫

2X = b Z

22 2 2
2 0

1 ( ) ( ) 2( 2 ) ( ) ( 2 )
4

σ τ
z z z zξ t Z b σ e B τ d τ b σ J

σ
∞ −′= + − + −∫

1

2
2

1 10
( )σ τ

z zJ e Z t τ d τ
∞ −⎡ ⎤′= −⎢ ⎥⎣ ⎦∫

1 22 ( )
1 2 1 20 0

( ) ( )σ τ τ
z zJ e Z t τ Z t τ d τ d τ

∞ ∞ − + ′ ′= − −∫ ∫

2 2
2

0
( ) ( )

2 2
σ τz z

z z z z z
σ σJ e R d τ I σ
σ σ

∞ −= τ =∫

Then, for the memory autocorrelation function we obtain

after one integration has been performed (Panchev, 1971). Hence

We now apply these results to the Lorenz system (2.1). As an example we take the second
solution (2.8)

valid at t → ∞. Zou et al. (1985) showed that the motion on the strange attractor is ergodic.  It is
reasonable to think that it is also stationary in the above sense (4.1). Thus, we can average (4.4).
The result is (cf. (2.2), (2.9))

Subtracting (4.5) from (4.4), squaring and averaging, we obtain

where ξ (t) = X 2 (t) − 〈X 2〉,

However, the squared integral equals to a double one

where  〈..〉 = Bz z (τ1 – τ2)  is the autocorrelation function of the Z –variable. Finally (see also (4.3))
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so that

In a similar way other statistical characteristics can be computed.

5. Conclusion
Normally high order ordinary differential equations are transformed to dynamical systems (systems
of 1st order equations), suitable for further analytical treatment and numerical solution. Here we
followed the opposite procedure. Owing to the appropriate structure (1.1) of the equations in the
original Lorenz low-order system (2.1) and  its modifications (3.1), (3.11) and (3.17), single oscillatory
type equations with forcing endogenous ‘‘memory’’ terms are derived, valid at  t → ∞. In this
connection linear and quadratic memories were defined by (1.4) and (3.16). For particular relationships
among the systems’ parameters (b = 2σ  for (3.1) and b = 2  for (3.11)), the memory terms in (2.11)
and (3.9) vanish. The latter result is new, while the former one is already known. In both cases, the
results are autonomous Duffing type equations and invariant ratios (2.10) and (3.10). Moreover,
other new invariant ratios (2.9) and (3.8) are rigorously derived from (2.1) and (3.1). Section 4
demonstrates the possibilities of the statistical approach in case of final (t → ∞) chaotic behaviour.
The results of the previous sections may prove to be useful for various applications of the Lorenz
and Lorenz-like systems, including meteorological ones.

The systems considered in sections 2 and 3 are not the only ones that can be reduced to oscillators
with memory. We have collected other examples of dynamical systems (mainly 3-dimensional) that
can also be transformed and treated by means of the same tools, including statistical ones.
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4 2z z

b σξ σ I σ
σ σ
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(4.6)
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