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RESUMEN

Estudiamos el error introducido por el método de las diferencias finitas en la discretización de un modelo
global simplificado 2-D de transporte de gases traza, para casos en que los coeficientes de difusión, que
relacionan el flujo con el gradiente de la razón de mezcla, tienen discontinuidades de salto en la tropopausa.
Analizamos el método convencional de celdas tanto para el caso de un flujo ascendente típico, como también
para el caso de un flujo descendente típico con reacciones químicas, comparando las aproximaciones de las
soluciones correspondientes para diferentes tamaños de paso de discretización. Para el flujo descendente
típico resulta que si la rejilla no es suficientemente fina se pueden generar grandes errores; estos se propagan
fundamentalmente en la troposfera. En cambio, el flujo típicamente ascendente resulta ser relativamente
insensible al tamaño de paso de la discretización.

ABSTRACT

We study the accuracy of the finite differences discretization scheme for a 2-D simplified model of global
tracer transport, in the case that the diffusion coefficients relating flux to the gradient of the mixing ratio have
discontinuity jumps at the tropopause. We analyze the conventional box method for a typical downward flow
with chemical reaction and for a typical upward flow, comparing the approximations of the solutions, for
different discretization gridsizes. It turns out that the jumps may introduce remarkable errors in the discrete
solutions, in the case of a typical downward flow; these errors propagate mainly into the troposphere. A
noticeable improvement is achieved by reducing the gridsize. However, a typical upward flow is rather
insensitive to the chosen gridsizes.

Keywords: Global tracer transport model, finite differences discretization scheme, tropopause discontinuity
jumps, discretization errors.
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1. Introduction
The earth’s atmosphere is divided into several layers. Of particular interest for the global transport
of tracers are the troposphere (from ground up to about 8 km height near the poles, about 18 km
height near the equator) and the stratosphere (the next higher level). There results a rather sharp
boundary between the two layers, the so-called tropopause, below of which vertical exchange
coefficients are large, whereas above it they are small (Birner et al., 2002; 2003; Schneider, 2004;
Wirth, 2004).

Therefore, in 1-D and 2-D models of global tracer transport, the eddy diffusion coefficient
tensor, relating flux to the gradient of the mixing ratio of some tracer has a discontinuity jump at the
tropopause and also contains non-diagonal matrix elements in the lower stratosphere (Gidel et al.,
1983; Brühl and Crutzen,1988). The question arises whether in numerical models a significant error
is introduced by the numerical schemes, due to the tropopause jump. This question seems to be
especially relevant if we consider the increasing interest in recent years of the atmospheric science
community to understand stratosphere-troposphere exchange processes and also, to understand
the impact of aircraft emissions on atmospheric chemistry. Both issues were analyzed in many
model studies (Ko and Douglass, 1993; Brühl et al., 1998; Groâ et al., 1998; Rondanelli et al., 2002;
Gallardo et al., 2004); in almost all of them the effect of the jump discontinuity of the coefficients,
on the accuracy of the numerical scheme, is not considered.

In this paper we show the error behavior of the conventional box method, for the 2-D case
(Gidel et al., 1983; Brühl,1987), with simplified numerical examples.

The basic equation for the time evolution of the concentration X of a particular tracer species in
the atmosphere is given by

divX F Q
t

∂
+ =

∂
(1)

where F is the flux density vector of this quantity and Q is its net chemical production per volume
unit. With u = X/Mair denoting the mixing ratio of this tracer, Mair being the air concentration,

gradairF X v M IK u= − (2)

consists of an advective term with v  being the velocity vector of an averaged motion, and of a
second term describing eddy diffusion with IK being the symmetric positive definite tensor of eddy
diffusion coefficients.

Since our emphasis is on the effects of the jump in the diffusion coefficients with the conventional
box method, we adopt a very simple model which only mimics diffusion and a chemical reaction,
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thereby neglecting advection and the effects of spherical geometry. Also spatial variations in the
coefficients are not taken into account, besides of the variations resulting from the preferentially
isentropic diffusion in the stratosphere which is closely connected to the shape of the tropopause.
This does not mean that the neglected effects are not significant, but we want to clarify the numerical
effects of the jumps without mixing in many different phenomena.

We restrict the chemistry term to a simple first order reaction:

Q = − κ X

with constant reaction rate κ. Furthermore we treat the air density as a constant such that equation
(1) reduces to

(3)

div ( grad )u IK u u
t

κ∂
− = −

∂
(4)

In addition, suitable boundary conditions have to be stated.

2. The simplified 2-D case
We consider the continuous model for a simplified cartesian case without advection and with constant
air density. The corresponding differential equation for the mixing ratio u of a tracer species is

, 0 , 0y Z
u F F u y Y z Z
t y z

κ∂ ∂ ∂
= − − − ≤ ≤ ≤ ≤

∂ ∂ ∂
(5)

,y z
u u u uF K L F L M
y z y z
∂ ∂ ∂ ∂

= − − = − −
∂ ∂ ∂ ∂

(6)

and initial condition

u(y, z, 0) = u0 (y, z),     0 ≤ y ≤ Y,     0 ≤ z ≤ Ζ

K, L  and M are the space dependent exchange coefficients, i.e. the ‘‘eddy diffusion coefficients’’,
and satisfy the condition

K M > L2

(7)

with

(8)
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for the sake of positive definiteness of IK with

K L
IK

L M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The chemical reaction rate κ is considered constant. We suppose that at the lateral boundary
the flux is purely vertical, i.e. the normal flux Fy is zero; but since we further assume that the off-
diagonal diffusion coefficient L is zero at the boundaries we have

( ) ( )0, , 0, 0u uz Y z z Z
t y

∂ ∂
= = ≤ ≤

∂ ∂
(9)

at the lateral boundary. Therefore the boundary conditions are given by (9) and either in the case

Fz|z=0 = FB,     Fz |z=Z = kz u;     kz, FB  > 0,

of tracers characterized by an ‘‘upward flow’’ (e.g. the CFC-family), or in the case of tracers

Fz|z=0 = KB  u,     Fz |z=Z = Fz;     kB, Fz  < 0,

characterized by a ‘‘downward flow’’ (e.g. the ClOx family). The matching conditions at the jump
line are well known (Marchuk and Skiba, 1976; 1992), i.e. at the tropopause these conditions are
now given by

u|S = u|T

and

(10)

(11)

(12)

(13)( ) ( ) ( ) ( )
S TS T

u u u uM L L K M L L K
z y z y

τ τ τ τ∂ ∂ ∂ ∂
− + − = − + −

∂ ∂ ∂ ∂

where τ is the slope of the tropopause and the notations w|S and w|T denote the limit values of w
taken from the stratospheric and the tropospheric side, respectively. Condition (12) is a continuity
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condition for the mixing ratio u at the tropopause and condition (13) is a continuity condition for the
transverse flux component. We further suppose that the altitude  zTP  of the tropopause is a piecewise
continuously differentiable function of y, i.e.  zTP = Φ (y)  for   0 ≤ y ≤ Y.

3. The conventional box discretization
Several investigations in air chemistry (McRae et al., 1982; Gidel et al., 1983; Brühl, 1987) solve
equation (1) numerically by applying a splitting method (Marchuk, 1975) where the transport step
uses Euler’s forward method as time discretization and for concentrations and fluxes centered
difference methods are used as spatial discretization (Fiebig-Wittmaack and Börsch-Supan, 1994).
This conventional method uses discretizations based on cells, or boxes, defined by the inequalities

(j − 1) ∆y ≤ y ≤ j ∆y     and     (i − 1) ∆z  ≤  z  ≤  i∆z,   i = 1,…, n;   j = 1,…, m,

with ∆y = Y/m    and    ∆z = Z/n.  The grid G is given by

G = {(yj, zi)/ yj = (j − 1/2) ∆y,  zi = (i - 1/2) ∆z,  i = 1,…,n;   j = 1,…, m}

and the discrete values uj,i of the mixing ratio are given at the midpoint of the cell. In order to
improve the discrete boundary conditions in our simplified case, we introduce additional fictive
outer points. We denote by Fy

j,i the discrete value of Fy calculated at the midpoint of the right
boundary of  j, i- th cell and by Fz

j,i the discrete value of  Fz calculated at the midpoint of the upper
boundary of the  j, i-th cell. Therefore, we obtain the following discrete equation for the j, i-th cell:

( ) ( )
, 1, , , 1

, , ,

j i j i j i j i
y y z z

j i j i j i

F F F Fu t t u t t u
y z

κ
− −⎡ ⎤−

+ ∆ = − ∆ + +⎢ ⎥
∆ ∆⎢ ⎥⎣ ⎦

(14)

The values at the fictive outer points must be calculated at every time step from the discretized
boundary conditions. In order to ensure D-stability the inequality must hold; otherwise small errors

( ) ( )
1

2 2 2
K Mt
y z

⎡ ⎤
⎢ ⎥∆ + ≤
⎢ ⎥∆ ∆⎣ ⎦

(15)

would propagate exponentially in time, the faster the smaller the time step is.
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4. Numerical example
We use simplified data taken from the distributions employed in the 2-D box model of the MPI
Mainz (Brühl, 1987; Fiebig-Wittmaack and Börsch-Supan,1994). Because of symmetry with
respect to the equator we consider only one half sphere with y = 0 corresponding to the equator and
y = Y = 9990 km corresponding to the north pole; z = 0 and z = Z correspond to altitudes of 2 km
altitude above ground (just above the planetary boundary layer) and 23.6 km altitude (near the
ozone layer), respectively. We introduce the altitude above sea level z = z + 2. In agreement with
the MPI model our basic gridsizes are ∆z = 1.8 km, ∆y = 1110 km (i.e. for the latitude ϕ we
take ∆ϕ = 10° ), and the time step is ∆t = 2 hours.The eddy diffusion coefficients are given by

K = 6 × 103  km2/h;

( ) ( )

2 2

2 3 2

3 10 km /h, in the troposphere,

1.5 10 km /h, in the stratosphere,y z

M
K zα ϕ α

−

−

⎧ ×⎪= ⎨
⎡ ⎤ + ×⎪ ⎣ ⎦⎩

( )

( )

( )

0.05 25 if 25 45 ,
1 if 45 55 ,
0.05 75 if 55 75 ,
0, otherwise

y

ϕ ϕ
ϕ

α ϕ
ϕ ϕ

⎧− − ° ≤ ≤ °
⎪
− ° ≤ ≤ °⎪= ⎨
− − ° ≤ ≤ °⎪
⎪⎩

( )

( )

( )

4

4

4

8 10 1 17.3 /10 if 17.3 km,

8 10 if 17.3 km 19.1 km,

8 10 1 19.1 / 3.6 if 19.1 km 22.7 km,

0, otherwise

z

z z

z
z

z z
α

−

−

−

⎧ × ⎡ − − ⎤ ≤⎣ ⎦⎪
× ≤ ≤⎪

= ⎨
× ⎡ − − ⎤ ≤ ≤⎪ ⎣ ⎦

⎪
⎩

( ) ( )
0, in the troposphere,

, in the stratosphere,y z

L
K zα ϕ α

⎧⎪= ⎨
⎪⎩

with
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Here α  = αy (ϕ) az( z ) may be interpreted as the slope of the main diffusion direction; thus this
deviates from the horizontal in the stratosphere between 25º and 75º latitude. Note that α = 0 near
the upper boundary has been introduced artificially in order to simplify the upper boundary conditions.

The tropopause z = Φ(ϕ) is approximated by the following description

( )
( )

1 5 .5 0 1 if 1 5
1 5 .5 0 1 0 .1 8 1 5 if 1 5 3 5

1 1 .9 0 1 0 .0 6 3 5 if 3 5 7 5
9 .5 0 1 if 7 5

ϕ
ϕ ϕ

ϕ ϕ
ϕ

≤ °⎧
⎪ − − ° ≤ ≤ °⎪Φ = ⎨

− − ° ≤ ≤ °⎪
⎪ ° ≤⎩

The shape of the tropopause and the eddy diffusion coefficients L and M are plotted in Figure 1
and Figure 2 respectively.

Fig. 1. The eddy diffusion
coefficient L in km2/h. The
white line represents the
tropopause.

We concentrate in two cases, namely an upward flow with κ = 0 and the boundary conditions
(9) and (10) with kz = 5×10-4 km/h (modeling CFC flow) and a downward flow with κ = 4×10−4 h−1

and boundary conditions (9) and (11) with the ‘‘absorption’’ coefficient at the lower boundary kB = −3.5×10−3

km/h (modeling ClOx flow). In both cases the prescribed boundary flux density is normalized to ±1.
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Stationarity is achieved by applying (14) over a sufficiently large time interval, until the computed
values do no longer change significantly in time (nearly 19,000 iterations were needed in the ‘‘CFC
case’’ and nearly 30,000 iterations were needed in the ‘‘ClOx case’’). We shortly describe how the
discrete solutions look like: In the ‘‘CFC case’’, along vertical lines, the mixing ratio decays upwards
in a nearly piecewise linear fashion, from values near 9 units at the lower boundary to values near
2 units at the upper boundary, with rather small differential quotients in the troposphere (0.05 units
per km near the equator to 0.04 units near the pole), and larger ones in the stratosphere (from 0.8
to 0.5 units per km); along horizontal levels one sees a maximum of the mixing ratio at the tropopause.
In the ‘‘ClOx case’’ there is an exponential decay downwards of the tracer’s mixing ratio by factors
between 0.5 per km (near the equator) and 0.6 per km (near the pole). In the troposphere the decay
is much smaller (from 0.85 to 0.9 per km); along horizontal levels one sees a minimum of the mixing
ratio at the tropopause.

Since the exact solutions are not known, we improve the numerical approximations by reducing
the step sizes to ∆y/3 and ∆z/3  first and to ∆y/9 and ∆z/9 then, and estimate errors by comparison
to the next more accurate case. Differences in percentage from the discrete solutions for the
downward flow are shown in Figure 3 and Figure 4, and for the upward flow in Figure 5.

In observing the errors shown in Figures 3, 4 and 5, it should be kept in mind that these are global
errors as propagated from their source points to the point considered in the figure and do not simply
reflect the local errors at the points of the grid. In the 1-D case, by evaluating Green’s function and
relating it to the solution, in the ‘‘ClOx case’’, one can show also theoretically (see Appendix), that
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locally generated relative errors are propagated essentially downwards whereas the influence
upwards decreases exponentially. In the ‘‘CFC case’’ the relative influence is rather constant
downwards and weakly decreasing upwards. We observe a similar behavior in the 2-D case.

Fig.  3.  Difference  in percentage from the approximations of the stationary solutions of equations (5), (9) and
(11) (ClOx-case) computed with stepsizes ∆ϕ = 10°, ∆z = 1.8 km versus the case with ∆ϕ = 10°/3 and ∆z = 0.6
km. The white line represents the tropopause.

A consequence of this behavior is that, in spite of the fact that relative local errors are much
larger in the stratosphere than in the troposphere because of larger variability of the solution there,
the maximum of relative global errors lies in the troposphere where all errors propagated into.

5. Conclusions
The examples treated with our simplified model suggest that an upward flow without chemical
reactions as typical for CFC, is rather insensitive to the large gridsize of the conventional treatment
of the tropopause region (Fig. 5).

For a downward flow with reaction, as typical for ClOx, large relative errors will occur already
in the lower stratosphere (Fig. 3), since the equilibrium between diffusion and chemical destruction
leads to a nearly exponential distribution of the mixing ratio in which the values in vertically neighboring
cells differ by a factor between 2 and 4, in our example. If this is to be avoided, shortening of the
meshsize is necessary (Fig. 4).
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Fig. 4. Difference in percentage from the approximations of the stationary solutions of equations (5),
(9) and (11) (ClOx-case) computed with stepsizes ∆ϕ = 10°/3, ∆z = 0.6 km versus the case with ∆ϕ = 10°/9
and ∆z = 0.2 km. The white line represents the tropopause.

Fig. 5. Difference in percentage from the approximations of the stationary solu-tions of equations (5),  (9) and
(10) (CFC-case) computed with stepsizes ∆ϕ = 10°, ∆z = 1.8 km versus the case with ∆ϕ = 10°/3 and ∆z = 0.6
km. The white line represents the tropopause.
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( )( ) ( )( )
( )( ) ( )( )

exp exp if
( )

exp exp if z

S S Tp S S Tp Tp

T T Tp T T Tp Tp

A z z B z z z z
u z

A z z B z z z

µ µ

µ µ

⎧ − + − − ≥⎪= ⎨
− + − − ≤⎪⎩

We conclude that for some tracers the jump of the coefficients at the tropopause can introduce
remarkable errors in the discretizations, which propagate mainly into the troposphere.

In order to study the exchange processes at the tropopause, or, the impact of aircraft emissions,
a careful numerical treatment of the jump effects near the tropopause must be achieved in the
models; either shortening of the meshsize, or, a completely consistent treatment as in the Ritz-
Galerkin finite element solution, eventually with triangular elements, may be the better way.

Finally, we conclude that even if we agree that important uncertainties of air chemistry models
stem from the performance of the underlying dynamical model (Austin et al., 2003), it must also be
kept in mind, that the numerical treatment itself can introduce significant errors in the models output
if the gridsize is not chosen adequately.

Further work should treat extensions of our simple model by introducing advection with a realistic
meridional circulation, including spherical geometry and variable air density. Also the spatial-seasonal
variation of eddy diffusion has to be taken into account in order to achieve a realistic picture.
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Appendix: The 1-D case
The only dimension considered here is the altitude z. The vertical exchange coefficient M is called
K in this case. The subscript S refers to the stratosphere, whereas T refers to the troposphere. The
lower boundary of the domain is z = 0 or = 2 km respectively, the tropopause is assumed to be at at
z = zTp = 9 km  or  z = zTp = 11 km, and the upper boundary of the domain is at  z  = Z  =  21.6 km
or  z = 23.6 km. The values used for the exchange coefficientes are KS = 1.5 × 10-3 km2/h and
KT  = 3 × 10-2 km2/h.

We further introduce the thicknesses of the stratosphere and of the troposphere:  HS  = Z – zTp = 12.6  km
and  HT  =  zTp =  9 km. The chemical reaction constant is κ = 4 × 10-4/h  in the ClOx case (as with
2-D ), and  κ = 0  in the CFC case. The upper and lower boundary conditions are the same as in the
2-D case.  From the differential equation there result the exponential coefficients for the solution:
µs = √ κ/Ks = 0.516  and µT  = √κ/KT  =  0.1155. The boundary value problem can be solved exactly.

For the mixing ratio u  we obtain in the ‘‘ClOx case’’ the following solution:
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The constants are given by AS = 1.938,  BS= −1.231, AT = 0.707, BT = − 4.42 × 10-4.  At the upper
boundary, the BS -term can be neglected and we obtain u (Z) = 1.291 × 103. Going downward we
observe a fast decline of the solution corresponding to the AS-term until near the tropopause where
the BS-term comes into play.  At the tropopause we have  u (zTp) = 0.707, and then a slow decline
until we reach u (0)  = 0.248 at the lower boundary.

We now proceed to the Green’s influence function G(z ; ζ) from a unit source at z = zTp + ζ.  If
the source is in the troposphere (i.e. ζ < 0) we obtain

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

exp exp if

( , ) exp exp if

exp exp 0 if

P P P

P P P P

P P P

s s T S S T T

To T T To T T T T

Tu T T Tu T T T

A z z B z z z z

G z A z z B z z z z z

A z z B z z z z

µ µ

ζ µ µ ζ

µ µ ζ

⎧ − + − − ≥
⎪
⎪= − + − − ≥ ≥ +⎨
⎪
⎪ − + − − − +⎩

with
AS = εS  BS , ATo = 0.3883 ∗ BS,

BTo = 0.6117 BS , BTu= εATu ,ε = − 6.25 × 10-4, εS = 2.25 × 10-6, BS = D1 ATu / C1,

C1 = 0.3883 exp(µT ζ) + 0.6117 exp(−µT ζ ), D1 = exp(µT ζ ) + ε exp(− µT ζ ),

ATu = 2.89 × 102/(D2 + D1 C2 / C1),

C2 =  − 0.3883 exp(µT ζ) + 0.6117 exp(−µT ζ ), D2 = exp(µT  ζ) −ε exp(−µT ζ)

Due to the dependence on ζ  a further simplification is not possible. Note, however that 1 ≥  exp
(µT  ζ ) ≥ 0.353 and 1 ≤ exp(−µT  ζ  ) ≤ 2.83.

We observe that at the upper boundary the two terms are equal. Going downwards the BS-term
dominates and grows down to the tropopause. Also in the troposphere above the source point, the
BTo-term dominates the ATo-term such that we have further growth there. Below the source point,
however, the ATu-term is dominating causing a decrease of the function G downwards. This shows
that the influence of an error in the troposphere relative to the solution remains about constant in the
downwards direction whereas it declines in the upwards direction.

If the source is in the stratosphere ( i.e. ζ > 0 ) we obtain

( )

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

exp exp if

; exp exp if

exp exp if

So S Tp So S Tp Tp

Su S Tp Su S Tp Tp Tp

T T Tp T T Tp Tp

A z z B z z z z

G z A z z B z z z z z

A z z B z z z z

µ µ ζ

ζ µ µ ζ

µ µ

⎧ − + − − ≥ +
⎪
⎪= − + − − + ≥ ≥⎨
⎪
⎪ − + − − ≤⎩
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with
ASo = εS BSo, BT = ε AT , ASu = 4.476  γ1  AT,

BSu = −4.476  γ2  AT , γ1 = 0.6119, γ2 =  0.3887,

BSo = 0.646 × 103  exp ( µS  ζ ) – 0.410 × 103 exp (−µS  ζ )
AT = 0.2358 × 103 (exp (−µS  ζ ) + εS exp ( µS  ζ ) ).

Again, a further simplification is not possible, but note that

1 ≤ exp ( µS  ζ ) ≤ 6.66 × 10²,  1 ≥ exp (−µS ×ζ ) ≥ 1.50 × 10−3.

We have a similar behavior as in the case of the source point in the troposphere, but between the
source point and the tropopause the function G is decreasing downwards. The statement about the
relative error remains unchanged.

In the special case ζ = 0 we can simplify:

( )
( )

, if
( )

, if
S S Tp Tp

T T Tp Tp

A B z z z z
u z

A B z z z z

⎧ + − ≥⎪= ⎨
+ − ≤⎪⎩

( )
( )( ) ( )( )
( )( ) ( )( )

exp exp
, 0

exp exp

S S Tp S S Tp Tp

T T Tp T T Tp Tp

A z z B z z if z z
G z

A z z B z z if z z

µ µ

µ µ

⎧ − + − − ≥⎪= ⎨
− + − − ≤⎪⎩

with
AS = 5.31 × 10-4,  BS = 2.36 × 10² = AT , BT = −0.1475.

This function declines from the tropopause height zTP to both sides exponentially. Relative to the
solution of the original problem this means that the influence of an error at the tropopause remains
constant down to the lower boundary whereas it declines very fast in the upward direction.

In the ‘‘CFC case’’, because of missing chemical reaction, the solution is piecewise linear. We
have

From the simple differential equation, and the boundary and matching conditions we obtain
AS = AT = 1.04 × 104,  BS = − 6.67 × 10²,  BT = − 3.33 × 10¹

and hence,
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u( z = 0 ) = 1.07 × 104, u( z = zTP) = 1.04 × 104, u ( z = Z ) = 0.2 × 104.

The Green’s function for this problem is treated with a similar ansatz, however splitted at  the
source point:

If ζ > 0 then

⎩
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with
ASo = 1.04 × 104, BSo = − 6.67 ×102,  ASu = 10.4 × 103 – 0.667 × 103 × ζ  = AT ,  BSu = BT = 0,
hence
G(0; ζ ) = G(zTp;ζ) = G(zTp+ζ; ζ ) = 10.4 × 10³ − 0.667 × 10³ × ζ, G(Z; ζ ) = 2.0 × 10³.

Relative to the above solution one sees that below the source point the influence of an error is
reduced, the more the larger ζ, whereas above the source point it remains constant.

If ζ < 0  then

with
AS =10.4 × 103= ATo , BS = − 6.67 × 102, BTo= −3.33 × 101, ATu= 10.4×103 −0.033×103× ζ , BTu= 0,
hence
G(0; ζ )= G(zTP+ ζ; ζ ) = 10.4 ×10³ − 0.033 × 103, ζ, G(zTP ; ζ )= 10.4×103 ,G( Z; 0)= 2.0 ×10³.

Relative errors behave analogously to the case ζ > 0, but the dependence on ζ  is weaker.
Eventualy, for z = 0, we obtain

( )
( )
( )

,
,

,
S S Tp Tp

T T Tp Tp

A B z z if z z
G z

A B z z if z z
ζ

⎧ + − ≥⎪= ⎨
+ − ≤⎪⎩



171Gridsize induced error in the discretization of exchange processes at the tropopause

with
AS  = 10.4 × 103 = BS = − 6.67 × 102,  AT = 10.4 × 103, BT = 0,

hence
G (0 ; 0) = G(zTP ; 0) = 10.4 × 103, G (Z ; 0) = 2.0 × 103.

We see that the relative error remains nearly constant over the whole domain.
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