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RESUMEN
Se ha demostrado que la medida del factor de reflectividad del radar como 10 log10 Z adolece de cierta 
inhomogeneidad, al no ser adimensional el argumento del logaritmo. En consecuencia, la medida en 
dBZ depende de las unidades utilizadas para medir Z. En su lugar, se propone una expresión del tipo 10 
log10 (Z/Z0). Una elección adecuada de la constante Z0 (10-18 m3) hará que esta redefinición no afecte a las 
medidas realizadas y publicadas hasta la fecha, pues el resultado en dBZ será exactamente el mismo. Se 
ha intentado buscar un significado físico a Z0 en relación con los parámetros característicos de la lluvia. 
Podría ser un indicador de la precipitación mínima apreciable registrada en un día, pero esto no puede 
extrapolarse a todos los tipos de precipitación. Sin embargo, sí se puede afirmar que, para una distribu-
ción concreta de tamaños de hidrometeoros, proporciona una referencia física en términos del número y 
volumen de las gotas de lluvia.

ABSTRACT
Measuring radar reflectivity as 10 log10 Z is inhomogeneous, since the argument of the logarithm is not 
dimensionless. Consequently, measurements in dBZ depend on the units used to measure Z. This study, in 
contrast, suggests an expression of the type 10 log10 (Z/Z0). An adequate selection of the constant Z0 (10-18 
m3) will produce a redefinition that will not affect the measurements that have already been carried out and 
published up to now, since the result in dBZ will remain unchanged. A physical meaning has been searched 
for Z0 in relation with parameters typical for rain. It could be considered as an indicator of the minimum 
daily precipitation, but this cannot be extrapolated to all types of precipitation. However,  it may be affirmed 
that for a specific distribution of hydrometeor sizes, Z0 provides a physical reference in terms of the number 
and volume of raindrops.

Keywords: Precipitation, Z-R relation, Marshall and Palmer distribution.

1. Introduction
A meteorological radar is an active instrument of teledetection which operates on the basis of the 
emission and reception of electromagnetic waves in the range of microwaves. The microwaves 
cover the electromagnetic spectrum from 10-1 to 103 GHz, although the most commonly used radar 
frequencies lie between 1.5 (L-band) and 94 GHz (W-band). Frequency is a physical variable 
applicable exclusively to waves, unlike wavelength l which depends also on the medium index of 
refraction n. In the atmosphere (n ≈ 1) the wavelengths which correspond to the radar frequencies 
mentioned above lie between 0.3 and 20 cm.
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Radiation, when emitted to the atmosphere, interacts with cloud systems and a small amount 
of the energy is backscattered by the target and then detected by the radar. The analysis of the 
difference between the radiation released and the one received provides physical information about 
the meteorological target. The so-called meteorological radar equation represents the averaged 
power Pr measured by an antenna which can be expressed as:

where the constant C depends on the technical characteristics of the radar, r is the radar-target 
distance, L represents the attenuating features between the radar and the target, and η is called 
reflectivity. This variable is a function of the number N of the scattering elements per volume unit 
inside the cloud and of their physical properties. As a result, the power detected depends on the 
characteristics of the radar, the target and also on the medium between them.

Under the Rayleigh (1871) approximation, a new variable Z may be defined called reflectivity 
factor so that:

η =K λ−4Z

where K is a constant that depends on the units used. In fact, in radar meteorology, the useful variable 
is the equivalent reflectivity factor Ze, which is the reflectivity of a spherical liquid hydrometeor 
satisfying Rayleigh’s approximation and backscattering a signal of the same power as that which 
is effectively backscattered. Indeed, the nature of the hydrometeors inside the volume of resolution 
is in general not known. In this context, η = K λ-4Ze. For practical reasons, Ze is symbolized by Z 
and called reflectivity factor or simply reflectivity for the purposes of brevity (and perhaps because 
the term factor is not an appropriate name, instead of coefficient).

It is well known that the reflectivity factor of a number N of scattering elements per volume 
unit inside a cloud with size Di is:

Z = Di
6

i=1

N

∑

In fact, because hydrometeors are not perfectly spherical in shape (Brandes et al., 2002), 
size Di is the equivalent diameter of a sphere that occupies the same volume as the hydrometeor 
considered. If N elements are classified into N’   different classes (index j), each of them having nj 
hydrometeors of size Dj, the equivalent reflectivity factor is:

Finally, in continuous form, if n(D) is the number of scattering elements per unit of volume 
and size, then:

Z = nj Dj
6

i=1

N ′

∑ ⋅

Z = n D( )D6dD∫ (1)

.
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where the integral extends to all the sizes (equivalent diameters) of the elements. In other words, the 
integration extends from the minimum diameter to the maximum one. However, from a technical 
point of view, if the analytic form of n(D) is known, it can be easier to calculate the integration between 
0 and infinity. Accepting this implies the possibility of ignoring the value of this integral between 0 
and the minimum diameter, and between the maximum diameter and infinity. In any case, taking the 
integration limits from one side or the other does not have any influence on the aim of this paper, 
so this issue will not be discussed here any further.

From the relations described above it may be implied that, under the Rayleigh approximation, 
the reflectivity factor Z is independent of wave frequency: it depends exclusively on the number of 
scattering elements and their sizes. In other words, the reflectivity factor Z is a typical feature of the target. 
Because of this, this variable is generally preferred to reflectivity η, and it is also used more often.

The reflectivity factor Z is one of the most widely employed radar-related variables. Nearly all 
useful parameters such as water content or precipitation rate actually derive from the equivalent 
reflectivity factor. It is also very frequent to search for relations between Z and these parameters. 
These relations reveal the type of hydrometeor and the convective or stratiform nature of  
precipitation.

However, the reflectivity factor Z may take on values over about 10 orders of magnitude. Thus, 
a logarithmic scale is used for Z. This change in the scale is to blame for a certain inhomogeneity 
which will be the focus of this study.

2. A consistent definition of reflectivity factor
Reflectivity factor Z shows a wide range of variation. In the case of severe precipitation, for example 
hail, Z generally takes on values of 30,000 mm6 m‑3 and more, although there are registered cases 
of hail with Z values of around 4,000 mm6 m‑3 (Castro et al., 1992; Fraile et al., 2001; Fernández-
Raga et al., 2009). Values over 100,000,000 mm6 m‑3 most probably correspond to large solid 
obstacles and not to precipitation. On the other limit of the scale, Pujol et al. (2007) have found Z 
values as low as 0.00001 mm6 m‑3 in warm clouds.

This wide range of values has resulted in the use of a logarithmic scale, which permits to contract 
the scale and, therefore, is more manageable for practical purposes. A traditional definition of the 
reflectivity factor (Battan, 1973; Rogers and Yau, 1989; Sauvageot, 1992; Rinehart 1997; and 
many others) reads as follows:

10 log Z, 
measured in dBZ. Here, and in the rest of the article, the term “log” refers to the logarithm function 
in base 10. 

From the point of view of dimensional analysis, this definition is not consistent because of 
the dimension of Z (L6 L‑3 = L3, where L is length). The application of the logarithmic function 
(like for trigonometric functions, or the exponential one) requires a dimensionless argument. As 
a consequence, the result depends on the units chosen for Z. This does not seem to be a practical 
problem, as in the radar literature Z is always measured in mm6 m‑3, so that many authors seem to 
comply with this formal inhomogeneity.
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Nonetheless, the inhomogeneity of the logarithmic definition of the reflectivity factor is not 
taken into account when establishing other definitions related to the first. For example, Pujol et al. 
(2005) use differential reflectivity as:

where Zh and Zv are the horizontal and vertical reflectivities, respectively. These same authors use 
the linear depolarization ratio as:

LDR =10log Zhv
Zhh

where Zhv and Zhh are the vertical and horizontal reflectivities of the backscattered signal, whereas 
the incident radar wave was horizontally polarized. In both definitions the coherence is respected 
since the numerator and the denominator have the same dimensions.

Bearing this in mind, we suggest a redefinition in order to re-establish the coherence of the 
equality, as is done for studying, for example, sound waves and the intensity expressed in decibels 
(Alonso and Finn, 1992). A more accurate definition would be:

10 log (Z/Z0). 
Of course, to preserve the numerical results obtained with the classical definition, the value for 

Z0 must be 1 mm6 m‑3. This value for Z0 is 1 mm3, or, in the International System of Units,

Z0 = 10‑18 m3.

This redefinition puts reflectivity decibels (dBZ) on the same level as the other decibels used 
in scientific literature. From the Weber-Fechner Law, which relates the magnitude of a physical 
stimulus to its perception (Fechner, 1860), it became more common to use the logarithmic scale 
to measure variables taking on values of several orders of magnitude. 

Today many variables are commonly measured on a logarithmic scale, particularly in decibel: 
power, intensity, amplitude, gain, noise, etc., in many different fields of physics, such as optics, 
acoustics, electronics and other technological applications. Even other scales, such as the Richter 
(1935) scale, which quantifies the seismic energy released by an earthquake, is also logarithmic, 
although it does not use the decibel as the unit of measurement. In any case, all these scales express 
the magnitude of a physical variable in relation to a reference level, i.e., they all take the form of 
the logarithm of a dimensionless fraction whose denominator is precisely the reference established. 
The idea put forward here is to maintain homogeneity in the measurements of radar reflectivity.

3. Interpretation of Z0

As stated above, Z and Z0 have volume dimensions. In fact, the values mentioned for hail (45 dBZ) 
and for obstacles (80 dBZ) represent reflectivities of about 3 × 10-14 m3 and 0.1 mm3, respectively.

Clearly, Z0 can be called the reflectivity factor threshold (which is also a volume threshold), 
because, for a radar resolution volume, when Z = Z0, the logarithmic value is zero, and when Z < Z0 
the amount in (1) takes on negative values.

(2)

ZDR =10log Zh
Zv

(3)
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Writing the reflectivity factor Z in a continuous form, i.e. when N is the total number of drops 
per unit of volume and f (D) is the probability density function (PDF) it reads as follows:

Z = N D6 f (D)dD
0

∞

∫

which is equivalent to substituting n(D) in Equation (1) for N f (D). Considering a Marshall and 
Palmer (1948) (hereinafter referred to as MP) exponential distribution, and taking the PDF as f (D) = 
βe‑βD (Fraile and García-Ortega, 2005), parameter Z is:	

Z = N D6βe−βDdD = Nβ −6Γ(7)
0

∞

∫

What represents the value Z0 in Equation (3)? What does it physically mean? From Equation (4), 
when the value of Z is Z0, the number (or, better, the concentration) N of drops is only a function of 
β, as can be seen in Figure 1. Parameter β has some peculiar features: it is always positive and its 
dimensions are L-1, so that the argument of the exponential function is dimensionless. In addition, 
because the PDF is normalized, β represents simultaneously the value that the PDF has at the 
beginning and the speed of its drop.

There are different ways to calculate β (Fraile et al., 2009). The values of β corresponding to 
the most frequent precipitation intensities R (mm h-1) are represented on the abscissas of Figure 1. 
This has been done on the basis of the most common β - R relations, which are of the type b = A 
RB. The traditionally accepted values of the parameters are A = 41 cm-1 (mm h-1)-B and B = -0.21 
(Marshall and Palmer, 1948). However, the literature mentions values of A ranging from 30 in 
the case of storms (Joss et al., 1968), and even from 27 (Benett and Fang, 1984), to 57 for drizzle 
(Joss et al., 1968). As for B, the range of values lies between -0.258 (Uijlenhoet and Stricker, 
1999) and -0.21.

With the values of A and B mentioned above we may obtain the approximate range of b for the 
various precipitation intensities. If we consider the two extremes of precipitation intensity, we have 
R = 0.1/24 mm h-1 (that is, 0.004 mm h-1, which is a negligible intensity of rain) as the minimum 
value. To determine a maximum value of R we have checked the records of intensities published 
by Galmarini et al. (2004) and by Dunkerley (2008), who report several cases of intensities higher 
than 500 mm h-1. The absolute maximum is over 2,000 mm h-1 during one minute. This value was 
registered on November 26, 1970 in Guadalupe. In these cases, the β values range between 380 
and 23,000 m-1. This range of values comprises the interval between 1,330 and 4,300 m‑1, which 
is the most frequent, according to Coutinho and Tomás (1995).

The area under the curve in Figure 1 represents the condition Z < Z0: the reflectivity factor 
defined according to Equation (2) takes on negative values in that region.

(4)

where Γ is the factorial or Euler gamma function, defined as:

Γ s( ) = t s−1e−tdt
0

∞

∫



380 R. Fraile and M. Fernández-Raga

Equation (4) provides different possibilities for relating the variables Z, β and N. For example, 
for a given value of β, when Z = Z0, the result is that Z0 = N0 β

-6 
Γ(7), so, using Equation (2) Z = 10 log 

(N/N0). In this case, Z0 is the equivalent reflectivity factor of a given number (N0) of hydrometeors. 
Therefore, it may be seen directly that if N > N0, Z > Z0 and if N < N0, Z < Z0. Another possibility 
is to fix N and determine the corresponding value of β. In this case, it would also be possible to 
refer to a β0. 

All of the possible relations between the three variables are displayed in Figure 2. Here we 
may see the surface of Equation (4), namely Z as a function of β and N. One can use for example 
a relation between Z and β for a given value of N. The figure shows the curve corresponding to N 
= 100 dm-3, which is one of the limits of the surface. Another example is that of the curve Z = Z0 
which according to Equation (2) is equivalent to the line of 0 dBZ, indicated with a thicker line).
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Fig. 1. Relation between the concentration 
N of drops and β, the parameter of the 
exponential distribution, when Z = Z0. 

Fig. 2. 3-D image of the surface Z = Z (β, N). A 
thicker line is used to indicate the curve Z = Z0 which 
corresponds to a reflectivity of 0 dBZ according to 
Equation (2).

Figure 3 represents the liquid water content (LWC: mass of liquid water in the unit of volume 
of air) as a function of the concentration N of drops when the reflectivity factor for the sampled 
volume is Z0. The curve of Figure 3 is a square root, since taking Equation (4) for Z = Z0:

V = N π
6

D3 f (D)dD
0

∞

∫ = N π
6

D3βe−βDdD
0

∞

∫ = N π
6
β −3Γ(4) = Nπβ −3

Another interesting question refers to the volume V of liquid water represented by Z0. Considering 
that drops follow the MP distribution, the volume of liquid water per unit of volume of air is the 
integral of f (D) multiplied by the volume of each drop, that is,
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Over the curve in Figure 3, the reflectivity in that parcel will be Z  > Z0 and the reflectivity factor 
defined as in Equation (2) will be positive.

V = A N1/2

where

Fig. 4. Relation between the liquid water 
content (liquid water mass per unit of sampled 
volume of air) and β, the parameter of the 
exponential distribution, when Z = Z0.

Fig. 3. Relation between the liquid 
water content (liquid water mass per 
unit of sampled volume of air) and the 
concentration N of drops, when Z = Z0. 

A = πZ0
1/2

Γ(7)

The representation of the LWC as a function of β is shown in Figure 4 in logarithmic scales. 
As in the previous figures, to the left of the line we have Z > Z0 and the reflectivity factor defined 
as in Equation (2) will also be positive.

Finally, the relation between Z0 and the precipitation intensity was analyzed. In studies carried 
out with meteorological radar it is common to make use of empirical relations extracted from the 
scientific literature (Blanchard, 1953; Jones, 1956) to estimate the precipitation intensity. Again 
following MP, we establish a relation Z-R as:

Z = 200 R1.6

where R is the precipitation intensity in mm h-1 and Z the reflectivity in mm6 m-3.
Because Z0 = 1 mm6 m-3, the value of the associated precipitation intensity will be R = (1/200)1/1.6 = 

0.036 mm h-1, which for a whole day is less than 1 mm (more precisely 0.875 mm).
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In radar meteorology the MP relation is not the only employed. In the past twenty years or 
so, many other relations have been suggested. For example, Uijlenhoet and Stricker (1999) have 
warned against the inconsistency of the MP relation and have obtained a different one using the 
same hypotheses. Lee et al. (2007) have found in a storm in Canada the relation Z = 206 R1.55, 
even though the climatologic relation in Montreal is Z = 210 R1.47. Comstock et al. (2004) have 
claimed that the exponent of R may vary between 1 and 1.5 (they also found a value of 0.9). Lee 
et al. (2004) have found for this parameter an interval from 1.65 to 2.08 for stratiform rain (Z = 
366 R1.75) and from 1.20 to 1.42 for convective rain (Z = 414 R1.35). Finally, Lee and Zawadzki 
(2005a, b) have reviewed the variability of Z-R relations by presenting the various values taken 
on by these two parameters. 

Taking into account the extreme values obtained by the authors mentioned above, it may be 
said that the precipitation intensity associated to a reflectivity of Z0 lies between 0.006 and 0.06 
mm h-1, which would amount to a total daily precipitation (24 h) of slightly over 0.1 and 1.5 mm. 
This is, of course, a very small amount. However, we may not state as a fact that Z0 represents the 
reflectivity factor threshold for negligible daily precipitation because this depends on the most 
adequate Z-R relation for each type of precipitation.

Raindrop size distribution is not always exponential. It is often the case, especially in small sizes, 
that there are actually fewer drops than expected. Instead of the MP exponential distribution it is 
therefore possible to use the gamma distribution, a well-known alternative in the case of raindrop size 
distributions (Ulbrich, 1983; Brawn and Upton, 2008a), with f (D) = βα Dα-1 e‑βD / G(a)  (Fraile et al., 
1999). It was found that when a = 1 the gamma distribution turns into an exponential distribution.

With a gamma distribution, parameter Z will be, like  Eq (4):

Z = Nβ −6 Γ(6+α )
Γ(α )

V = N π
6

D3 f (D)dD
0

∞

∫ = N π
6
β −3 Γ(α + 3)

Γ(α )

Following the same argumentative line as in the case of the PM distribution, it is easy to 
determine that with the gamma distribution the volume of liquid water will be:

so that for Z = Z0 it is again true that V = A’ N1/2 although now

A'= πΓ(α + 3)Z0
1/2

6 Γ(α )Γ(α + 6)

In these three last equations the same form as the one found for the MP distribution is maintained, 
except in one factor which depends on parameter α of the gamma PDF. 

To estimate the differences between the two distributions we used the values of a which Brawn 
and Upton (2008b) used to describe seven categories of rainfall. In these categories α takes on 
values between 1 and 9.9. In the higher values of α (extreme rain events) N might grow three orders 
of magnitude with respect to the curve shown in Figure 1. At the same time, considering a gamma 
distribution implies that V may grow two orders of magnitude with respect to what was computed 
for the MP distribution. Finally, A’ may triple the value of A in the case of values of a close to 10.
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This strong dependence on the raindrop size distribution does not support a physical significance 
for Z0 in the style of the threshold intensity of the Weber-Fechner Law. However, Z0 provides a 
physical reference in terms of N or V for a given hydrometeor size distribution. This is exactly the 
same as for acoustics or filters in electronics, for instance. The value of Z0 has been put forward 
for practical reasons. A different value of Z0 may have been selected with clearer meteorological 
uses. The problem is that it does not seem to be easy to achieve its acceptance on the part of the 
scientific community after several decades employing a widely-used, though inconsistent, system.

4. Discussion and conclusions
The main conclusion that can be drawn from this study is the proposal that the measurement of 
the radar reflectivity factor as 10 log Z should not be used in this way since the argument of the 
logarithm is not dimensionless, and, therefore, the result depends on the units used to measure 
Z. Using specific units to keep up an inhomogeneous equation is not a solution. We believe that 
dimensional formalism is an important part of physics, facilitating not only the computation but 
also the assimilation of concepts. So, homogeneous relations should be used whenever possible. 
Therefore, in this case we suggest the expression 10 log (Z/Z0), where Z0 has the same dimensions 
as Z. Simultaneously, we suggest that Z0 = 10-18 m3.

From a practical perspective, this redefinition does not affect results, since the logarithm has 
traditionally been applied onto a value of Z measured in mm6 m-3. The value of Z0 has been selected 
in such a way as to avoid variation with the value of the reflectivity factor which has traditionally 
been measured in dBZ.

Finally, the value of Z0 was not found to represent any significant threshold from a physical 
point of view, out of the reflectivity of 1 mm diameter drop in 1 m3. In any case, it could represent 
in very specific circumstances the minimum daily precipitation registered, but this cannot be 
made extensive to all types of precipitation. The main significance of Z0 is to provide a physical 
reference according to the quantity of hydrometeors and their volume, for a distribution given in 
hydrometeor sizes.

In contrast with the definitions of decibel starting from perceptions (such as the above mentioned 
Weber-Fechner Law, where the reference constant is a perception threshold), the definitions based 
on units (such as dBZ) take as a reference a certain unit of measurement with the only aim of 
simplifying the expression of the measurements. 

It would have been interesting to suggest the redefinition of dBZ with a value of Z0 chosen so 
as to be a characteristic threshold. However, after many years using one particular scale, it would 
be rather pretentious that the authors attempt to challenge and modify the value of Z0 used by the 
scientific community, implying a complete change in the scale of measurement. This is not the 
aim of this study. The suggestion of a new definition with a higher mathematical coherence is 
sufficiently relevant.
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