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RESUMEN

La predicción del clima en el Himalaya occidental es una tarea compleja debido a la gran variabilidad de 
-

peñan un papel importante en las simulaciones climáticas, y requieren una representación adecuada en los 

por sus siglas en inglés) para analizar la precipitación estacional en la región del Himalaya: el esquema de 
transferencia biosfera-atmósfera (BATS, por sus siglas en inglés) y el modelo común de la tierra (CLM, por 
sus siglas en inglés), v. 3.5, acoplados con el modelo regional del clima RegCM, v. 4. El análisis abarca 
nueve estaciones invernales diferentes (tres con precipitación excesiva, tres con precipitación normal y tres 

(National Centers for Environmental Prediction, NCEP) del departamento de energía estadounidense se uti-

limítrofes al modelo RegCM se utilizaron parámetros geofísicos similares (resolución de 10 min) a los del 
Mapa Geofísico de Estados Unidos. Se evalúa el desempeño de dos LSPS (CLM y BATS) acoplados con 

están mejor representados en el CLM que en el BATS cuando se comparan con las observaciones. Más aún, se 

espacial y niveles de aptitud (como el nivel equitativo de aptitud y la probabilidad de detección) para evaluar 
las simulaciones del RegCM utilizando ambos LSPS. Los resultados indican que el error cuadrático medio 
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el BATS. El nivel equitativo de aptitud y la probabilidad de detección también indican que el desempeño del 
modelo para simular la escala de la precipitación estacional es mejor con el CLM que con el BATS. En general, 
estos resultados sugieren que el desempeño del RegCM acoplado con el CLM mejora la aptitud del modelo 
para predecir la precipitación invernal (15 a 25%) y la temperatura (10 a 20%) en el Himalaya occidental.

ABSTRACT

Climate prediction over the Western Himalaya is a challenging task due to the highly variable altitude and 
orientation of orographic barriers. Surface characteristics also play a vital role in climate simulations 
and need appropriate representation in the models. In this study, two land surface parameterization schemes 
(LSPS), the Biosphere-Atmosphere Transfer Scheme (BATS) and the Common Land Model (CLM, version 
3.5) in the regional climate model (RegCM, version 4) have been tested over the Himalayan region for nine 
distinct winter seasons in respect of seasonal precipitation (three years each for excess, normal and deficit). 
Reanalysis II data of the National Centers for Environmental Prediction (NCEP)/Department of Energy (DOE) 
have been used as initial and lateral boundary conditions for the RegCM model. In order to provide land 
surface boundary conditions in the RegCM model, geophysical parameters (10 min resolution) obtained from 
the United States Geophysical Survey were used. The performance of two LSPS (CLM and BATS) coupled 
with the RegCM is evaluated against gridded precipitation and surface temperature data sets from the India 
Meteorological Department (IMD). It is found that the simulated surface temperature and precipitation are 
better represented in the CLM scheme than in the BATS when compared with observations. Further, several 
statistical analysis such as bias, root mean square error (RMSE), spatial correlation coefficient (CC) and skill 
scores like the equitable threat score (ETS) and the probability of detection (POD) are estimated for evaluating 
RegCM simulations using both LSPS. Results indicate that the RMSE decreases and the CC increases with 
the use of the CLM compared to BATS. ETS and POD also indicate that the performance of the model is 
better with the CLM than with the BATS in simulating seasonal scale precipitation. Overall, results suggest 
that the performance of the RegCM coupled with the CLM scheme improves the model skill in predicting 
winter precipitation (by 15-25%) and temperature (by 10-20%) over the Western Himalaya.

Keywords: Western Himalaya, land surface schemes, regional climate model.

1.	 Introduction
The Western Himalayan region receives a substantial 
amount of precipitation in the form of snow during 
the winter months (December, January and February 
[DJF]). Precipitation over this region shows a large 
inter-annual variability and is vital for several sec-
tors such as agriculture/horticulture, transportation, 
tourism, hydropower projects and water resources 
and management. Excess precipitation over this 
region causes landslides/avalanches and impacts 
livelihoods and infrastructure. Due to the complex 
orography, nonlinear interactions of land-atmosphere 
processes and insufficient observed datasets, sea-
sonal-scale prediction of precipitation over such a 
heterogeneous region is one of the challenging tasks 
for meteorologists. Since the heterogeneity of the 
mountain region plays a dominant role in modulating 
the regional climate (Pielke et al., 1990; Dickinson, 
1995), an advanced land surface parameterization 
scheme (LSPS) in a model may be able to improve 
the prediction skill over the mountain region.

Henderson-Sellers and Dickinson (1993) found in 
their study that more than 30% of the lower boundary 

conditions for the earth surface are provided through 
land-atmosphere interface in global climate models 
and in the case of regional climate modeling sys-
tems, this percentage can be even higher. Since the 
exchange of momentum and energy between land 
surface and the atmosphere affects prognostic vari-
ables such as surface temperature, precipitation, etc., 
a better representation of surface boundary conditions 
in a model is very important. Ding et al. (1998) ex-
amined the role of different land surface processes 
and found that the efficiency of a regional climate 
model (RCM) in the simulation of precipitation is 
increased when an improved land-surface parame-
terization scheme is used. A few studies have been 
carried out on the impact of different land LSPS in 
the simulation of upper air circulation associated with 
precipitation (Pielke et al., 2003; Singh et al., 2007; 
Dutta et al., 2009; Kar et al., 2014; Tiwari et al., 
2014) over the Indian region. It was found that LSPS 
plays a crucial role in seasonal scale simulation over 
the Indian region. However, most of these studies 
have been conducted for the Indian summer monsoon 
season and so far there are no such studies for the 
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winter season (DJF) examining the role of different 
LSPS in a RCM over the Western Himalayan region.

The main objective of the present study is to eval-
uate the performance of two LSPS, the Biosphere-At-
mosphere Transfer Scheme (BATS) (Dickinson et 
al., 1993) and the Common Land Model (CLM), 
v. 3.5 (Oleson et al., 2008), in the Regional Climate 
Model (RegCM) v. 4 (Pal et al., 2007) to simulate 
winter precipitation and temperature over the Western 
Himalaya.

The remainder of this paper is organized as fol-
lows. A brief description of the model used, including 
characteristics and methodology of the simulation, is 
presented in sections 2 and 3, respectively. Section 
4 describes the results and discusses the sensitivity 
experiments with BATS and CLM. Finally, salient 
features of the study are concluded in section 5.

2.	 Model description
The dynamical core of the RegCM (v. 4) model is 
similar to the hydrostatic version of the mesoscale 
model MM5 (Grell et al., 1994). The RegCM stan-
dard model configuration consists of 18 vertical sigma 
levels in which five levels (at approximately 40, 110, 
310, 730 and 1400 m from surface) are in the lower 
troposphere (within 1.5 km from the surface [Giorgi 
and Bates, 1989]). The radiative transfer package of 
the NCAR Community Climate Model v. 3 (Kiehl 
et al., 1996), the mass flux cumulus cloud scheme 
of Grell (1993) with Fritch-Chappell closure (Fritsch 
and Chappell, 1980) and the nonlocal boundary 
scheme by Holtslag et al. (1999) are used in the Reg-
CM. The land-surface processes are incorporated via 
the Biosphere-Atmosphere Transfer Scheme (BATS) 
(Dickinson et al., 1993) and the Community Land 
Model (CLM) (Oleson et al., 2008) schemes. For 
this study, the span of the model domain is 18-45º N, 
60-95º E. The model domain and the orography 
shown in Figure 1 cover all parts of northwest 
India. A model grid with horizontal resolution of 
30 × 30 km is selected to conduct the simulation 
experiments. As can be seen from the figure, the 
maximum height of the Himalayas represented at 
this resolution is about 5500 m. Most of the sharp 
gradient in the orography of the Himalayas gets 
smoothed out due to the resolution chosen for the 
model. Sinha et al. (2013) carried out a detailed 
study on the role of representation of orography in 
the RegCM3 simulations. A brief on model config-

uration used in this study is also given in Table I. 
In this study, two sets of numerical experiments 
are carried out with different land surface models, 
BATS and CLM.

The BATS land surface parameterization scheme 
is used to describe the role of soil moisture and 
vegetation in the model. It calculates the exchanges 
of momentum, energy, and water vapor associated 
with surface-atmosphere interactions. It has one 
vegetation layer, a surface soil layer, a snow layer 
and 20 vegetation types. The prognostic equations 
for the soil layer temperatures are solved by using a 
generalized force-restore method (Dickinson et al., 
1993). The CLM (Oleson et al., 2008) contains one 
vegetation layer with a canopy photosynthesis-con-
ductance model, 10 unevenly spaced soil layers, five 
snow layers with an additional representation of trace 
snow, and 24 vegetation types. In this scheme, for 
each layer temperature, ice water and liquid water are 
solved explicitly. The CLM uses a mosaic approach 
for capturing land surface heterogeneity within a 
climate model at each grid cell. The main advantage 
of the CLM over BATS is that in the former, a higher 
number of soil layers and vegetation fractions are 
included. The CLM has the ability to include sub-
grid “tiles” with separate water and energy balance 
conducted for each tile. This approach enables the 
representation of various surface parameters (e.g., 
surface temperature, precipitation, fluxes, etc.) in a 
better way compared to BATS (Steiner et al., 2005). 
A brief comparison of these two land surface param-
eterization schemes is provided in Table II.
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Fig. 1. The RegCM model domain used in the present 
study.
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3.	 Simulation specifics and verification method-
ology
Seasonal (winter) precipitation anomalies over 
the Indian areas of the Western Himalayan region 
have been computed using 33 years (1975-2008) of 
observed precipitation data from the India Meteoro-
logical Department (IMD) (Rajeevan et al., 2006). 

For the present study, extreme (excess or deficit) 
precipitation seasons are considered on the basis 
of precipitation anomaly departures by one standard 
deviation or more from its mean. Therefore, within 
these 33 years, there are three years in the category 
of excess precipitation (1990-1991, 1994-1995, 
1997-1998, hereafter referred to as excess years); 

Table I. Configuration of the RegCM4 used in the present study.

Dynamics Hydrostatic

Main prognostic variables u,v t, q and p

Model domain 18-45º N, 60-95º E; res. = 30 km

Map projection Lambert conformal mapping

Vertical coordinate Terrain-following sigma coordinate
Total: 18 sigma levels (five levels in PBL)

Cumulus parameterization Grell with Fritch & Chappell closure

Land surface models Biosphere-Atmosphere Transfer Scheme (BATS)
and Community Land Model (CLM)

Radiation parameterization NCAR/CCM3 radiation scheme

PBL parameterization Holtslag

Table II. A brief comparison between two land surface parameterization schemes (i.e., BATS and CLM).

Category BATS CLM

Land cover/vegetation 
classes

20 vegetation types 24 vegetation types

Surface representation One vegetation layer, a surface soil layer, 
a snow layer

One vegetation layer with a canopy photosynthesis-
conductance model, 10 unevenly spaced soil 
layers, five snow layers with an additional 
representation of trace snow

Soil temperatures 
calculation

Uses a two-layer force-restore model Soil temperature is calculated explicitly by a 
10-layer soil model

Treatment of vegetation 
canopy

Treats all vegetation
within the canopy in the same
manner

The canopy is divided into sunlit and shaded 
fractions as a function of LAI

Calculation of stomatal
conductance and 
photosynthesis rate

No individual calculation is made for 
sunlit and shaded fractions. It does not 
compute photosynthetic rates

Stomatal conductance is calculated for sunlit and 
shaded fractions. Calculation of photosynthetic 
rates is done in this scheme

Treatment of heat and 
roughness length

Heat and water vapor roughness lengths 
are constant

Updates these values over bare soil and snow with 
values from the stability functions

Albedo treatment Uses prescribed values for vegetation 
albedo for both short- and longwave 
components

Uses a modified two stream approach that reduces 
the complexity of a full two-stream albedo 
treatment
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three years in the category of deficit precipitation 
(1996-1997, 2000-1901, 2004-1905, hereafter 
referred to as deficit years), and three years in the 
category of normal precipitation (1988-1989, 1993-
1994, 2003-2004, hereafter referred to as normal 
years). In the present study, these years are consid-
ered to conduct the numerical experiments. Com-
posite analyses have been carried out by computing 
the difference between excess minus normal and 
deficit minus normal precipitation years.

The RegCM model has been integrated from 
November 1 to February 28 (February 29 during the 
leap year) for each winter season. In this study, model 
integration output for the first month (i.e., November) 
is not analyzed as it is considered the model spin up 
time. For each year (excess, deficit and normal), the 
RegCM model is integrated twice with two different 
LSPS; first, coupled with BATS and then coupled with 
CLM, keeping unchanged all the other parameters 
of the model. Initial and lateral boundary conditions 
(LBCs) for the model integration are provided by the 
National Centers for Environmental Prediction-De-
partment of Energy (NCEP-DOE) reanalysis II to 
drive the RegCM model, and the LBCs are updated 
every 6 h. The prescribed sea surface temperature in 
the model is the National Oceanic and Atmospheric 
Administration Optimum Interpolation SST (NOAA-
OI-SST-v. 2) at a 1 × 1º resolution). The geophysical 
parameters are from the United States Geophysical 
Survey (USGS) at a 10’ resolution). The model-sim-
ulated results are validated with the IMD gridded (1 × 
1º) observed precipitation and surface air temperature 
(hereafter simply referred to as temperature) data sets. 
For comparison of the model data with observations, 
model simulated results are interpolated bilinearly to 
the grid points of the observed data.

Statistical analysis such as spatial correlation 
coefficient (CC), root mean square error (RMSE), 
probability of detection (POD), equitable threat score 
(ETS), etc., have been carried out between model and 
IMD data sets. The POD indicates what fraction of 
the observed “yes” events was correctly forecasted. 
It is defined as,

POD = 
H

H + M
	 (1)

where H and M are hits and misses for each category, 
respectively. POD ranges from 0 to 1 with POD = 1 
indicating perfect skill in prediction (i.e., M = 0). 

ETS is a skill metric generally used for yes/no 
forecasting (Gilbert, 1884; Wilks, 1995); it is de-
fined as:

ETS = , where
H – Hλ

(H + M + F – Hλ)

Hλ =
(H + M) (M + F)

T

	 (2)

and M, H and F are the number of misses, hits and 
false alarms, respectively, for each category. Hits due 
to random chance are denoted by Hλ and T is the total 
number of events. ETS varies from –0.33 to 1 with 
ETS = 0 indicating no skill and ETS = 1 indicating 
perfect skill in prediction. Student’s t-test is used for 
statistical significance of the anomaly CC, where 
the critical value of CC is 0.27 at a 90% confidence 
level (CL).

4.	 Results and discussion
The composite analyses of observed gridded tem-
perature and precipitation during the winter season 
for excess, deficit and normal precipitation years 
are presented in Figure 2. It is clearly seen from the 
figure that temperature is comparatively cooler during 
the excess years as compared to normal and deficit 
years over Jammu and Kashmir. It is also seen that 
the seasonal mean temperature is warmer by 1-2 ºC 
during deficit years than in excess years over the 
Western Himalayan region. The range of seasonal 
mean precipitation during excess years is about 4.5 
to 6.5 mm day–1 with a maximum of 6.5 mm day–1 
over Jammu and Kashmir, whereas during deficit 
years the seasonal precipitation range is about 1.5 
to 2.5 mm day–1, with a maximum of 2.5 mm day–1 
over the same region. Therefore, it is noticed that 
excess precipitation years are comparatively cooler 
than deficit precipitation years over the Indian part 
of the Western Himalayan region. In the following 
three sub-sections, the results obtained from the 
simulation of RegCM model with two different LSPS 
are analyzed.

4.1 Spatial distribution of surface air temperature
The simulated seasonal average (DJF) temperature 
from experiments with BATS and CLM within the 
RegCM for nine distinct precipitation years (three 
excess, three deficit and three normal) was examined. 
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It was noticed that the model is able to reproduce the 
mean temperature distribution over the northwest 
India for the composite excess, composite deficit 
and composite normal years reasonably well when 
either of the land surface schemes (BATS or CLM) 
are used (figure not shown). However, the simulated 
temperature in terms of distribution and magnitude is 
better in the CLM experiment than in the BATS when 
results are compared against the observed surface 
temperature data sets.

In order to understand the variation of seasonal av-
erage winter temperature in distinct years, composite 

differences between excess and normal years, as well 
as between deficit and normal years are computed 
and shown in Figure 3. It can be seen from the figure 
that temperature is lower in the observations and in 
both RegCM simulation experiments in the excess 
years as compared to normal years. The left panel in 
Figure 3 shows that the RegCM model with BATS 
simulates a warmer surface by 1-2 ºC as compared to 
the CLM in the difference between composite excess 
and composite normal precipitation years. On the 
other hand, it is found that the area with cooler tem-
perature is located more over the Western Himalaya 
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in the CLM than in the BATS. It can also be noticed 
that the magnitude and distribution of temperature 
differences between deficit and normal years with 
the CLM scheme is better than with the BATS when 
compared with the observed patterns (Fig. 3, right 
panel). The analysis reveals an improvement of 
10-20% in the predictions of seasonal mean winter 
temperature with the use of CLM over BATS. So, 
the results suggest that the model-simulated mean 
as well as the variation in temperature (in terms of 
spatial distribution and magnitude) during the nine 

distinct years are better represented with the use of 
CLM as compared to BATS.

4.2 Spatial distribution of precipitation
The response of the BATS and CLM schemes in the 
RegCM model is examined in terms of precipitation 
simulations in the nine distinct years described earlier. 
Results indicate that the model is able to represent 
the seasonal mean precipitation distribution for 
the composites of excess, deficit and normal years 
reasonably well with both land surface schemes (figure 
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not shown). However, in terms of distribution and 
intensity the model-simulated precipitation is closer 
to observations with the use of the CLM scheme. To 
understand the RegCM model efficiency in simulating 
precipitation during the nine distinct years, the sea-
sonal mean (DJF) composite precipitation differences 
between excess and normal years, as well as between 
deficit and normal years, are computed. Precipitation 
differences are shown in Figure 4. In the precipitation 
difference between excess and composite normal years 
(Fig. 4, left panel), it is seen that the representation 
of precipitation in terms of intensity and distribution 

is better with CLM than with BATS scheme when 
compared to observed differences. The precipitation 
differences between deficit and normal years (Fig. 4, 
right panel) are captured well in both LSPS (CLM and 
BATS) over northwest India, however, the variation 
in precipitation is closer to the observations with the 
CLM scheme than with BATS. The qualitative de-
scription of seasonal precipitation suggests that the 
efficiency of the RegCM model is higher with the 
CLM scheme than with BATS.

The area average of monthly as well as seasonal 
composite precipitation obtained from the IMD 

(c) (f)CLM CLM
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observations and the RegCM (with BATS and CLM) 
simulations were computed and are exhibited in 
Figure 5, which shows that the area-averaged pre-
cipitation is underestimated in both LSPS during 
all of the years (composite of excess, composite of 
deficit and composite of normal years, respective-
ly) at monthly as well as seasonal scale. However, 
the RegCM simulations with CLM are closer to 
observations. An improvement in the precipitation 
magnitude by about 15-25% is noticed with the 
CLM scheme over BATS in the seasonal mean 
simulations. It may be noticed that the improvement 
varies from year to year. During all the months 
and seasons, the efficiency of the RegCM model is 
higher when run with CLM instead of BATS, though 
the rate of improvement is higher in January than in 
other months. The better simulation of precipitation 
with CLM as compared to BATS may be due to the 
inclusion of more number of soil layers and a better 

representation of the vegetation cover in the former, 
as described below.

The vegetation cover over the region of interest 
as used by both LSPS (BATS and CLM) is shown 
in Figure 6. It can be seen from the diagram that 
vegetation cover in the RegCM-CLM simulations 
has a greater spatial coverage over the Indian part of 
the Western Himalaya than the RegCM-BATS. This 
increased vegetation cover in the RegCM-CLM en-
hances precipitation as found in Zheng et al. (2002).

Soil moisture from the NCEP-DOE reanalysis II 
and the RegCM simulations (with BATS/CLM 
LSPS) are shown in Figure 7 for the composites 
of excess and normal years, and deficit and normal 
precipitation years. Observations show positive soil 
moisture over northern India, which is well brought 
out by both LSPS. However, the spatial extent is 
lower in the RegCM-BATS simulation for the com-
posite of excess minus normal years. In the case of 
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the composite difference between deficit and normal 
precipitation years, the spatial extent and intensity 
is closer to observations with the RegCM-CLM as 
compared to the RegCM-BATS simulation. This dif-
ference in model simulation is due to the difference 
in soil descriptions and moisture representations 
between these two LSPS. Therefore, the better 
representation of soil moisture may be the reason 
for a better representation of precipitation in the 
RegCM-CLM simulation.

Sensible heat fluxes from the NCEP-DOE re-
analysis II and the RegCM simulations (with BATS/
CLM LSPS) are depicted in Figure 8 for composites 
of excess minus normal and deficit minus normal 
precipitation years. The composite analysis between 
excess minus normal precipitation years indicates 
that both LSPS show almost similar spatial extents 
of precipitation over the eastern parts of Jammu and 
Kashmir. However, over the western part of Jammu 
and Kashmir, the RegCM-CLM simulation produces 
more wet zones as compared to the RegCM-BATS 
simulation. In the case of composite differences 
between deficit and normal precipitation years, sim-
ulations with both land surface schemes are mostly 
similar.

4.3 Statistical evaluation of precipitation
The performance of the RegCM model with the BATS 
and CLM land surface schemes has been evaluated 

by computing various statistical skill scores. Some 
important evaluation strategies consisted in esti-
mating the RMSE and the CC, between others. The 
model skill scores were estimated against observed 
gridded precipitation data from the IMD over the 
Indian part of the Western Himalaya. The model re-
sults are bi-linearly interpolated to the grid points of 
the IMD observed data for statistical evaluation. The 
RMSE and spatial CC are calculated for both sets of 
runs using CLM and BATS (Table III). It can be seen 
that the CC is statistically significant (the threshold 
value is 0.27 at a 90% confidence level) in the pre-
cipitation simulation with the CLM scheme during 
excess, deficit and normal precipitation years. The 
CC is higher in the CLM experiment (0.39, 0.35 and 
0.37, respectively) than in the BATS experiment for 
all the years in which simulations were carried out 
within this study. The RMSE values of the RegCM 
model are lower when the CLM scheme is used 
in comparison with BATS. This suggests that the 
spatial distribution of precipitation and its intensity 
are simulated better in the RegCM with the CLM 
scheme than with BATS.

Several other skill metrics, such as POD, accu-
racy, ETS, and bias have been estimated for the dis-
tinct precipitation years and presented in Table IV. 
When the observed precipitation is higher than 
or equal to 1 mm day–1, that day is considered 
as a wet day. It can be seen from the statistical 

Fig. 6. Vegetation cover in (a) BATS and (b) CLM land surface schemes.
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analysis that POD values are higher in the CLM 
experiment (0.75, 0.70 and 0.88 for the excess, 
deficit and normal years, respectively) than in the 
BATS experiment for all the three distinct years. 
It is also found that the number of wet days simu-
lated in the CLM experiment is closer to observa-
tions. Furthermore, the accuracy of precipitation 
simulations is higher with CLM than with BATS 
over the Western Himalaya. The computed model 
bias indicates that the precipitation intensity and 
distribution is better represented with the CLM 
(bias is closer to 1). However, the model-simulated 
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Fig. 7. Seasonal (DJF) soil moisture (kg/kg) difference (composite excess – composite 
normal and composite deficit – composite normal precipitation year) obtained from 
observed data (a, d) and RegCM4 model simulation with BATS (b, e) and CLM (c, f).

precipitation is underestimated with respect to 
observations in both schemes. Table IV indicates 
that ETS is higher in the CLM simulations during 
all the years, which indicates that precipitation 
events are better represented with the CLM land 
surface scheme.

Thus, the statistical analysis (forecast errors and 
skill scores) also reveals that the RegCM model with 
the CLM parameterization scheme performs better 
in simulating precipitation for extreme years with 
reasonable accuracy over the Western Himalayan 
region, as compared to the RegCM with BATS.
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5.	 Conclusion
In the present study we compared two different land 
surface parameterization schemes within the Reg-
CM, i.e. BATS and CLM, to simulate nine distinct 
winter precipitation years over the Western Himala-
ya. During the winter months, a notable difference 
between the BATS and CLM experiments is ob-
served in the simulation of temperature and amount 
of precipitation. The performance of the RegCM with 
both LSPS is reasonable in reproducing the mean 
features of seasonal temperature and precipitation, 
however the skill of the model is higher with the 

Fig. 8. Seasonal (DJF) sensible heat flux (W m–2) difference (composite excess – com-
posite normal and composite deficit – composite normal precipitation year) obtained 
from observed (a, d) and RegCM4 model simulation with BATS (b, e) and CLM (c, f).
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Table III. RMSE and CC for excess, deficit and normal 
precipitation years.

Excess Deficit Normal

RMSE BATS 3.448 1.587 2.778
CLM 3.312 1.385 2.529

CC BATS 0.359 0.313 0.351
CLM 0.385 0.352 0.374

RMSE: root mean square error; CC: correlation coefficient.
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Table IV. Skill score for excess, deficit and normal precipitation years for the > 1 mm rainfall category.

Year Land surface scheme POD 1 (0 to 1) Accuracy 1 (0 to 1) Bias 1 (0 to ∞) ETS 1 (–1/3 to 1)

Excess BATS 0.715 0.589 1.502 0.113
CLM 0.747 0.596 1.642 0.182

Deficit BATS 0.693 0.633 1.952 0.071
CLM 0.697 0.711 1.381 0.167

Normal BATS 0.852 0.656 1.458 0.179
CLM 0.876 0.683 1.229 0.187

CLM scheme. Furthermore, temperature and precip-
itation during extreme winter seasons are also better 
captured with the CLM scheme than with BATS 
when compared to observations. As mentioned 
earlier, most of the sharp gradient in the orography 
of the Himalayas gets smoothed due to the resolu-
tion chosen for the model. Similarly, the surface 
characteristics (soil type, soil wetness, vegetation 
cover, etc.) are not properly represented in the mod-
el due to the chosen resolution, as there is a sharp 
gradient in these parameters over the Himalayan 
region. This study suggests that even at this reso-
lution, the RegCM model with CLM and BATS is 
able to reproduce some of the salient features of the 
distinct years examined.

Forecast errors and skill scores indicate that the 
performance of the RegCM model is better with the 
CLM scheme rather than with BATS. Moreover, im-
provements by about 10-20% in temperature and 15-
25% in precipitation predictions are observed with the 
use of the CLM scheme in comparison with BATS. 
In sum, the study indicates that the RegCM model 
with the CLM scheme can be more informative in 
simulating wintertime temperature and precipitation 
over the Western Himalayan region.
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