
Atmósfera 28(3), 179-190 (2015)

Exact solutions of the vorticity equation on the sphere as a manifold

ISMAEL PÉREZ-GARCÍA
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito de la Investigación 

E-mail: ismael@unam.mx

Received November 7, 2014; accepted June 1, 2015

RESUMEN

El propósito de este trabajo es representar las soluciones exactas de la ecuación de vorticidad barotrópica 
sobre la esfera unitaria S2 en rotación 
soluciones generalizadas llamadas modones. Se relacionan los métodos modernos de la teoría de funciones 

correcta, se esclarece la noción abstracta de mapa local, cambio de mapa y atlas. Uno de los objetivos de 
este trabajo es entender mejor la solución de la ecuación de vorticidad barotrópica sobre la variedad S2 y su 

S2, g). Por lo tanto, 
estará disponible un tipo más general de espacio que también puede contener información geométrica y 
analítica sustancial sobre las soluciones a la ecuación de vorticidad barotrópica.

ABSTRACT

The purpose of this paper is to represent the exact solutions of the barotropic vorticity equations (BVE) on the 
rotating unit sphere S2

-
ferentiable manifold. When the differentiable manifold S2 is well understood, the abstract notion of local chart, 
change of chart, and atlases becomes evident. One of the aims of this paper is to better understand the solution of 
the barotropic vorticity equation on the manifold S2 and its usefulness to identify the properties of the solutions 
on the Riemannian manifold (S2, g). Therefore, a more general type of space will be available, which can also 
contain substantial geometric and analytic information about solutions for the barotropic vorticity equation.

Keywords: Rossby-Haurwitz waves, modons, hydrodynamics equation on manifolds, unit sphere, mathe-
matical analysis of barotropic model.

1. Introduction
Let S2 = {x ∈ R3 :| x |= 1} denote the unit sphere 
in R3. The large-scale dynamics of the atmosphere 
on the rotating sphere S2 can approximately be 
governed by the non-linear barotropic vorticity 
equation (BVE), which can be written in the non-di-
mensional form as:

∂ Δ Ψ
∂t

+ J Ψ, Δ Ψ + 2μ = 0 (1)

where Ψ(λ, µ) denotes the stream function, µ = sin 
ϕ = cosθ, –π ≤ λ ≤ π, –  ≤ ϕ ≤ , 0 < θ < π, λ the 
longitude, ϕ the latitude, and θ the colatitude. Δ is the 
Laplace-Beltrami operator on a sphere and J(Ψ, h) 
is the Jacobian.

The following is a solution for Eq. (1) on the 
sphere proposed by Thompson (1982):

Ψ(λ, µ, t) = Yν (λ′, µ′) −ωµ + D (2)
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where (λ′, µ′) are the spherical coordinates rela-
tive to a rotated pole N′ with coordinates (λ0, µ0) 
with respect to the original system, and Yν is an 
eigenfunction of the operator Laplace-Beltrami with 
eigenvalue χν. Verkley(1984) generalized Thomp-
son’s solution and demonstrated that Yν could be a 
set of eigenfunctions that contains more than only 
spherical harmonics. Then Eq. (2) describes a con-
figuration in which the structure Yν moves through 
the zonal flow –ωµ with constant velocity cν and 
without changing size and shape. The pole of the 
primed system N′ that moves along a latitude at a 
constant angular velocity cν is given by

cν = ω − 2(ω + 1)
χν

	 (3)

where χν is an eigenvalue for the spectral problem 
∆Yν = −χνYν. In particular, for spherical harmonics 
Y (λ′, µ′) of degree n corresponding to the eigenvalue 
χν = χn = n(n + 1), Eq.(2) is a Rossby-Haurwitz (RH) 
wave. RH waves have proven to be very useful to de-
scribe the large-scale wave structure of atmospheric cir-
culation in middle latitudes (Rossby, 1939; Haurwitz, 
1940). The solution modon is constructed to divide 
the sphere S2 into two regions (Tribbia, 1984; Verkley, 
1984, 1987, 1990; Neven, 1992): an inner region Si 
centered around the pole N′, and an outer region So 
separated from the inner region by a boundary circle in 
which Ψ, q and its normal derivative Ψ′ are continuous. 
Modons are considered appropriate to describe some 
types of atmospheric blocking events (Verkley, 1990).

Hydrodynamic equations on manifolds were 
studied by Ebin and Marsden (1970), Szeptycki 
(1973a, b), Avez and Bamberger (1978), Ghidaglia 
et al. (1988), Temam (1987) and Ilyin (1993). The 
existence, unicity and regularity of the solution 
for the evolution equation (Eq. (1)) on S2 were 
proven by Szeptycki (1973a, b), Avez and Bam-
berger (1978), Ilyin (1993) and Skiba (2012). Ebin 
and Marsden (1970) dealt with the motion of an 
incompressible fluid on manifolds under a differ-
ential geometric point of view. Problems from the 
transition map between the charts are transferred 
to those of finding geodesics on the group of all 
volume-preserving diffeomorphisms, to which the 
methods of global analysis and infinite-dimensional 
geometry can be applied. 

In this paper we study the manifolds S2 in terms 
of the stream function Ψ for an RH wave which is 

sufficiently smooth and for Wu-Verkley waves and 
modons which are weakly differentiable of higher 
orders. Section 2 deals with the compact differentia-
ble manifold S2 and the way in which functions are 
constructed on this manifold. Section 3 shows the 
types of solutions that will be considered. Another 
aim of this paper is to deepen the understanding of 
the BVE solution on the manifold S2 and its usage 
for deriving the properties of solutions to the man-
ifold (S2, g). The paper concludes with a summary 
in section 4.

2.	 Structure of functions on the manifold S2

In this section we review some basic facts concern-
ing to the manifold S2. We should recall that the unit 
sphere S2 is a compact and connected differentiable 
manifold. Indeed, because S2 is compact it is not 
possible to cover it with only one chart. A chart 
of S2 is then a pair (Ω, ') where Ω is an open subset of 
S2, and ' is a homeomorphism of Ω onto some open 
subset of R2. Let us consider the two charts {(Ω¶, '¶), 
(Ωκ, 'κ)} of class Cp for S2 where every chart cor-
responds to a geographical coordinate group. It is 
possible to define a coordinate chart that covers 
most of S2 by using the standard spherical coordi-
nate map. Let '¶ denote the coordinate function, 
which maps from (x1, x2, x3) to angles (λ, θ) or to 
(λ, µ). The domain of '¶

−1 is the open set defined by 
λ ∈ (−π, π) and θ ∈ (0, π) (this excludes the poles).
The inverse map '¶

−1 yields the parameterization 
x1 = cos λ sin θ, x2 = sin λ sin θ, x3 = cos θ and 
its variation 'κ

−1 yields the parameterization 'κ
−1 

(λ', θ')=(cos λ' sin θ', cos θ', sin λ' sin θ'). The 
domain of 'κ

−1 in the open set defined by λ' ∈ 
(–π, π) and θ' ∈ (0, π). The charts (Ω¶, '¶) and 
(Ωκ, 'κ) correspond to poles N and N′ on the 
sphere S2. N′ might be taken as the point (λ0=− , 
ϕ0 = 0) in the old system and as the angle λ′ in this 
new north pole, so that the new international date line 
is the half circle Γκ = {p ∈ S2: −  < λ(p) < , θ = ,} 
of the old equator in the x1x2-plane, on the front 
where x1 ≥ 0 (Richtmyer, 1981; Skiba, 1989; Pérez-
García, 2001). The international date line, for the 
chart (Ω¶, '¶) is the half circle Γ¶ = {p ∈ S2: −  < 
ϕ(p) < , λ = ± π} in the x1x3 –plane. The chart (Ω¶, '¶) 
covers the sphere except for the set Γ¶, and the chart 
(Ωκ, 'κ) similarly covers the sphere with the ex-
ception of a set Γκ. Hence the two charts {(Ω¶, '¶),  
(Ωκ, 'κ)} together cover S2 and they constitute an atlas. 
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The local coordinates associated with the chart 
(Ω¶, φ¶) are functions '¶: Ωι, → R2, such that for 
p ∈ S2, '¶(p) = ('¶,1(p), '¶,2(p)) = (x¶

1 (p), x¶
2 (p)) 

= (λ(p), µ(p)) and 'κ(p) = (xκ
1 (p), xκ

2 (p)) = (λ′(p); 
µ′(p)) are local coordinates with respect to the chart 
(Ωκ, 'κ) (Fig. 1).

To construct the map '`: S2 → U ⊂ R`
2, ` = ι, κ, 

a bijection with inverse '¶
−1: U¶ → S2 defined as 

'¶
−1(x¶

1,x¶
2)  = ( 1 − (x ¶

2 )2  cos x¶
1,  1 − (x ¶

2 )2 
sin x¶

1, x¶
2), and the 'κ

−1 (x1
κ, x2

κ) = ( 1 − (x∙
2 )2 cos x1

κ, 
x2

κ, 1 − (x∙
2 )2 sin x1

κ), it is seen that every U` is 
open. Hence each Ω`, is an open subset of S2 and 
Ω¶ [ Ωκ cover S2.

Given two charts of the atlas {(Ω¶, '¶), (Ωκ, 'κ)} 
with (Ωκ \ Ω¶) ≠ ;, the transition maps 'ικ = 'κ Î '¶

−1: 
U¶κ → Uκ¶ outline open sets of R2 into R2, where U¶κ = 
'¶(Ω¶ \ Ωκ) and Uκι = 'κ(Ωκ \ Ω¶). This determines 
a differentiable structure for S2, and '¶κ = 'κ Î '¶

−1: 
is a diffeomorphism. It is then said that the atlas is of 
class Ck if the transition functions are of Ck.

Let x be any point of U¶κ, and ('1
¶κ (x), '2

¶κ (x)) the 
coordinate of '¶κ (x); then 'i

ικ (x) is a continuous func-
tion on two variables. Now, if p ∈ Ω¶ \ Ωκ such that 
x = '¶(p), and since '¶(p) ∈ U¶κ, we have the relations

'1
¶κ (x1

¶ , x
2
¶ ) = λ' (λ, µ )=x1

κ (x1
¶ , x

2
¶ )=

tan−1
1− µ 2

o
1− µ 2

sin(λ − λo)
µo cos(λ − λo) − µ

	 (4)

	 (5)
'2
¶κ (x1

¶ , x
2
¶ ) = µ

µµo + 1 – µ2

' (λ, µ ) =

[ ]
x2

κ (x1
¶ , x

2
¶ ) =

cos(λ − λo)1 – µo
2

This is the transformation formula betwen the 
two local coordinate systems (x¶

1, x¶
2) and (xκ

1, xκ
2) 

defined on Ωκ \ Ω¶. To obtain the relations between 
the unprimed and primed coordinate of any point Q 
on the sphere, Verkley (1984) examined the spherical 
triangle NQN' and the application of the cosine rules 
to this triangle, deriving explicit expressions for the 
transformation between the two coordinate systems 
as given by (4) and (5).

Let Ω¶ \ Ωκ ≠ ;, and set J '¶κ as the Jacobian 
matrix of map '¶κ, so we can verify that

det J '¶κ =

1

∂x¶1 ∂x¶2 = 1
∂'¶κ

1∂'¶κ

2

∂x¶1 ∂x¶2
∂'¶κ

2∂'¶κ

Then det J '¶κ > 0. Hence, it is said that if 
manifold S2 is oriented for every pair Ω¶, Ωκ of 
intersecting local coordinate neighbourhoods, det 
J '¶κ > 0.

Indeed we can regard the coordinate as a device 
to decide which of many functions Ã on S2 are to be 
differentiable. Since Ω¶ is just a set, it makes no sense 
to ask that Ã: Ω¶ → R be differentiable (Matsushima, 
1972; Loomis and Sterberg, 1990). However, we can 
consider the map Ψ¶ = Ã Î '¶

−1: '¶ (Ω¶) → R. Then 

'¶ N' 'κ

R
Ψ

Гκ

Гι

µ'

λ'
��

λ

Q

'ικ = 'κ ○ 'ι
–1

'κι = 'ι ○ 'κ
–1

µ

–� –�

N

Ψκ = Ã ○ 'κ –1

Fig. 1. The set {(Ω¶, '¶), (Ωκ, 'κ)} forms an atlas for S2: Ω¶ ∪ Ωκ = S2.
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Ã Î '¶
−1 is a function defined on an open '¶ (Ω¶) ⊂ 

R2, and we know what it means for such a function 
to be differentiable or smooth (see Fig. 1). Consider 
now what happens when we change coordinates to 
some other chart, lets say (Ωκ, 'κ) for convenience, 
assuming that Ω¶ = Ωκ. Then it is possible for Ã Î '¶

−1 
to be differentiable but Ã Î 'κ

−1 is not. To compare 
both, let Ã Î '¶

−1 = Ã Î 'κ
−1 Î ('κ Î '¶

−1) where the map 
'κ Î 'ι

−1 : 'ι (Ωι) → 'κ (Ωκ) is a bijection between 
open subsets of R2. Then a sufficient condition for 
Ã Î '¶

−1 to be differentiable if Ã Î 'κ
−1 is, is that 

'κ Î '¶
−1 is also differentiable. We often write Ψ for 

the composite function Ã Î '¶
−1.

Lets take a curve ¿ : (–1, 1) → S2 with ¿ (0) = p. 
In a local chart ¿ is given by x¶

i = ¿i (t). On the 
manifold S2, one can define a vector U tangent 
to the parametrized curve ¿ at any point p on the 
curve. The tangent vector U is given by a col-
umn vector u whose components u¶

i are d¿i
dt  (0), 

(i = 1, 2), with the initial condition ¿ (0) = p. If we 
use another coordinate system corresponding to the 
chart (Ωκ, 'κ) by {xκ

i} then the tangent vector U is 
given by a column vector v with components vκ

i. Ac-
cording to the chain rule, the column vectors u and 
v are related by vκ

i = u¶
j ∂x

i
κ

∂x j
¶

. The expression u¶
j ∂

∂x¶
j  

is the partial differential operator in the direction of 
the tangent vector.

The space TpS2 is called the tangent space of S2 
at p, and TpS2 is a two-dimensional vector space. For 
each u ∈ TpS2 we shall write u = u¶

i ∂
∂x¶

j  = u1 ∂
∂λ + 

u2 ∂
∂θ, where u¶

i are the contravariant components of 
u. It is well known that on the manifold S2 an inner 
product is defined at each tangent space TpS2. Now 
lets present a basis in which we denote the coordinate 
system corresponding to the chart (Ω¶, '¶) by {x¶

i} = 
(λ, µ), and for any Ã: S2 → R define the vectors ( ∂

∂x¶
j )p 

by ( ∂
∂x¶

j )pÃ = ∂ÃÎ  '–1

( )∂x i
¶ ¶

¶ , so that they are indepen-

dent since ( ∂
∂x¶

j )px¶
j = ± i

j. Let n̂¶ = 1 − (x2
¶ )2 cos x1

¶√( , 
1 − ( )x2

¶ )2 sin x1
¶ , x2

¶√  be the outward normal to S2 
in R3; without any loss of generality we may assume 
that the vectors e ,λ = ∂ n̂ ¶

∂x1
¶

eµ = ∂ n̂ ¶
∂x 2

¶
 form a basis 

for TpS2.
We will denote the vector space of a vector field 

on S2 by Γ(S2). A tangent vector field on S2 is a smooth 
map u: S2 → T S2 such that, for any x ∈ S2, u(x) 
∈ TxS2. At the chart (Ω¶, '¶), for x ∈ Ω¶ the vector 
functions u ∈ TxS2 and v ∈ Γ(S2) have components 
u = u1

p eλ + u2
p eµ and v = v1

p eλ + v2
p eµ, respectively, 

being these ui
p = up(x¶

i) = (uλ, uµ) the components of 
up as the vectors of the unitary base indicated by eλ, 
and eµ in the directions  λ and µ, respectively.

Let us recall that an oriented Riemannian mani-
fold is a pair (S2, g) where S2 is the oriented compact 
manifold and g a Riemannian metric on S2, which 
assigns a length │v│g(p) ∈ R+. The g on S2 is a smooth 
(2, 0)-tensor field on S2 such that for any p ∈ S2, 
gp: Tp(S2) × Tp(S2) → R is a scalar product on the 
tangent space Tp(S2), and in any chart (Ω¶, '¶) of S2, 
its components

gij =
1 −µ 2 0

0 1( )
form a symmetric matrix, with its inverse denoted by 
(gij) = (gij)–1, and g = det(gij) = 1 – µ2. The length of a 
tangent vector v ∈ TpS2 is defined as usual, │v│= gp 
(v, v)½ = (v . v)½. Moreover, the inner product on T 
S2 is given by u . v = giju

iv j, for u, v ∈ TS2.
Let (S2, g) be the smooth Riemannian manifolds 

of S2. Let us now recall some operators arising 
in partial differential equations on the sphere as 
manifold. Given the scalar function Ã : S2 → R, the 
gradient of Ã, is given by the vector field grad Ã: 
S2 → TpS2, for which

12

(gkl ) =∂Ψ ∂Ψ
∂x l

∂
∂x l ∂λ1 – µ2grad Ã  = eλ

1 – µ2+ ∂Ψ
∂µ eµ

∑

where  = 1
1 – µ2 eλ and  = 1 – µ2 eµ.

If u ∈ Γ(S2), the divergence of u is the function 
on S2 which on the chart (Ω¶, '¶) is given by

(u i )∂
∂x i

∂uλ ∂uµ
∂λ ∂µdiv u   = = +∑ i

1
1 – µ2

1 – µ21
g

g

A linear connection D on S2 is a map D: T(S2) ×  
Γ(S2) → T(S2) called the covariant derivative and the 
usual notation for D(U, V) is DUV. Let (Ω¶, '¶) be a 
chart and as one can observe, the vectors (eλ = , 
eµ = ) can be nonconstant. An easy notation is set i 
= D  (e.g. Hebey, 2000). There are smooth functions 
Γk

ij: Ω¶ → R such that for any i, j, and any p ∈ Ω¶,

( )∂
∂x i ∂x jD (p) = (p)Γ ij

k∂ ( )∂xk p
∂
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where Γk
ij are the Christoffel symbols, defined by Γk

ij 
=  ∑2

l=1 gkl(  +  – ). On the chart (Ω¶, '¶), we 
have Γ1

11 = 0, Γ2
11 = –2µ , Γ1

12 = cot θ = , 
Γ2

12 = 0, Γ1
22 = 0 and Γ2

22 = 0
The fundamental operator which we study is the 

Laplacian 4, then for real or complex valued func-
tions, 4 is the Laplace-Beltrami operator on S2 and 
it is given by

∆gÃ = − gij(
2Ã

@x @xi
¶

j
¶

− Γk
ij

@Ã

@xk¶
) =

1
(1 − µ2)

@

@

2Ψ
@λ2 +

∂
∂µ [ ](1 − µ2) ∂Ψ

∂µ

This operator satisfies some properties: ∆g, is sel-
fadjoint, symmetric and non-negative (Aubin, 1998). 
Thus, the operators div, grad and ∆g on the manifold 
S2 have the conventional meaning.

Let (S2, g) be a compact oriented Riemannian 
manifold, with metric g. The metric and the orienta-
tion are combined to give a volume element dvg on 
S2, which can be used to integrate functions on (S2, g). 
In order to apply the integral calculus on the oriented 
manifold S2, we define a volume element to be a two-
form ω = dv which is defined on all of S2. For every 
chart (Ω`, '`) which is consistently oriented with S2, 
the coordinate expresion for ω = dvl is Φldx

1
l Λdx2

l  
where Φl is a partition of unity subordinate to the 
covering {Ωl}, l = ¶, κ.

On the Riemannian manifold (S2, g), at the chart 
(Ωl, 'l); a volume form η = dvg defines a Lebesgue 
measure on S2 by dvg = η = dx1

l  Λdx2
l. Then

S2
Ã            dvg ∑=

l 'l  (Ωl)
(Φl g  Ã) ◦'l

−1 dxl

where dxl = dx1
l dx2

l defines a Lebesgue measure on R2.
Let C∞(S2) denote the set of infinitely differentia-

ble functions of compact support Ã (x). At µ = ± 1 
the functions are smooth, together with the periodic 
boundary condition at λ with period 2π . If we define 
the usual Hilbert space L2(S2) to be the completion of 
C∞(S2) with respect to the inner product

S2
< f, g   > f g   * dvg,=

and norm || f || = {ʃS2 | f |2 dvg}½, g* is the complex 
conjugate of function g. Let (S2, g) be the compact 
Riemannian manifold and dvg the Riemannian 
volume element. Then functional spaces (Sobolev 
and the Holder spaces) can be defined on S2 as well 

(Skiba, 2012). For each p ∈ R with 1≤ p < ∞ we 
associate a Banach space

S2

Lp(S2) = Ã : S2 → R; Ã   measurable and {
}| f |p < ∞ ,

with respect to the norm

S2|| f ||p = | f |p dvg p
1

and ess sup | f | < ∞ if p = ∞. L2(TS2) represent the 
Hilbert space of the vector fields U : S2 → TS2 en-
dowed with the inner product in L2(S2) induced by 
g in Tp(S2) (see Díaz and Tello, 1999; Hebey, 2000).

We now turn to the eigenvalue problems for Δg: 
We usually seek to find all eigenvalues ° for which 
there is an eigenfunction Y such that ΔgY = –°Y. 
Then, which information about geometry of (S2, g) 
is encoded by the eigenvalues?. The structure of 
eigenfunctions: Lp norms and relations to RH waves 
or modons.

Global harmonic analysis is the study of the 
spectral theory of the Laplacian Δg on a compact 
Riemannian manifold (S2, g), and its relation to the 
global geometric structure. Since (S2, g) is compact, 
there exists an orthonormal basis {Yj} of smooth 
eigenfunctions and the spectrum of Δg is a discrete 
set {°0 = 0 < °1 ≤ °2 ≤ °3 ≤ ...}. Recent developments 
show that the non-zero eigenvalues also contain 
substantial geometric and analytic information. The 
solution modon constructed by Tribbia (1984), Verk-
ley (1984, 1987, 1990) and Neven (1993) proposed 
the use of eigenfunctions {Yj} as basic geometric 
structures.

The space of spherical harmonics of degree n on 
S2, which coincides with the eigenspace of operator –
Δg corresponding to the eigenvalue °n = χn = n(n+1), is 
denoted by Hn. Self-adjoint operators have the prop-
erty that its eigenfunctions with different eigenvalues 
are orthogonal, which implies that the eigenspaces 
Hn are orthogonal and have 2n+1dimensions. On 
the sphere, the homogeneous harmonic polynomials 
span the set of all polynomials, which in turn are 
dense in L2. Our spherical harmonics therefore span 
L2. If we take a basis within each eigenspace then 
this collection will give a basis for L2 of the sphere. 
The harmonics spherical term was introduced by 
Kelvin on potentials studies (Hobson, 1931) and is 
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understood as the development of a function in terms 
of this series of spherical harmonics.

The spaces Hn and Hk (n ≠ k) are mutually 
orthogonal in L2(S2). Then there is the orthogonal 
projection Yn : L2(S2) → Hn , and so smooth functions 
Ψ ∈ L2(S2) on the sphere S2 have a development in 
spherical harmonics,

Ψ(λ, µ) = λ, µ)
∞

∑
n =1

Yn (

where Yn(λ, µ) = ∑n
m= –n Ψm

n Ym
n (λ, µ) is the homoge-

neous spherical polynomial of degree n from Hn, and 
Ψm

n = < Ψ, Ym
n > is the Fourier coefficient of Ψ. The 

2n + 1 spherical harmonics

Ym
n (λ, µ) = Cnm Pm

n (µ)eimλ

of degree n and zonal number m (–n ≤ m ≤ n) form 
an orthonormal basis in Hn. Here the numbers 
Cnm are the normalizers in L2(S2), given by Cnm = 
2n +1

4π
(n − m )!
(n + m )! 2

1( ) , and Pm
n are the associated Legendre 

functions given by

P m
n (µ) =

(1 − µ2) m
2

2n n !
dn + m

dµn + m (µ2 − 1)n

Considering that an oriented compact Rieman-
nian manifold is a pair (S2, g) where S2 is the oriented 
compact manifold and g a Riemannian metric on 
S2, we can define in it covariant derivatives and 
various notions of curvature. When a manifold also 
has a group structure (so that multiplication and 
inversion are smooth), a very interesting structure 
called a Lie group (Bihlo, 2007; Bihlo and Popoych, 
2012) arises. Even if a manifold S2 is not a Lie 
group, there may be an action  G × S2 → S2 of a 
Lie group G on S2, and under certain conditions S2 
can be viewed as a “quotient” G/K, where K is a 
subgroup of G (Richtmyer, 1981). When S2  G/K 
as above, certain notions on G can be transported 
to S2, then we say that S2 is a homogeneous space. 
As an example of the last point we could mention 
the theory of spherical harmonic expansion on the 
S2, which is a homogeneous space for the rotation 
group O(n+1). The surface spherical harmonics are 
eigenfunctions for the Laplace-Beltrami operator, 
which is a rotation invariant (Helgason, 1984). 

Harmonic analysis is concerned with the represen-
tation of functions as the superposition of basic 
waves, the study and generalization of the notions 
of Fourier series as well as the Fourier transforms.

Elements of harmonic analysis on the sphere 
can be found at Stein and Weiss (1971). After 
introducing the manifold S2 and the Riemannian 
manifolds (S2, g), a general type of spaces (Besov 
and Triebel-Lizorkin spaces) on the sphere may 
also be introduced (Narcowich et al., 2006). Using 
the power of a Laplace operator, the Sobolev space 
on Riemannian manifolds can also be incorporated 
as a field currently undergoing great development 
(Aubin, 1998; Hebey, 2000).

3.	 Exact solutions to the barotropic vorticity equa-
tion on the manifold S2

Let {(Ωl, 'l)}, ̀  = ¶, κ be an atlas of S2 and Ã : S2 → R 
the streamfunction of class Cr. We can consider that 
the map Ψ = Ã Î '¶

−1 : '¶ (Ω¶) → R and Ã Î '¶
−1 is the 

streamfunction defined on an open U¶ = '¶ (Ω¶) Ú R2 
and that it is of class Cr.

To simulate the time evolution of a two-dimen-
sional nondivergent and inviscid flow for a rotating 
sphere, S2 is governed by a non-linear barotropic 
vorticity equation, which can be written in the non-di-
mensional form as

∂ ∆Ψ
∂t

+ J (Ψ, ∆Ψ + 2 µ) = 0	 (6)

where J (c, q) = ∂c
∂λ

∂q
∂µ − ∂c

∂µ
∂q
∂λ = (k ∆ ∆× c)· q ∆= u· q   is 

the jacobian, u = k× ∆c = {uλ , uµ }= −{ 1 − µ2 ∂c
∂µ , 

}1
1− µ2

∂c
∂λ

 is a tangent velocity vector, grad c = c = 

}1
1− µ2

∂c
∂λ{ 1 − µ2 ∂c

∂µ, , c = Ψ, ξ = ΔΨ = div grad Ψ, 
is the relative vorticity, q = ΔΨ + 2µ is the absolute 
vorticity and k is a unit outward normal vector. The 
velocity vector field u having the components (uλ, uµ) 
is solenoidal:  · u = 0. Throughout decades the 
nonlinear barotropic vorticity equation has been 
successfully used to describe low frequencies and 
large-scale barotropic processes of atmospheric 
dynamics. Despite the simplicity to this nonlinear 
equation, it contains the principal elements that 
describe the complexity of atmospheric behavior 
(Simmons et al., 1983; Skiba, 1997). The four types 
of exact solutions to Eq. (1) known up to now are 
described below:
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•	 The zonal flows and Rossby-Haurwitz (RH) 
waves (Haurwitz, 1949), called classical solu-
tions, diferentiated from the generalized solutions 
which are not so smooth.

•	 The first generalized solutions of Eq. (6), kown as 
modons, were originally constructed by Tribbia 
(1984) and Verkley (1984, 1987, 1990) by using 
two eigenfunctions for the Laplace operator of 
different degrees.

•	 Later on, Neven (1992) gave generalized solutions 
in the form of a quadrupole modon.

•	 Wu and Verkley (1993) constructed generalized 
global solutions composed of two RH waves 
(Pérez-García and Skiba, 1999).
In the present work, zonal flows, homogeneous 

spherical polynomials flows, RH waves, and modons 
on the manifold S2 are considered.

3.1 Classical solutions
Let us consider the zonal flows, homogeneous spher-
ical polynomials flows and Rossby-Haurwitz (RH) 
waves.

Proposition (zonal flow). Let {(Ωl, 'l)}, ` = ¶, κ  
be an atlas of S2 and the streamfunction Ã : S2 → R 
of class Cr. Then the zonal flow map Ψ¶ = Ã Î '¶

−1 : 
U¶ Ú R2

¶ → R of Cr defined as

Ψ¶(λ, µ ) =
N

∑
n = 0

bn P 0
n (µ)	 (7)

is an exact solution of the vorticity Eq. (6) for any bn.
Proof. The demonstration, obtained from Eq. (6), 

is quite trivial.
Proposition (homogeneous polynomials). 

Let {(Ω`, '`)}, ` = ¶, κ be an atlas of S2 and the 
streamfunction Ã : S2 → R of class Cr. Then the 
homogeneous spherical polynomial map Ψ¶ =  
Ã Î '¶

−1: U¶ Ú R2
¶ → R of degree n ≥ 2 defined as

Ψ¶(λ, µ, t)= (λ – ct, µ)
N

∑
m=–n

amY m
n Hn	 (8)

is an exact solution to the vorticity Eq. (6), where am 
can be a complex factor and

c = − 2
χn

is the angular phase speed.

Proof. Given Ψ¶ ∈ Hn, we define Ψ¶ (λ, µ, t) = 
Ψn(λ – ct, µ) = ∑n

m=–n amYm
n (λ-ct, µ), then ∂Ψn

∂t  = –2 Ψ', 
and ∂Ψn

∂λ  = Ψ', where Ψ' = ∑n
m=–n imamYm

n (λ-ct, µ). If, 
in addition, we have the following expression 

∆Ψ¶ = −χn Ψn ;
∂∆Ψ¶

∂µ
= − χ n

∂Ψn
∂µ

; ∆Ψ¶ + 2µ =

− χ nΨ + 2 ; = cχ nΨ'∂∆Ψ¶

∂t¶ µ

we have

∆ ∂Ψ¶

∂t

∂λ

= χn cΨ' = J (− χnΨn + 2µ, Ψn ) =

−2 = − 2Ψ∂Ψn '

from BVE (Eq. (6)). It follows that c = − 2
χn

.

Proposition (Rossby-Haurwitz waves). Let 
{(Ωl, 'l)}, ` = ¶, κ be an atlas of S2 and the stream-
function Ã : S2 → R of class C∞. Then, the map Ψ¶ =  
Ã Î 'ι

−1 : U¶ Ú R2
¶ → R of C∞, defined as

Ψ¶(λ, µ, t ) = − ωµ +
n

∑
m = − n

am Y m
n

(λ − ct, µ ) H 0 H n

	 (9)

with n ≥ 1; is called Rossby-Haurwitz (RH) waves. 
It is an exact solution of the vorticity Eq. (6) if the 
angular phase speed of the RH wave

c = ω − 2(ω + 1)
χn

.	 (10)

Here ω is the super-rotation velocity and each Hn 
corresponds to the eigenvalue χn = n(n + 1).

Proof. Here Ψ¶ is expressed by

Ψ¶(λ, µ, t ) = − ωµ + Ψn (λ − ct, µ )

where Ψn(λ – ct, µ) = ∑n
m=–namY (λ – ct, µ). We can 

notice that

∆Ψ¶ = 2 ωµ− χ nΨn = − χ nΨ + (2 ω − χ n ω) µ¶

which implies that

∆Ψ¶ + 2 µ = − χ nΨ − χ n (ω −
2(ω + 1)
χn )µ

= − χ nΨ + [(2 − χ n ) ω + 2] µ.¶

¶
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Furthermore:

∂
∂λ ∆Ψ¶ ¶= − χn

∂Ψ
∂λ , ∆ ∂Ψ

∂t = χn cΨ' , ∂
∂µ ∆Ψ

= (2−χn)ω− χn
∂Ψ
∂µ

¶ ¶

¶

where Ψ' = ∑n
m=–n imamYn

m (λ – ct, µ); so that from 
BVE (Eq. (6))

∆ ∂Ψ¶ ∂Ψ¶

∂Ψ¶

∂t = − J (Ψ¶ ¶, ∆Ψ + 2 µ) =
∂∆Ψ

−

− 2 = − χ n −

(2 − χn ) ω − χ n − 2 .

∂µ

∂µ

∂λ

∂λ

¶

∂∆Ψ¶ ∂Ψ¶

∂λ
∂Ψ¶

∂µ
∂∆Ψ

∂λ
¶

∂Ψ¶

∂λ
∂Ψ¶

∂µ
∂Ψ¶

∂λ

(
(

)
)

Hence

χn cΨ' = − ∂Ψ¶

∂λ (2 − ) ω − 2 =

=
− [− ω + 2( ω + 1)]

χn
∂Ψ¶

∂λ

χn Ψ'
− [(2 − ) ω + 2]χn Ψ'

so that

c = ω − 2(ω + 1)
χn

and thus the proposition is proved.
The streamfunction of the stationary RH(2,5) 

wave

Ψ (λ, µ) = –ωµ + a Pn
m(µ) cos(mλ)	 (11)

with the parameters defined by (m, n) = (2, 5), 
a = .007 and ω = 2

√ 3( χ 3 − 2)  is given in Figure 2.

Pérez and Skiba (2001) and Skiba and Pérez 
(2006) developed a numerical spectral method for 
the normal mode instability study of the arbitrary 
steady flow of an ideal nondivergent fluid on a ro-
tating sphere, and Skiba and Pérez (2006) tested this 
method for the RH(2,5) wave. Pérez-García (2014) 
constructed a basic flow regarded as a sum of a zon-
ally symmetric flow (Eq. 7) and a Rossby-Haurwitz 
wave component (Eq. 9). 

3.2 Generalized solutions
Denote the spherical distance between two points 
of S2 by d(.,.). Let N' be the north pole of the chart 
coordinate (Ω¶, 'κ). Then a disk or inner region Si 

on the sphere is defined as Si  = D(N', ϕa) = {s ∈ S2 | 
d(N', s) < ϕa}, such that 0 < ϕa ≤ . The solution modon 
is constructed (Tribbia, 1984; Verkley, 1984, 1987, 
1990; Neven, 1993) to divide the sphere S2 into two 
regions: an inner region Si centered around the pole 
N', and an outer region So separated from the inner 
region by a boundary circle ∂D(N', ϕa) = {s ∈ S2 | 
d(N', s) = ϕa}, on which Ã, q and Ã' are continuous.

For Si, a solution of the Eq. (2) form is chosen 
with an eigenfunction Y (λ', µ'), which has its singu-
larity in the outer region. The same type of solution 
is chosen for the outer region, but such that Y (λ', 
µ') has its singularity in the inner region. Then both 
solutions are combined as smoothly as possible 
on the boundary circle ∂D(N', ϕa) (Tribbia, 1984; 
Verkley, 1984, 1987).

To construct the Verkley (1984) modon or the 
Neven (1992) cuadrupole modon on the manifold 
S2, it is interpreted as:

Proposition. Let {(Ω`, '`)}, ` = ¶, κ, be an atlas 
of S2, and Ã = Ã1 + Ã2 : S2 → R the streamfunction 
of Cr. Then

Ψ¶(λ, µ ) = (Ã1 ◦ '− 1
κ )(λ' , µ') + (Ã2 ◦ '− 1)(λ, µ )¶ .

Proof. Let Ã1 and Ã2 be two real-value functions 
of class Cr defined on the differential manifolds S2. 
We define their sum by setting Ψ¶ = (Ã1 + Ã2) Î 'ι

−1 
= Ã1 Î 'ι

−1 + Ã2 Î 'ι
−1 for any chart (Ω¶, '¶). Since the 

sum of two functions of class Cr on S2 are functions 
of class Cr, the proof of this formula can be obtained 
by the expression 

Ψ¶ (λ, µ) = (Ã Î 'ι
−1)(λ, µ) = Ã1 Î 'ι

−1 (λ, µ) + Ã2 Î 
'ι

−1 (λ, µ)
Fig. 2. Isolines of the streamfunction of Rossby-Haurwitz 
waves (2, 5).
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= (Ã1 Î 'κ
−1) Î ('κ Î '¶

−1) (λ, µ) + (Ã2 Î '¶
−1) (λ, µ)

= (Ã1 Î 'κ
−1) Î '¶κ (λ, µ) + (Ã2 Î '¶

−1) (λ, µ)

= (Ã1 Î 'κ
−1) (λ', µ') + (Ã2 Î '¶

−1) (λ, µ)

where '¶κ (λ, µ) = ('1
¶κ (λ, µ), '2

¶κ (λ, µ)) = (λ' (λ, µ), 
µ' (λ, µ)) 

Decompose now the streamfunctions into an ei-
genfunction part (Ã1 Î 'κ

−1) (λ', µ') = Yº (λ', µ') and 
a zonal part (Ã2 Î '¶

−1) (λ, µ) = –ωµ + D, where –ωµ 
is a solid-body rotation and D a constant. In chart 
(Ωκ, 'κ) with coordinates (λ', µ'), the north pole N' 
moves along a circle of constant latitude with con-
stant angular velocity cº. In the primed coordinates, 
Verkley (1984, 1987) modons have the form

(Ã1 Î 'κ
−1) (λ', µ') = X (λ', µ') = X d(µ') cos λ' + X m(µ') 

→ Yº (λ', µ')

which consists of a dipole and a monopole compo-
nent:

Xd (µ' ') = (cº − ω) 1√ √−µ2
a 1 −µ2

0 f
d(µ )

Xm(µ' ') = (cº − ω) 1√ −µ2
aµ0 f m(µ )

where µ0 = sen ϕ0, µa = sen ϕa. The functions f d(µ) 
and f m(µ) are defined as

f d(µ) ={ − bB (1, 1, µ) + (1 + b)( 1− µ 2

1− µ 2
a

) 1
2 , if µ≥ µa

P (1, 1, − µ), if µ < µa

and

f m(µ) ={ − bB (0, 1, µ) + (1 + b) µ−
1√ − µ 2

a

–P (0, 1, –µa)

–P (1, 1, − µ), if µ < µa

+bB (0, 1, µa) , if µ ≥ µa

µ a

where b = (k 2 + 1
4 ) + 2

α (α +1) − 2 and

B (r, s, µ) = P r
α (µ)

P s
α (µa) ; P (r, s, µ ) = P r

− 0.5+ ik (µ)
P s

− 0.5+ ik (− µa )

The fact that

Ψ(λ, µ, t) = Yº (λ', µ') – ωµ + D

is a solution to Eq. (6) is due to the work of Verkley 
(1984), which I will not reproduce in this paper. Yº 
is an eigenfunction of the Laplace-Beltrami operator 
and χº = –º(º +1) is the eigenvalue of Yº. The Leg-
endre functions H(µ) = Pº

m(µ) and H (µ) = Qº
m(µ) are 

solutions to the Legendre differential equation of 
hypergeometric type, where Pº

m(µ) is a Legendre func-
tion of the first kind and Qº

m(µ) is a Legendre function 
of the second kind for order m such that º is the 
complex degree. The explicit expresion for Pº

m(µ) and 
Qº

m(µ) with –1 < µ < 1 can be found in Abramowitz 
and Stegun (1965) or Verkley (1984).

By using a grid of 5 × 5º upon the local coordinate 
associated with the chart (Ωκ, 'κ), the Verkley 1984 
modon was numerically generated. Using Eqs. (4) 
and (5) a workable Gaussian mesh of (128, 64) points 
upon the geographical coordinate group (Ω¶, '¶) 
was also generated. This mesh was mapped onto 
the local coordinates system associated to the chart 
(Ωκ, 'κ). The values of Ψκ were interpolated on the 
Gaussians points (128, 64) by implementing a nine-
point Lagrange interpolation scheme. The resulting 
function, i.e. the Verkley 1984 equatorial modon 
viewed on the geographical coordinate group (Ω¶, '¶), 
is shown in Figure 3a. This small modon was defined 
by the following parameters:

k = 10, α = 10, µa = sin 66.14º, µ0 = 0, λ0 = 270º and 
D0 = 0.

A numerical spectral model was used to simulate 
this small-size modon in Pérez-García and Skiba 
(1999), and in Skiba and Pérez-García (2009) a nu-
merical spectral method for normal mode stability 
study of ideal flows on a rotating sphere was tested 
for this isolated steady modon constructed by Verkley 
(1984).

Studies done by Illari (1984) and Crum and 
Stevens (1988) noted that the values of isentropic 
potential vorticity are relatively low and uniform in 
the blocking region. In our following argument we 
consider that Verkley’s modon (1990) provides a 
better and more uniform description of atmospheric 
blocking. Our interest lays within the fields that build 
this phenomenon. These solutions are characterized by 
a region Si in which q is constant, and an outer region 
So separated from the inner region by the boundary 
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circle ∂D, on which Ψ and q are both constant, i.e.,  
Ψ = d and q = b.

In the primed coordinates the Verkley (1990) 
modon has the form

Ψκ (λ' , µ' ) =
Yo (λ , µ ) − ωoµ + Do at S o

Yi (λ , µ ) − ωi µ + D i at S i
{ ' '

' '

where solid-body rotation terms µ can be expressed 
in primed coordinates using Eqs. (4-5), such that in 
chart (Ω¶, '¶) the eigenfuctions at the outer region and 
inner region are ∆'Yo = –χoYo ; ∆'Yi =ei, being χo and ei 
constants. Certain requirements of continuity must 
be met to generate these functions over the circle ∂D. 
We require continuity in ϕ' and the first and second 
derivative in ϕ' at ϕa.

To construct the Verkley 1990 uniform modon on 
the manifold S2, it is interpreted as:

Proposition. Consider an atlas {(Ω`, '`)}, ` = ¶, 
κ, of S2 and let Ã = Ã1 + Ã2 : S2 → R be the stream-
function of Cr. Then

Ψκ(λ', µ') = (Ã1 Î 'κ
−1) (λ', µ') + (Ã2 Î 'κ

−1) (λ, µ)

Proof. Let Ã1 and Ã2 be two real-value functions 
of class Cr defined on the differential manifolds S2. 
We define their sum by setting Ψκ = (Ã1 + Ã2) Î 'κ

−1 = 
Ã1 Î 'κ

−1 + Ã2 Î 'κ
−1 for any chart (Ωκ, 'κ). Since the 

sum of two functions of class Cr on S2 are functions 
of class Cr, the proof of the proposition follows from:

Ψκ(λ', µ') = Ã1 Î 'κ
−1(λ', µ') + Ã2 Î 'κ

−1(λ', µ')

= (Ã1 Î 'κ
−1) (λ', µ') + (Ã2 Î '¶

−1) Î ('¶ Î 'κ
−1) (λ', µ')

= (Ã1 Î 'κ
−1) (λ', µ') + (Ã2 Î '¶

−1) (λ, µ)

because (λ, µ) = 'κ¶ (λ', µ') 
According to Verkley (1990), to express the mo-

don in a more explicit manner, the functional forms 
Yo and Yi of the eigenfuntions are:

Yo (λ', µ') = A0S1
σ(θ') cos λ' + B0S0

σ (θ')

Yi (λ', µ') = AiT1(θ') cos λ' + BiT0 (θ')

where As and Bs are constant. The special functions 
Sm

σ(θ') = Pm
σ (–cos θ') and Tm(θ') were given by Verk-

ley (1990).
We have also reproduced numerically the uni-

form modon constructed by Verkley (1990) using 
the parameters ϕa = , σ = 8.06; ωo = 0.028, and 
when the modon center is in the point λo = 180º, 
'o =   (Fig 3b).

4.	 Conclusions
The exact solutions of the barotropic vorticity equa-
tion on the rotating unit sphere as a compact differ-
entiable manifold without boundary, which are zonal 
flows, homogeneous spherical polynomial flows, 
Rossby-Haurwitz waves and generalized solutions 
named modons, were represented in this paper. A 
concrete notion of local chart, change of charts, and 
atlas for the manifolds S2 was developed. An atlas 
{(Ω¶, '¶), (Ωκ, 'κ).} was constructed for S2, where 
every chart corresponds to a geographical coordinate 

Fig. 3. Streamfunction isolines of equatorial Verkley modon (1984) with (a) k = 10., α = 10., ϕa = 66.14º, λ0 = 
270.0º and ϕ0 = 0.º; the uniform Verkley modon (1990) at (b) σ = 8.06 , ϕa = , λ0 = 180.0º and ϕ0 = 45.0º. The 
curve points are the spherical coordinates relative to a rotated pole N'(270.0º, 0.º) at (a) N'(180.0º, 45.º) at (b) with 
respect to the original system.

a b
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group that covers most of S2. The transition maps 
'¶κ = 'κ Î '¶

−1: '¶ (Ω¶ ∩ Ωκ) → 'κ (Ω¶ ∩ Ωκ) and 
'κ¶ = '¶ Î 'κ

−1: 'κ (Ωκ ∩ Ω¶) → '¶ (Ωκ ∩ Ω¶) were also 
constructed, and the exact solutions of the barotropic 
vorticity equation in a manifold context were studied. 
This work also formulates on the manifolds S2 in 
terms of the stream function Ã: S2 → R, for RH waves 
which are sufficiently smooth, and for Wu-Verkley 
waves and modons which are differentiably weak. 
RH waves as solutions Ã Î '¶

−1 of the barotropic 
vorticity equation on the manifolds S2 are present-
ed at the local coordinate associated with a chart 
(Ω¶, '¶). The way in which the modon solution 
Ã Î 'κ

−1 can be constructed in the chart (Ωκ, 'κ), 
where Ã is C2, is investigated too. In the chart co-
ordinate (Ωκ, 'κ), the Verkley (1984, 1987) modons 
have the form

Ψ¶ (λ, µ) = (Ã1 Î 'κ
−1) (λ', µ') + (Ã2 Î '¶

−1) (λ, µ)

To construct the Verkley (1990) uniform modon 
on the manifold S2, it is interpreted as

Ψκ (λ', µ') = (Ã1 Î 'κ
−1) (λ', µ') + (Ã2 Î '¶

−1) (λ, µ)

when the modon center is in the point λo = 270; 'o = 0. 
However, to contruct the verkley (1984, 1987, 1990) 
with N' a point arbitrary on the sphere S2 a collection 
of pairs (Ω¶, '¶) (i > 2) is needed. Our viewpoint 
here was to understand the solution of the barotropic 
vorticity equation on the manifold S2 and its use to 
derive properties of the solutions to the Riemannian 
manifold (S2, g).
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