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RESUMEN

Este trabajo evalúa el uso de modelos numéricos de predicción del tiempo (NWP, por sus siglas en inglés) por 
conjuntos para la reducción dinámica de escala de la temperatura en una región cálida y compleja. Este enfoque 
ofrece información sobre la incertidumbre de los modelos NWP y proporciona información probabilística 
para compararlos con los modelos NWP sencillos que se utilizan en la actualidad. Se construyó un sistema 
por conjuntos utilizando cuatro partes con una resolución de 7 km sobre Omán. Dichas partes estuvieron 
conformadas por dos modelos de área limitada (LAM, por sus siglas en inglés), el modelo de alta resolución 
y el modelo del Consorcio para la Modelación de Pequeña Escala. Los dos LAM se derivaron e inicializaron 
utilizando datos del modelo de circulación general del modelo global alemán, que opera con una resolución 
de 40 km con base en dos estados atmosféricos iniciales. El primer estado inicial fue proporcionado por el 
sistema de asimilación de datos 3Dvar del Servicio Meteorológico Alemán, y el segundo estado inicial se 
obtuvo a partir de los datos de reanálisis (ERA-Interim) del Centro Europeo para la Predicción del Tiempo 

con la incertidumbre de los modelos NWP utilizados, e indican que no hay un modelo idóneo para la totalidad 
del dominio. En general, el promedio del conjunto tuvo un mejor desempeño que las partes individuales.

ABSTRACT

This paper evaluates the use of ensemble numerical weather prediction (NWP) models for dynamical down-
scaling of temperature over a complex, hot region. This approach delivers information about the uncertainty 
of the NWP models and provides probabilistic information for comparison with the currently used single 
NWP model. An ensemble system was constructed using four members with a 7 km resolution over Oman. 
Two limited-area models (LAMs), the high-resolution model (HRM) and the model from the Consortium 
for Small-Scale Modeling (COSMO) formed the ensemble members. The two LAMs were derived and 
initialized using the general circulation model (GCM) data from the German Global Model (GME), which 

by the 3Dvar data assimilation system at the German Weather Service (Deutscher Wetterdienst, DWD), 
and the second initial state was provided from the reanalysis data (ERA-Interim) from the European Centre 
for Medium-Range Weather Forecasts (ECMWF). The results reveal the uncertainty in temperature prediction 
related to the uncertainty of the NWP models that were used and indicate that there is no best model for the 
entire domain. On average, the ensemble mean performed better than individual members.
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1. Introduction
Over the last decade, the availability of increasing 
computing power has supported concerted efforts to 
improve the resolution of numerical weather prediction 
(NWP) models (Ruby Leung et al., 2003). Despite 
these efforts, the resolution of NWPs remains coarse. 
The typical resolution ranges from a few dozen kilo-
meters for general circulation models (GCMs) down 
to a few kilometers for limited-area models (LAMs) 
(Eccel et al., 2007). The air temperature at 2 m above 
the ground is one of the main meteorological parame-
ters forecasted by NWP models, but this prediction is 
closely tied to the topographic position assigned by the 
model to each grid point. Air temperature is strongly 
affected by topography, and large-scale models can be 
a source of strong bias in complex terrain. The lowest 
model layer is much higher than 2 m, adding to the 
bias introduced by the horizontal resolution. Therefore, 
the 2 m temperature is not a prognostic model vari-
able but is interpolated from the lowest model layer. 
The type of interpolation will contribute to the bias 
in the forecasted 2 m temperature compared with the 
measured one. Therefore, a downscaling approach is 
used as a post-processing step for deriving finer reso-
lution information from large-scale NWP models and 
to relate grid point predictions to the actual physical 
sites (Hewitson and Crane, 1996; Eccel et al., 2007).

There are two principal types of downscaling 
techniques: statistical/probabilistic and dynamical. 
Statistical/probabilistic downscaling methods use his-
torical data and archived forecasts to generate down-
scaled data from large-scale forecasts (Murphy, 1998; 
Rummukainen, 2010). Statistical downscaling consists 
in identifying empirical links between large-scale 
patterns of climate elements (predictors) and local 
climate (the predictands), and applying them to output 
from global or regional models. This approach is very 
simple to implement, fits well with areas with large 
datasets and generates consistent estimates for periods 
similar to those used for their calibration. Successful 
downscaling depends on long, reliable observational 
series of predictors and predictands.Dynamical down-
scaling methods encompass dynamic models of the 
atmosphere nested within the grids of the large-scale 
forecast models. Typically, one-way nested LAMs are 
implemented to generate finer resolutions for different 
applications, with GCMs providing initial and lateral 
boundary conditions. Dynamic downscaling has be-
come very popular; the physical model formulation 

offers strong justification for its application under a 
variety of climate and weather conditions, particularly 
for locations with strong boundary forcing, such as 
complex terrain with irregular orography (Murphy, 
1998; Rummukainen, 2010). The disadvantage of this 
approach is related to the high computational cost and 
data requirements (e.g., three dimensional boundary 
and initial conditions). 

Statistical and dynamic downscaling techniques 
have been used, separately or combined, in meteorol-
ogy and hydrology to improve understanding of local 
climate variability (Al-Yahyai et al., 2011; Burger, 
1996; Fowler et al., 2007; Fuentes and Heimann, 2000; 
Haas and Born, 2011; Hubener and Kerschgens, 2007; 
Kidson and Thompson, 1998; Maraun et al., 2010; 
Michelangeli et al., 2009; Pinto et al., 2010; Wilby 
et al., 1998; Wilby and Wigley, 1997). Ensemble ap-
proaches were introduced in meteorology (Galmarini 
et al., 2001) and hydrology (Stedinger and Kim, 2009) 
to improve model forecasts and reduce the model 
uncertainty. Any group of model forecasts with the 
same valid time is called an ensemble (UCAR, 2009), 
and each forecast is called an ensemble member. 
The extent of agreement among the members can be 
considered a measure of forecast certainty (Stensrud 
et al., 1999). Ensemble forecasting can quantify and 
propagate forecast uncertainty (Tiwari and Chatterjee, 
2010; National Research Council, 2006).

The implementation of downscaling techniques 
in developing countries poses a real challenge due to 
the modest computational infrastructure. The main 
motivation of this study is to construct an ensemble of 
forecasts over a complex, hot area. Several techniques 
for constructing the ensemble have been developed 
and exhibit better performance than any single model 
system (Callado et al., 2013). The proposed method-
ology suggests using various sources of NWP model 
uncertainty as a starting point to generate an ensemble 
of NWP predictions for temperature data. This meth-
od can be achieved by using different LAMs (initial/
boundary) derived by different GCMs. The Sultan-
ate of Oman, characterized by a hyper-arid climate 
because of its position astride the tropic of Cancer, 
was selected as a reference area for this application 
(Fig. 1). The rainfall regime, the teleconnections and 
the wet- and dry-spell patterns have been analyzed on 
a regional scale in this region (Charabi, 2009; Charabi 
and Hatrushi, 2010; Charabi and Al-Yahyai, 2011). 
The studies have shown that the area is influenced by 
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different atmospheric mechanisms which contribute 
to local climate diversity and that are characterized 
by a strong gradient of temperature induced by the 
complexity of the topography. There are no studies 
of this region that address the interaction between 
such complex topography and temperature at local 
scales. The outline of the paper is as follows: section 2 
details the proposed approach; section 3 discusses the 
main findings based on a case study over Oman; and 
section 4 concludes the paper.

2. Data sets and methodology 
Figure 2 gives a comprehensive overview of the 
ensemble NWP model approach for dynamical 
downscaling of temperature. It shows that initial and 
lateral boundary conditions from [M] GCMs (40 × 
40 km) are used to derive and initialize [N] LAMs 
(7 × 7 km). This permutation generates an ensemble 
system [M × N] member. In this combination, each 
LAM will be initialized by [M] different GCMs. The 
models are equally weighted, meaning the ensemble 
members for each model are calculated first and then 
averaged to form the multi-model mean. This regional 
scale ensemble prediction is validated with the ground 
observations and used to derive and initialize a local 
scale high-resolution model (2.8 × 2.8 km). Notice that 
the number of ensemble members is controlled by the 

availability of the GCMs data and the computational 
power. The higher the number of members, the more 
confident the derived statistics but the more computa-
tional power required (Al-Yahyai et al., 2011). For this 
application, an ensemble system was constructed using 
four members and covering the domain 49.0-64.0º E 
and 13.0-28.0º N with a 7 km resolution with 241 × 
241 grid points and 41 vertical layers. Two LAMs, 
namely the high-resolution model (HRM), which is 
hydrostatic (Majewski, 2009), and the model from 
the Consortium for Small-Scale Modeling (COSMO), 
which is non-hydrostatic (Doms and Schattler, 2008), 
formed the ensemble members. 

Each model run is initialized at 00:00 UTC and 
generates output for 30 hours. The first six hours are 
discarded due to the spin-up of the model. The two 
LAMs are derived and initialized by the GCMs’ data 
from the German Global Model (GME), which runs 
at 40 km resolution using two different initial states of 
the atmosphere. The first initial state of the atmosphere 
is provided by the 3Dvar data assimilation system at 
the German Weather Service (Deutscher Wetterdienst, 
DWD), and the second initial state is provided from the 
reanalysis data ERA-Interim from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF, 
2006). The HRM model has been an operational model 
at the Directorate General of Meteorology and Air Nav-
igation (DGMAN), Oman, since 1999. The COSMO 
model has recently been implemented as a test bed under 
the research agreement between DGMAN and DWD. 
Through this cooperative agreement, DWD provided 
the initial and lateral boundary conditions for 2009 for 
this study; the study therefore covers only 2009. The PC 
cluster of the DGMAN was used to run the case study 
after the operational runs of its operational models. 
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Fig. 1. 2.8 km averaged elevation (m) of the study area.
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Fig. 2. Diagram of the ensemble NWP model approach 
for dynamical downscaling of temperature.
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3. Results and discussion
Figure 3 shows the annual mean temperature at 2 m 

above the ground from the four ensemble members. 
This figure shows the uncertainty of the NWP models 
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Fig. 3. Annual mean temperature at 2 m above the ground from the four ensem-
ble members. (a) COSMO-ECMWF; (b) HRM-ECMWF; (c) COSMO-GME; 
(d) HRM-GME.
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and illustrates the effects of model dynamics, numerical 
schemes and the initial conditions. The HRM-DWD 
and COSMO-DWD maps clearly highlight the effect 
of the model dynamic and numerical schemes. The two 
LAMs are initialized with the same atmospheric states 
engendered in two different forecasts. The effect of the 
initial state is clearly shown, with maps of the same 
model (e.g. HRM) using different initial states engen-
dering two different forecasts. Notice that the effects of 
the model dynamics and numerical schemes are more 
pronounced than the effect of the initial state. It can 
be seen that the HRM model is more sensitive to the 
initial and boundary condition data than the COSMO 
model. The HRM model initialized by the DWD 3D 
data assimilation produced high temperatures over the 
Empty Quarter desert. 

Figure 4 shows the annual ensemble mean of 
the system. The ensemble mean smoothed out the 
unpredictable events, such as the high temperature 
over the Empty Quarter desert. On the other hand, 
the more predictable events, such as low air tem-
perature over the mountains, were maintained in the 
ensemble mean.

Eleven meteorological stations were selected to 
verify the robustness of the temperature simulation 

of the four ensemble members and the ensemble 
mean against ground observations. Figure 5 shows 
the scatter plot for different forecasts over Salalah. 
In most cases, the model underestimated the low 
temperature values and overestimated the high 
temperature values. Therefore, the NWP models 
have warm and cold biases over Salalah. Due to the 
variation in bias of the models, the ensemble mean 
showed outliers in the scatter plot. Monthly time se-
ries of the mean temperature were also computed. The 
diagram at the lower right corner shows the model 
validation data over Salalah against the observation 
data (black curve). All models underestimated the 
temperature during winter and overestimated the tem-
perature during summer. The model discrimination 
over Salalah is believed to be related to the complex 
terrain surrounding the observational station and the 
large seasonal temperature variation. The southern 
part of Oman, where Salalah is located, is influenced 
by the Arabian summer monsoon from June to Sep-
tember, which considerably reduces the temperature. 
Compared with Salalah, the scatter plot over Sohar 
shows a better correlation with the measurement 
observations, as shown in Figure 6. Similar results 
from the ensemble mean model were observed for 
the other stations.

The mean error (bias) of the four ensemble mem-
bers and the ensemble mean is calculated as described 
by Eq. (1):

i

N

i OF
N

Bias −= ∑
i=1

1  (1)

where F is the model forecast, O is the observation 
and N is the total number of data sets.

The mean error is determined from the means of 
the closest points of the model to an observational 
station and the bi-linearly interpolated value of the 
four surrounding points. Figure 7 shows the mean 
error (bias) of the four ensemble members, the mean 
error of the ensemble mean using the closest grid 
point approach and the bi-linear interpolation of the 
four surrounding grid points for eleven meteorolog-
ical stations. It clearly shows that all members are 
overestimating the temperature for all stations by 
1-3.5 ºC. The highest overestimation is shown in 
Buraimi and Ibri. This significant difference can be 
explained by the topographic divergence between 

Fig. 4. Annual mean temperature at 2 m above the ground 
from the ensemble mean.
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the elevation of the station and the elevation per-
ceived by the model. For these two stations, the 
difference is more than 100 m. Moreover, these 
differences in temperatures may be related to plan-
etary boundary layer (PBL) heights. PBL heights 
are underestimated in those regions, which may be 
a result of differences in land cover between our 
downscaling models data set and the ground-truth 
data. Furthermore, Burimi and Ibri are highly in-
fluenced by the strong sea breeze blowing from the 
northeast coast of the United Arab Emirates. This 
deep penetration of sea breezes over a large flat area 
contributes to a reduction in the air temperature 
(Charabi and Al-Yahyai, 2011). 

Among the four members and the mean error of 
the ensemble mean, HRM-GME performed better for 
Duqum; HRM-ECMWF performed better in the case 
of Sohar; and Ibra, Ibri and As Seeb were forecasted 
better by COSMO-GME. Adam, Buraimi, Masirah, 
Nizwa, and Salalah were forecasted better by the en-
semble mean. These results highlight the uncertainty 
of the NWP model and show that there is no best 
model for the entire domain. The bi-linear approach 
indicated that the ensemble mean performed better 
for six stations. 

4. Conclusion
This paper assesses the use of ensemble NWP models 
for dynamical downscaling of temperature over a 
complex hot area. The results show the uncertainty 
in temperature prediction due to the uncertainties in 
the NWP models that were used and indicate that 

there is no best model for the entire domain. The 
NWP models performed relatively poorly in pre-
dicting temperature; this is mainly because the NWP 
models reliance on simple soil physics is insufficient 
to capture the temperature cycle over the different 
topographic settings. The multilayer soil model used 
in NWP models mainly simulates soil temperature 
evolution; soil vegetation, humidity and canopy are 
based on seasonal variations in land cover and are 
not explicitly computed. In Oman, accurate topo-
graphical information and advanced surface physics 
are required to improve temperature prediction. 
Therefore, soil hydrological models and plant cano-
py models are important for realistic assessments of 
evaporation, evapotranspiration and their impacts on 
the latent and sensible surface heat fluxes that directly 
influence the air temperature. 

¡The ensemble mean performed better on aver-
age than individual members. The atmosphere is 
a chaotic system, where predictability is lost in a 
manner-dependent flow; providing a single control 
forecast is of limited use. An ensemble approach, 
where multiple predictions are generated through 
initial and model perturbations, can be used to assess 
variations in predictability and substantially reduce 
the uncertainty.
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