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RESUMEN

Se desarrolla un modelo de red neuronal para predecir el número estacional de ciclones tropicales (CT) que 
se desarrollan en el Océano Índico septentrional después de la estación del monzón (octubre a diciembre). 
Se analizan la frecuencia de los CT y las variables climáticas de gran escala derivadas de la base de datos 
de reanálisis del NCEP/NCAR con resolución de 2.5 × 2.5º para el periodo 1971-2013. Se utilizaron datos 
del periodo 1971-2002 para desarrollar el modelo, y éste se probó con datos de muestreo independientes del 
periodo 2003-2013. Se eligieron cinco variables climáticas de gran escala (altura geopotencial a 500 hPa, 

[septiembre]) como predictores para aplicar un análisis de correlación. Con base en algunos parámetros 
-

ran con el modelo lineal de regresión múltiple. Los resultados indican que el número de ciclones tropicales 
calculado por medio de ambos modelos es muy similar al número real de ciclones ocurridos en cada año. 
Sin embargo, los resultados del modelo de redes neuronales fueron superiores a los del modelo linear de 
regresión múltiple, de modo que esta técnica de predicción de ciclones tropicales puede ser muy útil para 
propósitos operativos de predicción.

ABSTRACT

A neural network (NN) model is developed to predict the seasonal number of tropical cyclones (TCs) formed 
over the north Indian Ocean during the post-monsoon season (October, November, December). The frequency 
of TCs and the large scale climate variables derived from the NCEP/NCAR reanalysis dataset of resolution 
2.5º × 2.5o have been analyzed for the period 1971-2013. Data for the years 1971-2002 have been used for 
the development of the model, which is tested with independent sample data for the years 2003-2013. Ap-

humidity at 500 hPa, sea level pressure, and zonal wind at 700 hPa and 200 hPa for the antecedent month 
September are selected as predictors. Based on some performance parameter statistics, the performance of the 
NN model is evaluated and the results are compared with the multiple linear regression (MLR) model. From 
the results it is inferred that the predicted tropical cyclone count by both models is very close to the actual 
counts for both periods. However, the NN model is found to be superior to the MLR model. This tropical 
cyclone prediction technique may be useful for operational prediction purposes.
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1. Introduction
A natural hazard affects the environment and leads 
to huge economic losses and casualties. Tropical 
cyclones (TCs) are some of the most frequent and 
destructive natural hazards in TC-prone areas. In 
2008, tropical cyclone Nargis was the second dead-
liest disaster of the decade in Myanmar. It caused 
138 366 human causalities (Vos et al., 2009). So, 
disaster managers and planners needed high quality 
forecasts to save human lives and prevent property 
losses. Tropical cyclone activity depends on both 
thermodynamical and dynamical factors, which is 
also reported by several researchers (Palmen, 1948; 
Gray, 1968; Elsberry and Jeffries, 1996; DeMaria et 
al., 2001). The seasonal TC activity forecasts for the 
Australian and North Atlantic regions were first made 
by Nicholls (1979) and Gray (1984 a, b), respectively. 
Since then, several methodologies have been adopted 
for the seasonal TC activity forecast in different TC-
prone areas of the world, such as Poisson regression 
models (Elsner and Schmertmann, 1993; Lehmiller 
et al., 1997; Kim et al., 2010), Bayesian regression 
models (Elsner and Jagger, 2004, 2006; Chu and 
Zhao, 2007; Chu et al., 2010; Lu et al., 2010; Werner 
and Holbrook, 2011), projection pursuit regression 
(Chan et al., 1998, 2001). However, studies of the 
neural network (NN) approach to seasonal cyclone 
activity forecasting are limited.

The application of the NN model in the field of 
meteorology has been discussed by several resear-
chers (Pozzi et al., 2000; Richaume et al., 2000; 
Schroeder et al., 2002; Bourras et al., 2003; Mitra 
et al., 2010). McCann (1992) and Kuligowski and 
Barros (1998) found that this model is superior as 
compared to the traditional weather prediction model. 
The NN model also has been applied to project future 
heavy rainfall events for Oahu, Hawaii (Norton et al., 
2011). Other studies also show that the prediction of 
cyclone intensity has been improved by the artificial 
neural network (ANN) over the linear regression 
method (Baik and Hwang, 1998; Baik and Paek, 
2000; Ramírez and Veneros, 2004; Ramírez and 
Castro, 2006).

There are several studies on the genesis (Roy 
Bhowmik, 2003; Kotal et al., 2009; Nath et al., 2013) 
and intensity prediction (Dvorak, 1975; Roy Bhow-
mik et al., 2007; Kotal et al., 2008) of cyclones over 
the Indian Sea. However, in comparison the Indian 
Sea has received relatively limited attention, given 

that several studies have documented the seasonal 
prediction (including the NN method approach) of 
cyclones in other ocean basins of the world. Hence, 
an attempt has been made to develop an NN model 
to forecast seasonal TC activity over the north Indian 
Ocean (NIO).

In the present study, the NN and multiple linear 
regression (MLR) using jackknife approaches have 
been used to predict the seasonal activity of TCs 
in the post-monsoon season (October, November, 
December) over the NIO, which has a pre-monsoon 
(March, April, May) and a post-monsoon (October, 
November, December) cyclone season. Figure 1 
shows the monthly distribution of TC frequency 
formed over the NIO from 1971 to 2013. The large 
inter-seasonal contrast is evident, with a highest peak 
occurring in November. The total frequency of TCs 
for the post-monsoon season from 1971 to 2013 over 
the NIO is presented in Figure 2.

The structure of this paper is as follows: data and 
methodology are described in section 2; procedures 
for selecting predictors are explained in section 2.1; 
model formulation is described in section 2.2; model 
evaluation is presented in section 3, and the conclud-
ing remarks are given in section 4.

2. Data and methodology
The monthly tropical cyclone series of the north 
Indian Ocean from 1971 to 2013 was obtained from 
the frequency of cyclone disturbances archives of 
the India Meteorological Department (IMD) New 
Delhi (www.imd.gov.in), which is a recognized Re-
gional Specialized Meteorological Centre (RSMC) 
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Fig. 1. Monthly distribution of all TCs formed over the 
north Indian Ocean during the period 1971-2013.
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for tropical cyclone warning advisories by the World 
Meteorological Organization (WMO). Monthly sea 
level pressure, zonal wind data at 700 hPa and 200 
hPa, geopotential height at 500 hPa, and relative hu-
midity at 500 hPa over the region under analysis were 
derived from the NCEP/NCAR reanalysis dataset for 
developing the model. Horizontal resolution of the 
dataset is 2.5º latitude × 2.5º longitude.

Low-pressure systems over the Indian region are 
classified based on the maximum sustained wind 
speed and the pressure deficit/number of closed 
isobars associated with the system. The pressure cri-
teria are used when the system is over land and wind 
criteria is used when the system is over the sea. The 
system is classified as low if there is one closed isobar 
in the interval of 2 hPa; as a depression if there are 
two closed isobars; as a deep depression if there are 
three closed isobars; and as a cyclonic storm if there 
are four or more closed isobars. The detailed classi-
fication based on the wind criteria (WMO, 2014) is 
given in Table I. Considering wind criteria, systems 

with wind speed of 17-27 knots are called depression 
and low pressure systems with maximum sustained 
3-min surface winds between 28 and 33 knots are 
called deep depressions. Systems with maximum 
sustained 3-min surface winds of 34 knots or more 
are called cyclonic storms, which may be classified as 
cyclonic storms, severe cyclonic storms, very severe 
cyclonic storms and super cyclones.

2.1 Procedures for selecting predictors
The modulations of seasonal TCs activity by large-
scale environmental conditions have been reported 
by several researchers (Gray, 1977; Watterson et 
al., 1995; Chu and Zhao, 2007). In the present study 
correlation analysis between seasonal TC occurrences 
and the mean environmental parameters (e.g., relative 
humidity, wind) for the post-monsoon season over the 
region (50-140º E, 20º S-25º N) is used to identify 
physical relationships. After examining the correla-
tion between large-scale environmental parameters 
and TC counts, a correlation analysis between season-
al TC occurrences for the preceding month (Septem-
ber) is performed to find the stability of large-scale 
environmental parameters. The stable parameters 
for September are derived as predictors. Significant 
correlation areas have been demarcated for each pa-
rameter. Areas with fairly large spatial extent (at least 
10º latitude × and 15º longitude) have been selected 
in order to avoid the correlation bullseyes that some-
times exist in the NCEP/NCAR reanalysis (Klotzbach 
and Philip, 2008). When correlations over a particular 
area between 50-140º E, 20º S-25º N that are found 
to be statistically significant at the 95% confidence 
level, the parameter over the area is retained as a 
potential predictor variable. For a sample size of 32, 
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Fig. 2. Distribution of TCs formed over the north Indian Ocean for the 
post-monsoon season during the period 1971-2013.

Table I. Classification of low-pressure systems according 
to wind speed.

Type of disturbance Corresponding wind 
speed (knots)

Low pressure area (L) < 17
Depression (D) 17 - 27
Deep depression (DD) 28 - 33
Cyclonic storm (CS) 34 - 47
Severe cyclonic storm (SCS) 48 - 63
Very severe cyclonic 
storm (VSCS) 64-119
Super cyclone (SC) ≥120
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this critical value is |0.35| when a two-tailed t-test is 
applied. The contour plot for the correlation between 
the seasonal TC frequencies over the north Indian 
Ocean for the month of September and all the pre-
dictors for critical domains are shown in Figure 3a-e. 
Figure 3a shows the correlation between the season-
al TC counts and the antecedent September month 
geopotential height at 500 hPa (GPH500). A strong 
negative correlation pattern is found in most of the 
Bay of Bengal and China Sea in the region under 
analysis. The pattern may persist and support con-
vection and the development of TCs.

Figure 3b displays the correlation between season-
al TC counts and mid tropospheric relative humidity 
at 500 hPa (RH500) during the antecedent month. 
Critical regions with significantly high positive cor-
relations are found over the Philippine Sea and the 
northwest of the south China Sea. As a result of this 
positive correlation, higher moisture content over the 
aforementioned regions could be expected, leading 
to more TCs over the north Indian Ocean during the 
post-monsoon season.

Figure 3c shows the correlation between seasonal 
TC counts and the SLP during the antecedent month. 
A critical area with negative correlation is found 
in most of the Bay of Bengal for the region under 
analysis. This result is physically reasonable as lower 
SLPs trigger higher TC frequencies.

Figure 3d shows the correlation between seasonal 
TC counts and zonal wind at 700 hPa (U700) for the 
antecedent month. Critical regions with significant 
positive correlations are found in the Arabian Sea 
region. 

Figure 3e shows the correlation between seasonal 
TC counts and zonal wind at 200 hPa (U200) for the 
antecedent month. Critical regions with significant 
negative correlations are found in the Arabian Sea and 
the adjoining south Indian Ocean region. According-
ly, strong zonal currents at the upper level and weak 
at lower levels may disrupt the development of con-
vection and cyclonic systems. It is clearly indicated 
that strong upper and weak lower level winds during 
September over the critical regions were instrumental 
for lower TC activity over the NOI.

2.2 Model formulation
2.2.1 Multiple linear regression model
The MLR model is developed using the multiple 
linear regression technique:

y = a0 + a1x1 + a2x2 + . . . + anxn, (1)

where y is the dependent variable (predictant) and x1, 
x2,…, xn are independent variables (predictors). a1, 
a2,…, an are regression coefficients. The five large-
scale climate variables, namely geopotential height 
at 500 hPa, relative humidity at 500 hPa, sea level 
pressure, and zonal wind at 700 hPa and 200 hPa for 
the antecedent month (September) are used as pre-
dictors and the seasonal number of tropical cyclones 
formed over the north Indian Ocean during the post 
monsoon season is used as predictand.

The jackknife method was applied to all 32 years, 
with one year being removed. Thus, the model was 
developed for the remaining 31 years and tested on 
the missing year. In this way 32 predictions were 
obtained. Predicted values were then correlated with 
observations and the overall forecast skill have been 
determined for the training period. The skill of the 
testing period is evaluated using 32 years training 
period data as input.

2.2.2 Neural network model
The neural network technique proposed here is based 
on the three-layer back propagation for seasonal 
TC frequency, using the same predictors from the 
multiple linear regression model and the Leven-
berg-Marquardt training algorithm, as shown in 
Figure 4. The mean square error is minimized (Ma-
qsood et al., 2002; Marquardt, 1963) in this method. 
This optimization method is more powerful than the 
conventionally used gradient descent techniques 
(E1-Bakry, 2003; Hagan and Mehnaj, 1994; Cigizo-
glu and Kisi, 2006). It has now become a standard 
technique for nonlinear least-square problems, widely 
adopted in various disciplines including atmospheric 
sciences for dealing with data-fitting applications 
(Mitra et al., 2010; Ustaoglu et al., 2008; Young, 
2006; Chase et al., 2011). Considering its popularity 
and robustnes, the Levenberg-Marquardt algorithm 
(LMA) is adopted in this paper. The model contains 
five neurons, which correspond to the predictors used 
in the MLR, five neurons in the hidden layers and 
one neuron in the output layer, namely the seasonal 
number of tropical cyclones formed over the north 
Indian Ocean during the post monsoon seasons. The 
hidden layer and transfer function are determined 
during the network architecture design, considering 
that there should not be any significant overfitting 
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Fig. 3 Correlation map between seasonal TC counts and the antecedent month (September). (a) 
Geopotential height at 500 hPa. (b) Relative humidity at 500 hPa. (c) Sea level pressure. The 
points with significant negative correlation are marked as “–” and points with positive correlation 
are marked as “+”.
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Fig. 3 Correlation map between seasonal TC counts and the antecedent month (September). (d) 
Zonal wind at 700 hPa. (e) Zonal wind at 200 hPa. The points with significant negative correlation 
are marked as “–” and points with positive correlation are marked as “+”.
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and the network should have better performance. In 
this study, five hidden neurons are found to produce 
the best result.

The neuron in the output layer corresponds to 
the predicted TC frequency. The optimum network 
performance has been achieved using the tan-sigmoid 
transfer function from the input layer to the hidden 
layer and the linear transfer function from the hidden 
layer to the output layer. The NN model is developed 
using 32 year data samples. A training set and inde-
pendent data samples from the remaining 11 years 
are used for model testing.

3. Model evaluations
In this section, the skill level of both predictive mod-
els discussed above is evaluated. The performance 
of the model has been evaluated by the following 
parameters: mean value of the actual observation 
(O), standard deviation of the actual observation (So), 
mean value of the predicted variable (P), standard 
deviation of the predicted variable (Sp), and estimated 
values of the predicted variable (P̂i) under the least-
squares regression P̂i = a + b Oi. The performance of 
the model is also evaluated by the “index of agree-
ment” (d), and the systematic and unsystematic mean 
square errors (MSEs and MSEu, respectively). As 
proposed by Willmott (1982), the index of agreement 
and the systematic and unsystematic mean square 
errors are defined as:

d

MSEs = 

(Pi – Oi)2 / 
N

1

N

i=1
∑

N

ˆ

i=1
∑= –1

(|Pi – O| + |Oi – O|)2 ,   0 ≤ d ≤ 1
–

(pi – Oi)2
N

i=1
∑

MSEu = 1N
ˆ(Pi – p)2

N

i=1
∑

 (2)

where N is the number of observations. The better 
predictive models would be identified as those having 
lower systematic errors, unsystematic errors nearer 
to the RMSE, and a higher index of agreement (Will-
mott, 1982). In his study, Willmott (1982) also sug-
gested that RMSEu can be interpreted as a measure 
of accuracy. In the present study, all the parameters 

described above and the mean absolute error (MAE) 
are computed to evaluate and compare the perfor-
mance of the developed models described in the 
preceding section. The statistics of these parameters 
for the training and testing periods are presented in 
Tables II and III, respectively.

3.1 Model performance during the training period 
(1971-2002)
Table II shows that statistic values P and Sp are 
close to the corresponding observed parameters O 
and So in both models, but in the MLR model P is 
closer to O as compared to the NN model, where 
Sp is closer to So. A more comprehensive evaluation 
has been made based in difference indices. With 

Table II. Performance parameters for the training period.

Performance parameters MLR NN

Mean of actual observation (O) 2.75 2.75
Mean of predicted variable (P) 2.81 2.63
Standard deviation of actual 
observation (So) 1.21 1.21
Standard deviation of predicted 
variables (Sp) 0.82 1.02
Root mean square error (RMSE) 1.0 0.92
Unsystematic root mean square error
(RMSEu) 0.88 0.83
Systematic root mean square error
(RMSEs) 0.26 0.28
Index of agreement (d) 0.80 0.90
Mean absolute error (MAE) 0.86 0.63

Table III. Performance parameters for the testing period.

Performance Parameter MLR NN

Mean of actual observation (O) 2 2
Mean of predicted variable (P) 2.6 2.2
Standard deviation of actual
observation (So) 0.89 0.89
Standard deviation of predicted 
variables (Sp) 0.60 0.77
Root mean square error (RMSE) 0.94 0.51
Unsystematic root mean square error
(RMSEu) 0.81 0.40
Systematic root mean square error
(RMSEs) 0.19 0.32
Index of agreement (d) 0.33 0.67
Mean absolute error (MAE) 0.84 0.42
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respect to MAE, there is a clear distinction between 
both models. The value of MAE is lower in the NN 
model as compared to the MLR model, which is 
also suggested by the RMSE. RMSE and RMSEu 
are higher and lower, respectively, in the NN model. 
This implies that the NN model is better than the 
MLR model, as explained by Willmott (1982). The 
value of Willmott’s index d also indicates that the 
NN model has a higher value of d than the MLR 
model. It can therefore be inferred that the NN mod-
el produces forecasts in better agreement with the 
actual TC activity formed over NIO than the MLR 
model, which is evident in Figure 5.

Figure 5 schematically presents time series plots 
for actual and predicted TC counts from the MLR 
and NN methods. It is clear from this figure that 
in some test cases the predicted values differ from 
the actual values, whereas some of them almost 
coincide with the actual values. Analyzing Figure 
5, it can be inferred that there is somewhat a close 
association between the actual TC counts and 
those predicted by both the NN and MLR models. 
However, the NN predicted TC counts are closer to 
actual observations.

3.2 Model performance during the testing period 
(2003-2013)
Table III shows that statistics P and Sp are close to 
the corresponding observed parameters O and So 
in both models, which is also found in the training 
period. The value of MAE is lower in the NN mod-
el as compared to the MLR model, which is also 

suggested by the RMSE. RMSEs and RMSEu are 
higher and lower, respectively, in the NN model, 
which implies that the NN model is better than the 
MLR model as explained in the training section. 
Willmott’s index d has a higher value in NN model 
than in the MLR model. It can therefore be inferred 
that the NN model produces forecasts in better 
agreement with the actual TC activity formed over 
NIO than the MLR model, which is evident from 
Figure 6. It is clear from this figure that in some 
test cases the predicted values differ from the ac-
tual values, whereas some of them almost coincide 
with the actual values. Analyzing Figure 6, it can be 
inferred that there is somewhat a close association 
between actual TC counts and those predicted by 
both the NN and MLR models.

The comprehensive evaluation of different indices 
indicates that the NN model is potentially more ac-
curate as compared to the MLR model, which is also 
found in the training period. The model prediction 
using independent data samples is also consistent 
with the prediction of the development period.

4. Concluding remarks
Due to the interannual variations of climate in the 
tropics and the existence of vast ocean basins, there 
is no guarantee that the seasonal TC prediction mod-
el developed for the Atlantic and Pacific oceans by 
several research teams is also applicable to the Indian 
Ocean. Although several studies have documented 
the seasonal prediction of cyclones for other ocean 
basins of the world, the Indian seas have received 
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relatively less attention. Therefore, an attempt has 
been made to predict the seasonal (October, No-
vember, December) TC activity over the NIO using 
the NN technique. The model was developed based 
on monthly mean sample data of large-scale climate 
variables from the preceding month (September) for 
the period 1971-2002, and tested for the independent 
period 2003-2013. Using the correlation analysis 
between TC frequency and individual variables over 
the Indian Ocean and the adjacent sea area, critical 
regions were demarcated and their data were used 
to prepare predictor datasets. The five predictors 
considered here are geopotential height at 500 hPa, 
relative humidity at 500 hPa, sea level pressure, and 
zonal wind at 700 hPa and 200 hPa. Based on some 
performance parameters, the MLR model and the NN 
model were evaluated. Moreover, the results show 
that the predicted tropical cyclone count by both 
models is very close to the actual counts. It is noted 
that the skill level achieved by the NN model is better 
than the MLR model. The results of the development 
period are consistent with the independent period. In 
conclusion, the model appears to be promising for 
operational applications of TC prediction for the NIO.
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