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RESUMEN

Se analiza la tendencia de altos valores de ozono troposférico sobre la Ciudad de México basados en ob-
servaciones para los años 2001-2014. Los datos consisten en máximos de ozono mensuales basados en 29 
estaciones de monitoreo. Dada la gran cantidad de valores faltantes, se consideran los máximos mensuales 

modelo estadístico que asume que las observaciones siguen una distribución generalizada de valores extre-
mos, la cual nos permite estimar un parámetro de tendencia para cada zona y un parámetro de tendencia 
global. Se comparan los resultados de este modelo con un modelo que asume que las observaciones siguen 
una distribución normal. Nuestros estudios muestran alguna evidencia de que estos máximos mensuales de 
ozono han disminuido durante el periodo de estudio.

ABSTRACT

We analyze trends of high values of tropospheric ozone over Mexico City based on data corresponding to the 
years 2001-2014. The data consists of monthly maxima ozone concentrations based on 29 monitoring stations. 

geographical zones. We assess time trends based on a statistical model that assumes that these observations 
follow an extreme value distribution, where the location parameter changes in time accordingly to a regression 
model. In addition, we use Bayesian methods to estimate simultaneously a zonal and an overall time-trend 
parameter along with the shape and scale parameters of the Generalized Extreme Value distribution. We 
compare our results to a model that is based on a normal distribution. Our analyses show some evidence of 
decaying ozone levels for the monthly maxima during the period of study.
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1. Introduction
For many decades environmental pollution has been 
a problem that affects major cities. In particular for 
Mexico City, with more than 21 million inhabitants 

in its metropolitan area, air-pollution has been histor-
ically a major concern. According to Lezama (2000), 
since the beginning of the 1940s, which corresponds 
to the start of an explosive growth in industry and 
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population in Mexico, air pollution increments were 
estimated to a 3% annual rate. In addition, air visi-
bility diminished during the 1940s and 1950s, which 
became a strong reason for authorities, scientists and 
citizens in general, to learn more about the health 
risks associated with exposure to atmospheric pol-
lutants. After various years, these concerns led to the 
creation of Mexico City’s environmental atmospheric 
monitoring system known as Sistema de Monitoreo 
Atmosférico (SIMAT).

Currently SIMAT is formed by the Red Manual 
de Monitoreo Atmosférico (Manual Atmospheric 
Monitoring Network, REDMA), the Red de De-
pósito Atmosférico (Atmospheric Deposit Network, 
REDDA), the Red de Meteorología y Radiación 
Solar (Meteorology and Solar Radiation Network, 
REDMET) and the Red Automática de Monitoreo 
Atmosférico (Automated Atmospheric Monitoring 
Network, RAMA) which continuously measures 
levels of ozone (O3), sulphur dioxide (SO2), nitro-
gen oxides (NOx), carbon monoxide (CO), particles 
less than 10 µm (PM10), and particles less than 
2.5 µm (PM2.5). Nowadays, RAMA consists of 
various monitoring stations across Mexico City’s 
metropolitan area.

Table I presents information about the 29 RAMA 
stations that monitor O3 concentrations over Mexico 
City. The name of each station followed by its acro-
nym is included along with the geographical area to 
which each station belongs. We report the number 
of observed monthly maxima that is available for 
each station and for the years 2001-2014. For these 
years, there is a total of 168 possible monthly maxima 
(T = 168). It is worth noting that in several cases, there 
is a limited number of observations available due to 
shutdowns or recent opening of stations.

The presence of hydroxyl radicals and organic vola-
tile compounds (OVC) in the atmosphere from natural 
or anthropogenic sources, produce changes in chemical 
equilibrium towards higher ozone concentrations. The 
anthropogenic sources that are more relevant as tro-
pospheric ozone precursors are gases generated from 
vehicle emissions, industrial emissions and chemical 
sources. As described on SIMAT (2014) and SSA 
(2014), it is typically the case that these precursors 
originate in high-density urban areas and are carried 
by winds for various kilometers producing increments 
in ozone concentrations in areas that are less densely 
populated. High tropospheric levels of O3 are a major 

cause of respiratory issues when long term exposures 
are predominant. Epidemiological studies have found 
associations between high levels of O3 and mortality, 
hospital admissions and total number of emergency 
hospital admissions. In consequence, the Mexican 
official norm NOM-020-SSA1-1993 established a 
permissible maximum limit of O3 of 0.11 ppm. Accord-
ing to Peñalosa (2014), this norm has been recently 
updated and a monitoring site satisfies the one-hour 
limit when each of its hourly concentrations is less or 
equal to 0.095 ppm.

There have been several studies based on physics, 
chemistry and statistics dealing with how ozone con-
centrations in Mexico City arise from other pollutants, 
among them Bravo et al. (1992) and Cortina-Ja-
nuchs et al. (2009). In particular, the importance of 

Table I. Information about 29 RAMA monitoring stations.

Zone Station Abbreviation Data

Northwest

Atizapán ATI 23
Cuautitlán CUT 24
FES Acatlán FAC 168
Tlalnepantla TLA 168
Tultitlán TLI 42

Northeast

Acolman ACO 87
La Presa LPR 36
Los Laureles LLA 39
Montecillo MON 166
San Agustín SAG 165
Xalostoc XAL 168
Villa Flores VIF 42

Center

Camarones CAM 42
Hospital General 
de México HGM 34
Iztacalco IZT 90
Merced MER 168
San Juan de Aragón SJA 42

Southwest

Centro de Ciencias 
de la Atmósfera CCA 5
Coyoacán COY 115
Cuajimalpa CUA 161
Pedregal PED 168
Santa Fe SFE 35
Santa Ursula SUR 165
Tlalpan TPN 138

Southeast

Chalco CHO 87
Nezahualcóyotl NEZ 42
Tláhuac TAH 167
UAM-Iztapalapa UIZ 167
UAM-Xochimilco UAX 35
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performing analyses about trends of O3 over Mexico 
City has become evident given its climatological and 
zonal characteristics, as well as its density of popu-
lation. A related paper is Reyes et al. (2009), which 
studied ozone trends via a regression model through 
the quantile function of an extreme value distribution 
that included related chemical and environmental co-
variates. The paper by Huerta et al. (2004) proposed a 
spatial-temporal model for hourly ozone concentration 
in Mexico City where temperature is included as a 
covariate and which permits estimation of missing 
values for both temperature and ozone. This model 
is capable of producing short term forecasts and of 
performing spatial interpolation of hourly O3 levels 
through a full Bayesian approach via Markov Chain 
Monte Carlo (MCMC) methods. Furthermore, Huerta 
and Sansó (2007) proposed an analysis of extremes 
for Mexico City ozone levels combining the gener-
alized extreme value (GEV) distribution with state 
space models. Among other things, their approach 
considered the flexible estimation of time-varying 
components in extreme data. On the other hand, they 
consider a block-maxima approach for periods of 
24 hours, while in this paper we consider alternative 
models that have a better interpretability in terms of 
trend behavior, a more focused time period of the data 
and a blocking scheme of a month. Loya et al. (2012) 
consider a model for which the Mexico City ozone 
concentrations follow a non-homogenous Poisson 
process which includes the relevant covariates through 
a logarithmic link. Their conclusion based only on data 
for three monitoring stations, is that the covariates 
which more impact ozone levels are temperature and 
sulphur dioxide.

In this paper, we analyze monthly maximum 
ozone concentrations for Mexico City based on 29 
stations that monitor this pollutant and for the all 
the months of the period from 2001 to 2014. Given the 
large amounts of missing information in the sta-
tion-by-station observations for this period of study, 
we computed maximum values for each of the five 
geographical zones that the RAMA uses to classify 
its monitoring stations, reported in Table I: Northwest 
(NW), northeast (NE), center (C), southwest (SW) and 
southeast (SE). The focus of our investigation is on 
21st century data behavior rather than on very long 
historical trends. Although the definition of an extreme 
value is rather ambiguous, we consider that a monthly 
maximum is of interest and representative of ozone 

events in Mexico City. Technically speaking, our paper 
assumes that monthly maximum values of O3 follow 
an extreme value distribution with a location parameter 

, where t represents an index 
of the chronological order in which the monthly max-
ima was observed, starting from January 2001 to De-
cember 2014 and including all months of the year. The 
values of the time index t run from t = 1 to t = 168. The 
sample average of all time index values is  and sd(t), is 
its corresponding standard deviation. Using a Bayesian 
approach, we assume that β0 and β1, the parameters 
of each zone, are random quantities that follow some 
random effects process. This provides a global mean 
estimate for both parameters and in particular for β1. 
This estimate can be linked to an overall trend estimate 
of how much µ, the location parameter, has changed in 
time. In addition, we compare the results obtained via 
a GEV distribution with a similar hierarchical model 
that simply assumes the observations follow a normal 
or Gaussian distribution where its mean has the form 

.

2.	 Methods
2.1 Generalized extreme value (GEV) distribution
The GEV distribution arises as a limit distribution 
as presented by Pickands (1975) and in reference 
to block maxima extreme values. The GEV dis-
tribution focuses on the statistical behavior of Zm 
= max{Y1...,Ym}, where Y1, Y2..., is a sequence of 
independent and identically distributed random vari-
ables with common distribution function G. Here m 
represents the block size used to compute Zm. A limit 
theorem shows that Zm has a distribution function F 
that is non-degenerate and belongs to the extreme 
value family which includes the Gumbel, Frechet or 
Weibull distributions. The GEV distribution unifies 
the parametric representation of the three different 
families associated to the extreme value family as 
presented, for example, by Coles (2001), Reiss and 
Thomas (2001), and Haan and Ferreira (2006). The 
GEV distribution has a cumulative distribution func-
tion of the following form:

F (z | μ, σ, ξ) = exp z – μ –1/ξ

σ– 1 + ξ [ ]( ){ }	 (1)

for z – μ
σ1 + ξ > 0( )  where µ is the location param-

eter, σ > 0 the scale parameter and ξ the shape 
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parameter. In practice, one selects a finite value of 
the block size m and treats the GEV distribution as 
a probability model to be estimated and to represent 
the observed values of Zm. This model can be as-
sessed through plots that compare empirical versus 
model-based probabilities as discussed extensively in 
Coles (2001). In our case, Zm are the monthly maxima 
of O3 levels per geographical zone in Mexico City as 
defined through Table I.

2.2 Bayesian inference
Asume we are interested on making inferences 
about an unknown set of parameters θ and that we 
have some prior beliefs about this vector, which 
can be expressed in terms of a prior probability 
density function p(θ). In addition, asume that for n 
observations Z = (Z1...,Zn) its probability distribution 
depends on θ and is expressed by f (Z|θ). Bayesian 
inference is based on p(θ|Z) the posterior probability 
distribution of θ given Z, which is computed via the 
Bayes theorem as

p(θ|Z) ∝ f (Z|θ) p(θ).

where ∝ means “proportional to”. Summaries of 
this probability distribution such as the mean, 
median or quantiles provide a few of the basic 
elements of statistical inference from a Bayesian 
perspective. In practice it is often necessary to ap-
proximate p(θ|Z) and its summaries via numerical 
methods. MCMC methods offer a flexible way 
to deal with these high dimensional integration 
problems through iterative stochastic simulation 
algorithms that provide samples from the posterior 
and/or predictive distributions of interest. These 
samples can then be summarized in terms of his-
tograms, sample means, medians or quantiles as 
illustrated in Lee (1997) and Koch (2007). Here θ 
is a generic way to represent all quantities that are 
uncertain in a statistical model. This could consider 
true parameters or unobserved data points such as 
missing or future observations.

2.3 Statistical modeling
We assume that the monthly maximum values of O3 
per geographical zone i, Z1,i...,ZT,i, are observations 
that follow a GEV distribution of the form

Zt,i  ~ GEV (µt,i, σ, ξ),	 (2)

	 (3)

where the location parameter µt,i depends on β0,i and 
β1,i. β0,i is an intercept parameter while β1,i represents 
a trend in t for the location parameter and for each 
station; t is a time index that denotes consecutive 
monthly maxima values ordered chronologically, 
while  is the mean of all the t values and sd(t) its 
standard deviation. Each value of t is associated to 
a monthly maximum zonal value that considers all 
the months of the years 2001-2014. It is worth noting 
that the grouping by geographical zone led to ob-
servations without missing values, which is a major 
issue in terms of model assessment when working 
with station level data. σ and ξ are the same for all 
stations and denote the scale and shape parameters 
of the GEV distribution as described in section 2. We 
also considered a version of our model that allows 
for σ and ξ to vary across zones and compare it to the 
constant model. The variability on the estimates of 
these parameters is very small, therefore, we decided 
to report results for the simpler model described in 
this section. We also assume that β0,i and β1,i are in-
dependent random quantities, also known as random 
effects, that follow a normal/Gaussian probability 
distribution and that are centered around the means 
m0 and m1, respectively. More specifically,

β0,i ~ N (m0, v0), β1,i ~ N (m1, v1);  i = 1,2,...,5	 (4)

where v0 and v1 represent the variances of β0,i and β1,i.
As previously described, in a Bayesian context, 

prior distributions are required for all model parame-
ters. p(m0), p(m1), p(v0), p(v1), p(σ) and p(ξ) denote the 
marginal prior distributions of m0, m1, v0, v1, σ and ξ, 
respectively. Since there is no preliminary available 
information on these parameters, we select locally 
uniform distributions with a range in (–∞, ∞) for 
m0 and m1. Since σ, v0, v1 must be quantities greater 
than zero, we chose gamma and inverse gamma 
probability distributions centered at the value 1 and 
with a large variance. For the shape parameter ξ we 
assigned a uniform prior distribution on (–0.5, 0.5) to 
impose regularity properties of the maximum likeli-
hood estimators of the GEV distribution as described 
by Coles (2001). In our analyses, this prior has not 
a significant impact on the resulting posterior distri-
bution of ξ and therefore in the analyses provided 
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in this paper, one could use other priors where ξ 
belongs to an unbounded set.

Alternatively to a model based on a GEV distribu-
tion, we also consider a model where the observations 
Zit follow a normal distribution N(µt,i, σ) where µt,i has 
the same structure as described in Eq. (3) and σ is a 
common variance across zones. For this case, µt,i is the 
mean of the observations and changes on this mean are 
estimated via the values β0,i and β1,i. The parameters 
β0,i and β1,i are also treated as Gaussian random effects.

3.	 Results
We sampled the joint posterior distribution defined 
by the model in section 2.3 using the software Open-
BUGS/Winbugs as in Lunn et al. (2000). A burn-in 
period of 10 000 MCMC iterations was performed, 
with an additional 10 000 MCMC iterations collected 
to produce posterior inferences. The MCMC produce 
samples of the posterior for all unknown quantities 
of our model and achieves convergence very quickly. 
Convergence was checked and monitored through 
history or trace plots and autocorrelation plots. In 
Figure 1 we show time series of the monthly maxima 
of O3, for the years 2001-2014 and for each of the five 
geographical zones as defined through the stations 
presented in Table I. In addition, we include a zonal 
point estimate of the median of the GEV distribution 
given by the expression µt,i + σ (log(2)–ξ–1)

ξ  (see Coles, 
2001). This posterior mean estimate was computed 
as a sample average across the MCMC simulations 
of β0,i, β1,i, σ and ξ. All the median estimates are lines 
that have a negative slope given the model parameter 
structures. There is no missing information for the 
data shown in Figure 1. However, if one attempts to fit 
a similar model to the station-by-station observations 
of Table I, the amount of missing information is so 
large that our model provides very poor predictions 
for stations where the percentages of missing data is 
50% or higher.

Figure 2 presents histograms of the posterior 
samples and density estimates of the marginal pos-
terior distribution for β0,i, i = 1,2,...,5 labeled by its 
geographical zone. The histograms are drawn by 
smoothing the MCMC samples with a density esti-
mator. Table II reports posterior summaries for each 
β0,i parameter where the indexes i = 1,2 denote the 
NW and NE zones, i = 3 represent the C zone and 
i = 4, 5 denote the SW and SE zones. The summaries 
include posterior mean estimates, posterior standard 

deviations and 95% credible intervals computed 
with the 2.5 and 97.5% quantiles. The values of β0,i 
range from 0.12 to 0.16 and the posterior standard 
deviations are very similar across zones. The southern 
zones have greater estimates of β0,i meaning that at the 
beginning of 2001, its location parameter had higher 
values. Furthermore, Figure 3 presents histograms of 
the posterior samples and density estimates of the 
marginal posterior distribution for β1,i while Table 
III reports posterior mean estimates, posterior stan-
dard deviations and 95% credible intervals for these 
parameters. It is worth noting that β1,i determines the 
rate of change in t for the median estimates of Figure 
1. The posterior mean estimates have negative values 
in all the cases. The posterior standard deviations 
have almost the same values across zones. The 97.5% 
quantile is less than zero in all cases, therefore the 
credible intervals are completely contained on the 
negative side of the real line. The posterior distri-
butions of Figure 3 confirm that the β1,i parameters 
are essentially negative with a very high probability.

In Figure 4 we present histograms and marginal 
posterior densities for m0, m1, σ and ξ according to 
the model described in section 2.3. The histograms 
are drawn by smoothing the MCMC samples with a 
density estimator. In Table IV we report some pos-
terior summaries for these parameters along with 
summaries for v0 and v1. The estimated variances of 
β0,i and β1,i around the values m0 and m1 are of the order 
of 0.01. For m1 its posterior probability distribution 
is centered at around –0.0170 with a range of values 
that covers negative and positive values. In particular, 
the posterior probability of m1 being less than zero 
given our statistical model and the data, P(m1 < 0|Z), 
is 0.6955. This value is obtained by the frequency of 
times in which m1 is less than zero over the total of 
10 000 MCMC draws of m1. The global mean of β1,i 
is negative with a moderately high probability value, 
although the probability interval of m1 includes zero. 
The estimated value of σ is around 0.02 and the shape 
parameter ξ is clearly negative which corresponds to 
a tail behavior of an inverse Weibull according to the 
extreme value distribution. Furthermore, we compare 
the resulting posterior estimates for m1 by fitting our 
model to the observations for years 2001-2006 and 
then for the observations for years 2007-2014. Our 
comparisons are illustrated in Figure 5 and estimates 
of m1 with credible intervals are reported in Table V. 
We notice that for years 2007-2014 the probability 
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density of m1 is more centered around zero than 
the density corresponding for all years (2001-2014) 
and the one for 2001-2006. In fact, the mean estimate 
of m1 for 2001-2006 is –0.0168, very close to the one 
obtained for all years, while for 2007-2014, the mean 

estimate is –0.0048. The probability for m1 being less 
than zero is equal to 0.6868 for the period 2001-2006, 
and is equal to 0.5557 for the period 2007-2014, 
which essentially gives equal chance to this global 
parameter of being negative or positive.
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Fig 1. Monthly maxima of ozone concentrations for five geographical zones of Mexico City and estimates of 
µt,i + σ (log(2)–ξ–1)

ξ  given by its posterior mean.
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In addition, Figures 6 and 7 illustrate the predic-
tive performance of our model. We pretended that 
the five observations from December 2014 were 
missing, re-fitted the model and sampled the posterior 
predictive distributions for these five cases as part of 
our MCMC runs. In Figure 6 we show out-of-sample 
histograms and densities of the marginal predictive 
distributions by zone and for December 2014. The 
triangle on the x-axis represent the actual observed 
value. As we can see from this figure, the actual ob-
served values are well contained within the support 
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Fig. 2. Posterior distributions for β0,i, i = 1...,5.

Table II. Posterior mean, posterior standard deviations 
and credible intervals for the parameter β0,i for five 
geographical zones: Northwest (NW), northeast (NE), 
center (C), southwest (SW) and southeast (SE).

Station Mean SD 95% CI

NW 0.1416 0.0017 (0.1383, 0.1450)
NE 0.1276 0.0016 (0.1245, 0.1307)
C 0.1417 0.0016 (0.1386, 0.1447)
SW 0.1645 0.0016 (0.1613, 0.1677)
SE 0.1481 0.0016 (0.1450, 0.1513)
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of the predictive distributions. In Figure 7 we show 
the posterior predictive mean (solid line) for each 
data point along with their 2.5% and 97.5% predic-
tive limits (dashed line). The predictive means and 
limits are driven by the model assumptions that were 
made. The proposed model captures time changes in 
a linear fashion and provides reasonable marginal 
predictions. In addition, Figure 8 reports informa-
tion about the µt,i parameters that define the trend 
behavior of the model. The solid lines are the values 
of the posterior mean estimates of each parameter, 
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Fig. 3. Posterior distributions for β1,i, i = 1...,5.

Table III. Posterior mean, posterior standard deviations 
and credible intervals for the parameter β1,i for five 
geographical zones: Northwest (NW), northeast (NE), 
center (C), southwest (SW), southeast (SE).

Station Mean SD 95% CI

NW –0.0183 0.0017 (–0.0215, –0.0150)
NE –0.0095 0.0016 (–0.0127, –0.0062)
C –0.0136 0.0016 (–0.0169, –0.0105)
SW –0.0268 0.0017 (–0.0301, –0.0235)
SE –0.0192 0.0017 (–0.0225, –0.0158)
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while the dashed lines define the limits of 95% 
credible intervals. The intervals tend to narrow at 
the middle of the time period of the data while the 
posterior mean values are lines with negative slope. 
Figures 7 and 8 clearly highlight the differences in 
uncertainty between prediction and parameter esti-
mation, but lead essentially to similar point estimates 
of trend behavior in the data.

3.1 Model assessment and comparison to a Gaus-
sian distribution model
For model comparisons we rely on the Deviance 
Information Criterion (DIC) as presented in, for 

Table V. Posterior summaries for years 2001-2014, 2001-
2006, 2007-2014.

Years Mean 95% CI P(m1 < 0|data)

2001-2014 –0.0170 ( –0.1072, 0.0724) 0.6955
2001-2006 –0.0168 (–0.1067, 0.0739) 0.6868
2007-2014 –0.0048 (–0.0909, 0.0811) 0.5557

Table IV. Posterior summaries for parameters m0, m1, v0, 
v1, σ and ξ.

Parameter Mean SD 95 % CI

m0 0.1449 0.0465 (0.0551, 0.2338)
m1 –0.0170 0.0456 (–0.1072, 0.0724)
v0 0.01 0.0167 (0.0018, 0.0390)
v1 0.0099 0.0157 (0.0018, 0.0414)
σ 0.0200 5.4E – 4 (0.0190, 0.0211)
ξ –0.1670 0.0224 (–0.2087, –0.1212)

−0.6 −0.4 −0.2
m1

0.0 0.2 0.4

0
2

4
6

8
D

en
si

ty
 v

al
ue

s
10

12

2001−2014
2001−2006
2007−2014

Fig. 5. Probability densities for parameter m1 for all years 
2001-2014, 2001-2006 and 2007-2014.

Fig. 4. Histogram of posterior samples and densities for parameters m0, m1, σ and ξ.
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example, Banerjee (2014). In short, DIC is a metric 
that combines goodness of fit with model complexity 
into a numerical summary. The goodness of fit is 
measured through a deviance statistic that uses the 
log-likelihood function of the formulated model. 
Model complexity provides an estimate of the effec-
tive number of parameters. Alternatively, DIC can 

be computed as the posterior mean deviance minus 
the deviance at the posterior mean of the parame-
ters. Therefore, this metric can be easily calculated 
via MCMC methods and can be monitored with the 
Openbugs software. Similar to the Akaike Informa-
tion Criterion (AIC), models that achieve smaller 
values of DIC are considered to be better. For the 
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Fig. 6. Out of sample predictive distributions for December 2014 shown by zone.
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O3 monthly zonal maxima of 2001 to 2014, and the 
proposed model of section 2.3 based on the GEV 
distribution, the DIC value is equal to –4069 with an 
effective number of parameters equal to pD = 11.98. 
On the other hand, for the model based under the 
assumption that the observations follow a Gaussian 
distribution, the DIC value is equal to –4045 with an 
effective number of parameters equal to pD = 11.46. 
In terms of these DIC criteria, the GEV model pro-
vides a better fit to our monthly maxima data relative 
to a model where the observations are assumed to 

follow a normal distribution. We consider that DIC 
identifies the GEV model as a better model, since 
it is capable of capturing observations at the tails 
that a simple normal distribution may not be able to 
represent well. However, some of the results of our 
analyses under a normal model are comparable to the 
model based on the GEV distribution. For example, 
the posterior mean estimate of m1 under the normal 
model is –0.01804, with a posterior standard devi-
ation equal to 0.04566 and a 95% credible interval 
equal to (–0.1076,0.0700). The posterior probability 
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Fig. 8. Posterior means for µt,i, i = 1,2,...,5 represented by solid red lines and their 95% credible intervals 
(dashed lines) shown by zone.

that m1 is less than zero, P(m1 < 0|data) = 0.6981. 
For m0, its posterior mean is equal to 0.1537, with 
a standard deviation of 0.04361 and a 95% credible 
interval of (0.067, 0.2419).

The linearity assumption on µ is a basic assump-
tion to represent non-stationarities in a GEV distri-
bution framework. More general non-linear models 
based on the state model framework had been studied 
in Huerta et al. (2004) and Huerta and Sansó (2007). 
Certainly these models offer an interesting alternative 

to the statistical models proposed in this paper. How-
ever these models are harder to estimate and require 
a very careful assessment of MCMC convergence. 
They also lack the simplicity of interpretability of 
the trend estimation through the m1 parameter that 
we offer in this paper. Furthermore, based on the 
posterior mean estimates of the model parameters, 
we considered residual probability plots for the GEV 
model specification as in Coles (2001) and qq-plots 
for the normal/Gaussian model. Figure 9 shows an 
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example of these graphs for the observations corre-
sponding to the NW zone. The probability plot for 
the GEV distribution follows closely the identity line, 
while the qq-plot shows some deviation from the qq-
line for the largest values. The graphs for other zones 
are comparable and in some cases (C and SW 
zones) do not give any indication of lack of fit for 
the Gaussian model.

We also fitted a model where both the scale and 
shape parameter of the GEV distribution depend on 
the zone, so that Yit follows a GEV (µit, σi, ξi) distri-
bution where each σi has a gamma prior distribution 
and each ξi follows a U(–0.5, 0.5) distribution, 
i = 1,2,...,5. The posterior mean estimates vary from 
0.018 to 0.022 while the estimates for ξi go from 
–0.13 to –0.18. On the other hand, the DIC value 
for this other model equals –4063 with the number 
of effective parameters equal to 19.04. The better 
model still remains to be the one where both σ and 
ξ are constant across the zone. However, notice that 
the resulting m1 posterior mean estimate is now 
equal to –0.0172 with a 95% credible interval of 
(–0.102, 0.07014).

4.	 Conclusions and other considerations
We have presented an application of the theory of 
extreme values in combination with Bayesian sta-
tistical modeling for a set of monthly maxima O3 
measurements derived from the RAMA network 
in Mexico City, and with the purpose of character-
izing some of the behavior of these measurements 
along the years 2001-2014. Our analyses show that 

there is some evidence of decaying levels for these 
21st century monthly maxima. We are also able to 
provide an overall estimate of the trend change, the m1 
parameter, which pulls information from all the zonal 
data into a unique estimate along with probabilities 
estimates of this parameter being negative. For more 
recent observations corresponding to 2006-2014, the 
m1 does not provide any evidence of trend behavior 
for the ozone maxima.

An interesting alternative approach to the one 
proposed in this paper, is to treat β0,i and β1,i as 
spatial random effects rather than as pure random 
effects. This falls within the context of spatial areal 
data modeling as in Banerjee (2014). Along with the 
MCMC methods, this involves the specification of a 
5 × 5 adjacency matrix to define spatial associations 
between the five zones of interest. In a preliminary 
analysis of this type of modeling, for a situation 
where the center zone is neighbor of any other zone, 
the northern zones are neighbors only of each other 
and the center zone, and the southern zones are neigh-
bors of each other and of the center, we found that 
the posterior mean estimate of m1 is –0.0175, with 
a 95% credible interval equal to (–0.019, –0.016). 
Other parameter estimates resulted very similar to the 
model that treats the parameters as random effects 
exclusively. The question still remains open in terms 
of deciding an appropriate neighborhood structure for 
the spatial random effects, and whether this type of 
models provide a more appropriate representation of 
the ozone maxima analyzed in this paper as compared 
to a pure random effects model.

Fig. 9. Residual probability plot for GEV model (left) and qq-plot for Gaussian model (right) based on posterior mean 
estimates of the parameters. Northwest zone.
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