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RESUMEN

Este trabajo presenta un estudio de la respuesta de la variabilidad simulada de la temperatura global a para-
metrizaciones estocásticas aditivas y multiplicativas de flujos de calor, junto con una descripción de la varia-
bilidad de largo plazo en términos de procesos autorregresivos simples. Para simular la temperatura global 
de la Tierra se utilizó un modelo climático de balance de energía promediado globalmente, acoplado a un 
modelo oceánico termodinámico. Se encontró que procesos autorregresivos simples explican la variabilidad 
de la temperatura en el caso de parametrizaciones aditivas; sin embargo, en el caso de parametrizaciones 
multiplicativas, la descripción de la variabilidad de la temperatura involucraría procesos autorregresivos de 
orden superior, lo cual sugiere la presencia de mecanismos complejos de retroefecto originados por el for-
zamiento multiplicativo. Asimismo, se encontró que las parametrizaciones multiplicativas produjeron una 
estructura compleja que emula de manera cercana procesos climáticos observados. Finalmente, se propone 
un nuevo enfoque para describir la estabilidad de un sistema estocástico general unidimensional en estado 
estacionario, a través de su función potencial. A partir de una expresión analítica de la función potencial se 
profundizó en la descripción de un sistema estocástico.

ABSTRACT

This work presents a study of the response of the simulated global temperature variability to additive and 
multiplicative stochastic parameterizations of heat fluxes, along with a description of the long-term vari-
ability in terms of simple autoregressive processes. The Earth’s global temperature was simulated using a 
globally averaged energy balance climate model coupled to a thermodynamic ocean model. It was found that 
simple autoregressive processes explain the temperature variability in the case of additive parameterizations; 
whereas in the case of multiplicative parameterizations, the description of the temperature variability would 
involve higher order autoregressive processes, suggesting the presence of complex feedback mechanisms 
originated by the multiplicative forcing. Also, it was found that multiplicative parameterizations produced 
a rich structure that emulates closely observed climate processes. Finally, a new approach to describe the 
stability in the steady state of a general one-dimensional stochastic system, through its potential function, 
was proposed. From an analytical expression of the potential function, further insight into the description of 
a stochastic system was provided.

Keywords: Temperature variability, stochastic parameterizations, autoregressive process, steady state, po-
tential function.
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1.	 Introduction
Estimating the effects that unresolved processes in 
the discretized domain (also called sub-grid scale 
processes) have on the variables of large scales (those 
that are resolved by the grid) is a central issue in 
climate modeling. Recently, the use of random pro-
cesses for modelling events at these sub-grid scales 
has become a successful alternative to address the 
problem of unresolved scales (Benzi et al., 1981, 
1982, 1983; Monahan et al., 2008; Williams, 2005; 
Penland and Ewald, 2008; Wilks, 2008). Neverthe-
less, the use of short-term random variations to mimic 
the behavior of processes of sub-grid scale signifi-
cantly affects the dynamics of the climate system in 
the long term. The so-called dynamical-stochastic 
climate models are useful tools to try to explain the 
features and behavior of a climate model forced with 
random noise (von Storch and Zwiers, 1999).

Within the hierarchy of climate models of the at-
mosphere and ocean there are simple climate models 
(North et al., 1981; McGuffie and Henderson-Sellers, 
2005; IPCC, 1997). The main application of these 
simple models is to advance in the understanding 
of the underlying dynamics of the climate system 
from a zero-order perspective. Specifically, various 
studies suggest that climate variability can be seen, 
to first order, as a simple auto-regressive process of 
order one or two (Hasselmann, 1976; von Storch 
and Zwiers, 1999; Mudelsee, 2010). It is therefore 
of interest to use a simple climate model driven by 
stochastic forcing to estimate the effect of random 
variability on some key factors of the climate system.

The first goal of this paper is to study the effects 
of stochastic parameterizations of heat fluxes on the 
variability of the global temperature, considering 
additive and multiplicative noise. The Earth’s global 
temperature was simulated using a globally averaged 
energy balance climate model (EBCM) coupled to 
a thermodynamic ocean model, driven by stochastic 
forcing (stochastic EBCM). The differences between 
additive and multiplicative stochastic forcing were 
investigated and the long-term variability was de-
scribed in terms of simple autoregressive models. 
From this study, an increased understanding of the 
description of the climate variability in the context 
of stochastic systems was obtained.

Additionally, studying a stochastic system through 
its potential function is important because it allows 
learning about its stability and behavior in the steady 

state. A number of studies describe a one-dimensional 
stochastic system driven by additive noise through its 
potential function (Nicolis and Nicolis, 1981; Wilks, 
2008). However, the description of a one-dimensional 
stochastic system driven by multiplicative noise has 
not been sufficiently studied. So, the second goal 
of this paper is to provide further insight into the 
description of a general one-dimensional stochastic 
system through the concept of potential function, 
which will allow a simplified description of an in-
herently complex system.

2.	 Deterministic climate model
The box-advection-diffusion model developed by 
Harvey and Schneider (1985) was used. This model 
represents a globally averaged energy balance climate 
model coupled to a one-dimensional, globally aver-
aged ocean model. The ocean model consists of an 
isothermal mixed layer coupled to an advective-dif-
fusive deep ocean (Fig. 1). The equations governing 
the evolution of the atmospheric temperature, TA (t), 
the oceanic mixed layer temperature, TS (t), and the 
deep ocean temperature, θ(t, z), where t represents 
time and z represents the depth of the ocean, are: 

 = QA + L↑ – L↓ – Lout + H + LE,	 (1)

 = Qs – L↑ + L↓ – H – LE + Qdif + Qadv,	 (2)

∂θ = (ωθ),–k( )∂t
∂θ
∂z

∂
∂z

∂
∂z       h < z < D,	 (3)

θ (t,z = h) = Ts,         θ(t,z = D) = θB.     (Boundary
	 conditions)

In the governing equations QA (68.4 W/m2) is 
shortwave radiation absorbed by the atmosphere, QS 
(171.0 W/m2) is shortwave radiation absorbed by the 
oceanic mixed layer, L↑ is upward emitted surface 
longwave radiation, L↓ is downward emitted atmo-
spheric longwave radiation, Lout is longwave radiation 
emitted to space at the top of the atmosphere, H is 
turbulent sensible heat flux, LE is latent heat flux, 
Qdif is diffusive heat flux and Qadv is advective heat 
flux. These heat fluxes are given by the following 
conventional deterministic parameterizations, whose 
physical parameters and used values are listed in 
Table I. 
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L↑ = ε1σTS
4, LE = C2 (eS – ea),

Qdif = Cω k

Qadv = –Cωw (h) [θ(h) – θB],
z=h( )∂θ

∂z
L↓ = ε2σTA

4 [0.89 – 0.2 (10–0.07ea)],

Lout = A + BTA – C FCL ∆TS,CL, 

H = C1 (TS – TA), 

with the surface saturation vapor pressure (es [mbar]) 
and atmosphere vapor pressure (ea [mbar]) calculated 
using a fixed relative humidity r = 0.71,

log10eS = 9.4051 – 2354 K/TS,  ea = reS.

According to the results of Kunze et al. (2006) 
and Wunsch and Ferrari (2004), in a global average it 
is appropriate to use constant values of the diffusion 
coefficient, k, and of the speed of advection, ω. For k a 
constant value (1.0 ×10–5 m2/s) was used, whereas for 
the advection speed a steady profile which decreases in 
magnitude with depth z was used, ω(z) = 0.045 cm/day 
[–1 + 0.08 tanh (0.001 m–1 • z – 0.03)]. 

To integrate numerically the advection-diffusion 
equation (Eq. [3]) a modified version proposed by 
Grima and Newman (2004) was used. The first deriv-
ative (both temporal and spatial) was approximated as 
a simple forward finite difference, whereas a central 
differences scheme was used for the higher order 
derivatives. A time step of one day and a vertical grid 
with 297 points with spacing of 10 m were used. The 
model was started from initial conditions TA (t = 0) = Ts 
(t = 0) = θ (t = 0, z) = θB, and integrated until an equi-
librium state was reached after 3000 years (Table II). 
This state was then used as the initial condition for 
the stochastic formulation of the climate model.

Table I. Physical parameters and used values.

Parameter Used value

RA: Heat capacity of an
atmosphere 8.5 km-depth 11.043913 MJ/(m2K)
Rs: Oceanic mixed layer
heat capacity 128.658000 MJ/(m2K)
h: Oceanic mixed layer depth 30 m
D: Bottom depth of deep ocean 2970 m
θB: Bottom water temperature 3.4 oC
σ: Stefan-Boltzmann constant 5.67 × 10–8 W/(m2K4)
ε1: Emisivity coefficient 0.91
ε2: Emisivity coefficient 0.82
A: Longwave radiation
flux coefficient –251 W/m2

B: Longwave radiation
flux coefficient 1.8 W/(m2K)
C: Longwave radiation
flux coefficient 1.73 W/(m2K)
FCL: Area weighted mean
annual cloud amount 0.6
ΔTs,CL: Surface to cloud
top temperature difference 32.34 K
C1: Turbulent sensible heat
flux coefficient 12.57 W/(m2v)
C2: Latent heat flux coefficient 12.65 W/(m2mbar)
Cω: Volumetric heat capacity
of the water 4288600 J/ (m3K)
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Fig. 1. The globally averaged box-advection-diffusion 
model. The straight arrows in the deep ocean represents 
advection and the wavy arrows represent diffusion. Also 
illustrated is a thermohaline circulation. Image taken from 
Harvey and Schneider (1985).
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3.	 Stochastic climate model
One of the goals of this work is to study the response 
of the global temperature variability to perturbations 
represented by both additive and multiplicative noise 
terms. According to Deser et al. (2010), the energy 
fluxes from the ocean to the atmosphere strongly 
depend on a single oceanic quantity, the sea surface 
temperature (SST), which then represents a key factor 
regulating climate and its variability. Additionally, the 
heat fluxes from the ocean to atmosphere depend on 
several atmospheric parameters like air temperature, 
wind speed, humidity and cloudiness.

Therefore, the following regimes of stochastic 
forcing were considered: (1) random variations of the 
net flow of energy into the ocean (represented as ad-
ditive noise), and (2) random variations in the upward 
emitted surface longwave radiation (represented as 
multiplicative noise). The reason for considering only 
a physical process was to separate the effect of each 
one of them on the evolution of the ocean-atmosphere 
system. The derivation of stochastic differential 
equations for each of the proposed cases is presented 
below, where the relevant stochastic processes were 
introduced using white noise, i.e., in form of incre-
ments of a Wiener process (Higham, 2001). 

3.1 Additive noise: random forcing in the ocean
This stochastic forcing can be seen as a radiative 
forcing (W/m2), i.e., it can be understood as fast 
random atmospheric heat flux fluctuations that are 
disturbing the energy flow from the atmosphere into 
the oceanic mixed layer,

Qs → Qs + βs ξ (t),

where βs is a parameter which regulates the intensity 
of the fast random radiative forcing and ξ(t) is a 
Gaussian white noise process. In terms of incre-
ments of a Wiener process (dW = ξ[t] dt), the Ito 
version of the stochastic differential equation for Ts 
is expressed as

dTs =  (Qs + L↓ – L↑ – H 

– LE + Qdif + Qadv) dt +  dW.	 (4)

The random term in (4) (βs dW/Rs) does not de-
pend on the state of the system, so the random term 
represents additive noise.

3.2 Multiplicative noise: stochastic parameteriza-
tion of L↑
The proposed stochastic parameterization of the heat 
flux L↑ considers that the emissivity coefficient ε1 is 
not constant in time, but fluctuates randomly follow-
ing a Gaussian distribution around its deterministic 
value. The emissivity coefficient ε1 was replaced 
according to

ε1 → ε1 + β1 ξ (t),

where β1 regulates the intensity of the fluctuations 
of the new coefficient of emissivity. This results in a 
state-dependent (multiplicative noise) parameteriza-
tion of L↑, i.e., the values of L↑ are dependent on Ts, 
L↑ = [ε1 + b1 ξ (t)] σ TS

4. So, the resulting equations 
for TA and Ts represent Stratonovich stochastic dif-
ferential equations,

dTA = (QA + ε1σTS
4 – L↓ – Lout

1
RA

+ H + LE) dt + β1 σTS
4 dW,1

RA

	 (5)

dTS = (QS + L↓ – ε1σTS
41

RS

– H – LE + Qdif + Qadv) dt – β1 σTS
4 dW.1

RS

	 (6)

In order to apply the standard methods of Ito 
calculus, these equations were ex-pressed in terms 
of the Ito formulation (Jacobs, 2010),

dTA = dt + gAdW,RA

RS
fA – gA

2( ) 2
TS

	 (7)

Table II. Mean values of atmospheric and oceanic mixed 
layer temperatures and of heat fluxes as obtained in the 
steady state. A value of 342 W/m2 for the global average 
insolation I at the top of the atmosphere was used.

Temperature Heat flux W/m2 %I

Ta = 17.66 ºC L↑ 376.11 109.97
TS = 19.04 ºC L↓ 304.96 89.17

Lout 238.88 69.85
QS 171.00 50.00
LE 81.90 23.95
Qa 68.40 20.00
H 17.43 5.10

Qadv 0.35 0.10
Qdif –0.86 0.25
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dTS = dt + gS dW,fS + gS
2( ) 2

TS
	 (8)

where the following functions have been defined,

fA = (TA, TS) ≡ (QA + ε1σTS
4 – L↓ – Lout + H + LE),1

RA

fS = (TA, TS) ≡ (QS + L↓ – ε1σTS
4 – H – LE + Qdif

+ Qadv),

1
RS

gA (TS) ≡ β1σTS
4,1

RA

gS (TS) ≡ – β1σTS
4,1

RS

For each case, the Ito stochastic differential equa-
tions (Eqs. [4], [7] and [8]) were solved numerically 
and the corresponding sample paths were obtained. A 
time step of one day for both the discretized Brownian 
path and for the Euler-Maruyama numerical integra-
tion was used (Higham, 2001). The simulation time 
was 2000 years.

4.	 Results
In this section the evolution of the atmosphere-ocean 
system was investigated. The short-term and long-
term variability for additive and multiplicative 
forcing were analyzed and the null hypothesis for 
climate variability proposed by Hasselmann (1976) 
was tested. This hypothesis states that to a first order 
of approximation, the long-term variability can be 
explained by a simple autoregressive process.

4.1 Additive noise: random forcing in the ocean
Figure 2 shows a scatter plot of the standardized anom-
alies series of Ts and TA for the daily and annual time 
scales. This figure hints at a positive correlation in the 
daily scale, with a Pearson’s correlation coefficient of 
0.9906, which gets stronger in annual scales, with a 
Pearson’s correlation coefficient of 0.9998. Due to the 
interconnection of the ocean-atmosphere system and 
to the fact that climatic processes are predominantly 
determined by the ocean, it is possible to define a 
causality relation between the two temperatures: the 
atmosphere’s evolution is strongly determined by the 
ocean’s state, i.e., “the atmosphere follows the ocean”.

To see the behavior of the ocean-atmosphere 
system, Figure 3 shows the time series of the 
standardized anomalies of TA and Ts and their cor-
responding autocorrelation function (ACF), for 
the daily and annual time scales. In Figure 3a it is 
observed that in short time scales the ocean tem-
perature has more variability than the atmospheric 
temperature. This is just a consequence of the 
mathematical fact that the stochastic forcing was 
added to the flux of incident energy into the ocean, 
causing short-term random variations in Ts (one day 
in the numerical model).

The ACFs of TA and Ts decay very slowly in the 
daily time scale (Fig. 3b), with significant correlations 
at 4380 lags (12 years). Despite the slow decay rate of 
the ACFs, both of the daily time series are stationary, 
which was proved by the Augmented Dickey-Full-
er test (see Appendix A). It is clear that due to the 
larger heat capacity of the ocean with respect to the 
atmosphere, the persistence of the ocean should be 
higher than the persistence of the atmosphere. How-
ever, due to the structure of the random forcing (no 
state-dependent noise), the persistence of both atmo-
sphere and ocean is exactly the same (Fig. 3b, c, d), 
which is unrealistic.

To test the null hypothesis for climate variability, 
simple autoregressive models were fitted to the stan-
dardized anomalies of TA and Ts (see Appendix A). 

Daily data:

TA (t) = 1.836 • TA (t – 1) – 0.836 • TA (t – 2) 
	 + ξN(0,0.011) (t),

Ts (t) = 0.997 • Ts (t – 1) + ξN(0,0.074) (t).
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Fig. 2. Scatter plot of the standardized anomalies series 
of TS and TA for the daily and annual time scales. Random 
forcing in the ocean.
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Annual data:

TA (t) = 0.6845 • TA (t – 1) + ξN(0,0.7193) (t),

Ts (t) = 0.6846 • Ts (t – 1) + ξN(0,0.7191) (t). 

Figure 4 shows smoothened Fourier spectra 
of the standardized anomalies of TA and Ts for the 
daily and annual time scales, which were calculated 
averaging eight replicated spectra without overlap 
(Wilks, 2011) and compared with the theoretical 
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Fig. 3. Time series and ACFs of the standardized anomalies of TA and 
TS for the daily and annual time scales. Random forcing in the ocean.
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Fig. 4. Smoothened Fourier spectra of the standardized anomalies of TA and TS, and 
theoretical spectra of the corresponding fitted autoregressive models. Random forcing 
in the ocean.
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spectra of the corresponding fitted autoregressive 
models. The light-gray line stands for the atmo-
sphere sample spectrum and the dark-gray line 
for the ocean sample spectrum. The solid and 
dashed lines indicate the theoretical spectrum of 
the estimated autoregressive model and the 95% 
confidence level for the ocean, respectively. The 
dashed-dotted and dotted lines indicate the theoreti-
cal spectrum of the estimated autoregressive model 
and the 95% confidence level for the atmosphere, 
respectively.

The strong coupling between ocean and atmo-
sphere is demonstrated by the high grade of sim-
ilarity between their spectra. Both spectra show a 
higher spectral density at low frequencies and lower 
density at high frequencies (red noise or positive 
persistence processes). The theoretical spectra of the 
fitted autoregressive models were used to prove the 
statistical significance of the higher amplitudes of the 
corresponding sample spectra. The analysis revealed 
that with 95% confidence level, the variability of 
the ocean and atmosphere temperatures could be 
described in terms of purely random processes. For 
the case of additive forcing the obtained response is 
entirely consistent with the Hasselmann’s hypothesis 
of climate variability, although some results of this 
case are unrealistic.

4.2 Multiplicative noise: stochastic parameteriza-
tion of L↑
The proposed stochastic parameterization of L↑ 
yields some interesting results, the first of which 
concerns the anticorrelation between ocean and atmo-
sphere temperatures (Figs. 5 and 6a). The Pearson’s 
correlation coefficient has a value of –0.8426 for 
the daily time scale and a value of –0.3965 for the 
annual time scale.

In the deterministic steady state both fA and fs are 
zero (i.e., the heat fluxes in the ocean-atmosphere 
system are balanced) and then they do not affect the 
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evolution of global temperatures. So, the anticor-
relation is caused by the random terms gA and gs. An 
explanation of this behavior emerges by considering 
a discretized version of Eqs. (7) and (8), in which the 
deterministic terms are null (fA = fS = 0),

ΔTA = Δt + gAΔW,RA

RS
– gA

22
TS

ΔTS = Δt + gSΔW.gA
22

TS

Combining these equations, it is obtained

ΔTA = ΔTS,
RS

RA
– 	 (9)

which explains the negative correlation between 
TS and TA and the relative amplitude of their varia-
tions, given by the quotient RS/RA (≈ 11.65). In fact, 
stochastic parameterizations of any heat flux will 
produce a similar anticorrelation pattern, a loss of 
energy by the atmosphere (decreases in TA) will be 
balanced by a gain of energy by the ocean (increases 
in TS), and vice versa. The anticorrelation will not be 
perfect due to the differences in the heat capacity of 
the atmosphere and ocean. 

Anticorrelated multidecadal variations between 
SST and subsurface ocean temperature has been re-
ported for the tropical North Atlantic (Zhang, 2007). 
Further insight into this anticorrelation might be ob-
tained in the frame of simplified stochastic models. 
It is speculated that a similar mechanism might be 
present between the surface and the subsurface ocean 
temperatures.

As it is expected, the persistence of the ocean is 
higher than the persistence of the atmosphere (Fig. 6b). 
The ocean integrates the random short-term atmo-
spheric variations producing an amplified response on 
the long-term variability due to its large heat capacity 
(Dommenget and Latif, 2002). For the annual time 
scales and due to the strong anticorrelation between 
atmosphere and ocean, the integration of the short-
term variations produced a positive high long-term 
persistence for the ocean temperatures and a nega-
tive low long-term persistence for the atmosphere 
temperatures (Figs. 6c, d). The observed negative 
feedback in the atmosphere in the annual time scales 
causes the atmosphere temperature to oscillate rap-
idly around its mean value.

To investigate the null hypothesis of climate 
persistence, simple autoregressive models were fit-
ted to the standardized anomalies of TA and TS (see 
Appendix A). 

Daily data:

TA (t) = 0.840 • TA (t – 1) + ξN(0,0.543) (t),

Ts (t) = 0.891 • Ts (t – 1) + ξN(0,0.453) (t).

Annual data:

TA (t) = –0.176 • TA (t – 1) + ξN(0,0.996) (t),

Ts (t) = 0.648 • Ts (t – 1) + ξN(0,0.751) (t).

The estimations indicate that for the daily time 
scale the fitted models for the atmosphere and ocean 
are very similar, which suggests that for short peri-
ods the same autoregressive model can be used to 
describe the short-term variability of the atmosphere 
and the ocean. However, the atmosphere has a greater 
standard deviation of white noise than the ocean, 
which leads to a greater variability in the short term 
with respect to the ocean. For the annual time scale, 
the atmosphere has a low negative persistence, while 
the ocean has a positive persistence. These features 
are better represented by the Fourier spectra of both 
standardized anomalies (Fig. 7). Nomenclature is the 
same as for the additive noise case. 

At long periods (> 4 years) there is a net energy 
flux towards the ocean such that the spectral density 
of TS continues to increase with decreasing frequency, 
being unbounded at these frequencies (< 0.25/year). 
Its spectral density is higher than that of the fitted 
autoregressive model at long periods. So, the TS 
long-term variability cannot be described using a 
simple autoregressive process and the null hypothe-
sis of climate variability must be rejected (Fig. 7a). 
However, for the annual average the TS long-term 
variability can be very well described by a simple 
autoregressive model (Fig. 7b).

The unboundedness of the TS spectrum for the 
daily data, characteristic not observed in the case 
of additive (no state-dependent) noise, was entirely 
caused by the inclusion of multiplicative (state-de-
pendent) noise. A comparable spectrum behavior was 
reported by Dommenget and Latif (2002), who com-
pared spectra of observed monthly mean SST with 
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simulations carried out with fully dynamical ocean 
models. They found an increased variance of the SST 
on seasonal and decadal time scales relative to the 
fitted AR(1) process. This continuous reddening of 
the spectrum at long time scales could be originated 
by many different dynamical processes interacting 
and producing variance at these time scales (Vallis, 
2010). In the present work, nevertheless, the only 
reason for such behavior was the inclusion of mul-
tiplicative noise.

Concerning the TA long-term variability (Fig. 7a, b), 
it is observed that the spectral density of TA for both 
time scales is lower than the spectral density of the 
fitted autoregressive model at long periods. So, 
the TA long-term variability cannot be adequately 
described using a simple autoregressive process 
and the null hypothesis of climate variability must 
be rejected. Also, a negative feedback (increas-
ing spectral density with increasing frequency) 
in the atmosphere is observed. Negative climate 
feedbacks have been documented in literature. 
Kärner (2002) carried out a statistical analysis for 
satellite-based global daily tropospheric (6-8 km 
depth) and stratospheric (15-19 km depth) tem-
perature anomalies, from 1979 to 2001. He found 

antipersistency in the daily increments of the tro-
pospheric temperature for scales longer than two 
months, pointing at a negative feedback governing 
the tropospheric variability.

The determining factor for long-term persistence 
in an AR(1) process is the persistence term (Wilks, 
2011; Brooks, 2008). The equations that describe the 
evolution of atmospheric and oceanic temperatures 
contain state-dependent noise, which introduces a 
reformulation of the underlying deterministic behav-
ior that governs them (Eqs. [7] and [8]). Thus, more 
complex feedbacks between the two components are 
incorporated, which do not correspond to a simple 
autoregressive process. The complexity of these 
feedback mechanisms can lead to more complex 
time series models or to non-linear models (Mudel-
see, 2010). Further research is needed to address the 
complexity of these mechanisms.

5.	 Potential function in the steady state of a sto-
chastic system
This section reviews the calculation of the potential 
function in the steady state of a system described by 
a one-dimensional general Ito stochastic differential 
equation,
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Fig. 7. Smoothened Fourier spectra of the standardized anomalies of TA and TS, and 
theoretical spectra of the corresponding fitted autoregressive models. Stochastic 
parameterization of L↑.
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dx = ƒ(x,t) dt + g (x,t) dW,	 (10)

where x (t) is the stochastic process, t is time, ƒ(x,t) is 
the deterministic term, g(x,t) is the random term and 
dW are the increments of a Wiener process. Knowl-
edge of the potential function in the steady state shall 
provide useful information about the behavior of x (t) 
when t → ∞, independently of the initial conditions 
taken on Eq. (10). 

Based on the probability density function (PDF) in 
the steady state, the potential function V (x) is defined. 
It is assumed that in the steady state it is possible to 
establish a correspondence between the PDF and the 
potential function V (x). The aim of this section is to 
show a general procedure to calculate an analytical 
expression for the potential function associated to a 
general one-dimensional Ito stochastic differential 
equation.

The traditional approach (of classical physics) 
applied to the calculus of the potential function con-
siders it in terms of a generalized force. This approach 
has been used in the analysis of one-dimensional 
stochastic differential equations forced with addi-
tive noise (g = constant). Nicolis and Nicolis (1981) 
and Wilks (2008) found the following expression to 
calculate the potential function V̂(x),

ƒ(x) = – ,	 (11)

which coincides with the deterministic case g = 0, 
usual in classical physics. However, in the case of 
one-dimensional stochastic differential equations 
forced with multiplicative noise (g = g[x]), an ana-
lytical expression for the calculation of the potential 
function is not available.

Unlike the traditional approach (Eq. [11]), the 
definition of the potential function here is in terms 
of the steady PDF of the stochastic process, and 
not in terms of a generalized force. From the steady 
PDF P(x), the extrema of P(x) were found, which 
ought to be equal to the extrema of V(x). Then, in 
order to ensure the correspondence between P(x) 
and V(x), it had to be ensured that the maxima of 
P(x) corresponded with the minima of V(x) and vice 

versa, which was proven by applying the criterion 
of the second-order derivative. This ensures that 
V(x) characterizes the PDF globally, not just at the 
extrema1.

In order to illustrate this new approach, the sto-
chastic system in Eq. (10) with reflecting boundaries 
conditions within the domain x ∈ [a, b] was consid-
ered. The expression for its steady probability density, 
obtained form solving the Fokker-Planck equation, 
is (Jacobs, 2010)

P(x) = duexp , [ ]ſNg2(x) 
1 x

a g2(u) 
2f (u) 	 (12)

where N is a normalization constant that satisfies 
P(x) = 1. The first-order derivative of P(x) is

 =  +[ , ]dx dx2 
g(x)   ds(x)

dx
dg(x)

Ng3(x) 
2eS(x)dP(x)

	 (13)

with 

s (x) ≡ du.ſ x

a g2(u) 
2f (u)

	 (14)

Thus, the potential function V (x) can be defined 
through the relation

 ≡  + , dx dx2 
g(x)   ds(x)

dx
dg(x)dV(x)

	 (15)

which guarantees that P(x) and V(x) have the same 
extrema xc. In order to ensure that V(x) character-
izes the PDF globally, the maxima of P(x) have to 
coincide with the minima of V(x), and vice versa. 
The second-order derivative of P(x) evaluated at the 
extrema xc is

 = .[ ]dx2
xc

Ng3(x) 
2eS(x)d 2P(x) [ ]dx2

xc

d 2V(x)
	 (16)

1The criterion of the second-order derivative, used in differential calculus, is useful for finding relative maxima and 
minima.
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Considering g (x) < 0 ∀x, the expression (16) 
becomes

∝ – ,[ ]dx2
xc

d 2P(x) [ ]dx2
xc

d 2V(x)
	 (17)

and the condition that the maxima of P(x) coincide 
with the minima of V(x), and vice versa, is fulfilled. 
If g(x) > 0 ∀x it is sufficient to define the potential 
function with a global minus sign to ensure that 
Eq. (15) remains valid. On the other hand, if g(x) 
shows alternations of sign within the considered 
domain, the total domain can be divided into sub-
intervals where the function g(x) has a unique sign. 
Then the described procedure can be applied to each 
subinterval performing the adequate modifications.

By substituting Eq. (14) into Eq. (15) and using 
Leibniz’s rule, the final expression for calculating the 
potential function in the steady state is

 ≡  + , dx g(x)
f(x)

dx
dg(x)dV(x)

	 (18)

where it was assumed that ƒ is a C2 class function 
and g is a C1 class function.

In the case of additive noise (g[x] = constant and 
not null) Eq. (18) is reduced to the expression found 
by Nicolis and Nicolis (1981) and by Wilks (2008) 
(Eq. [11]). Despite the fact that the general procedure 
to calculate the potential function described here was 
developed considering reflecting boundaries, it is 
suitable for application to other types of boundary 
conditions.

The result expressed by the relation in Eq. (18) 
evidences that the potential function associated with 
a stochastic process depends strongly on the random 
term g (x). The behavior of the system can be modi-
fied considerably regarding its deterministic behavior 
(g = 0) or its behavior with additive noise forcing (g = 
constant), by the presence of state-dependent stochas-
tic forcing (g = g[x]). So, the approach shown here 
for the calculation of the potential function represents 
a useful tool for the analysis of a stochastic system 
of the kind expressed in Eq. (10) in the steady state.

5.1 Application to the stochastic climate model
The approach shown above is not applicable to cou-

pled systems. For that purpose further investigation 
is required. It is not possible to apply this procedure 
to the stochastic climate model developed in this 
work. Nevertheless, if some strong considerations 
are taken, it is possible to calculate the potential 
functions which determine the behavior of TA and Ts 
in the steady state.

Even though Eqs. (4) (for additive noise) and (7) 
and (8) (for multiplicative noise) involve the three 
temperatures TA, Ts and θ, these equations can be 
considered univariate after the substitution of the 
independent variables for their value in the determin-
istic equilibrium (Table II). This is adequate because 
the structure and intensity of the introduced stochastic 
forcings (section 3) are such that temperatures TA and 
Ts oscillate exclusively around their values in the 
deterministic equilibrium. That is, the calculations 
can be made in a univariate framework.

Figures 8 and 9 show the steady PDF (Eq. [12]) 
and the potential function (Eq. 18]) of ocean (Ts) and 
atmosphere (TA) temperatures for the proposed cases 
of stochastic forcing. In both cases it was found that 
within the considered domain the potential function 
has only one minimum, which represents the only 
stable state and coincides with the maximum of the 
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corresponding PDF. The maxima of the PDFs and the 
minima of the potential functions coincide with the 
corresponding values of the temperatures in the de-
terministic equilibrium (Table II). In the case of mul-
tiplicative forcing (Fig. 9), the potential function for 
Ts is flatter than the potential function for TA (Fig. 8), 
so the PDF for Ts is broader than the PDF for TA. Fi-
nally, for both cases of stochastic forcing, the potential 
functions, the PDFs and the deviations of temperatures 
around their deterministic value are symmetrical.

6.	 Conclusions
This paper shows that simple climate models are 
useful for understanding the fundamental character-
istics of the climate system, but they do not provide 
a detailed description thereof. By representing some 
unresolved processes in the climate system by noise 
terms in the differential equations that govern them, 
the Hasselmann’s hypothesis of climate variability 
was investigated for the cases of additive and mul-
tiplicative stochastic forcing. When the system is 
forced with additive noise, its response can be ade-
quately described, to a first order of approximation, 
by simple autoregressive processes; whereas when 
the system is forced with multiplicative noise, a de-
scription of its response would involve higher order 

time series models or even non-linear models. In 
contrast with additive forcing, multiplicative forcing 
produced a rich structure that closely emulates some 
observed climate processes both in the atmosphere 
and in the ocean. The conducted analysis with 
this simplified climate model suggests that a more 
accurate description of the climate variability can 
be obtained in the framework of stochastic models 
with multiplicative forcing.

Another result of this work was the derivation 
of an analytical expression to calculate the potential 
function of a general one-dimensional stochastic 
differential equation, which gives a clear idea of the 
behavior of the variable of interest in the steady state, 
before solving the respective stochastic differential 
equation. By providing a view of the stability of a 
system, this approach can be used in the study of 
noise-induced transitions between different stable 
states or in the study of stochastic resonance (Gam-
maitoni et al., 1998), both of which play an important 
role in climate research (Williams, 2005; Monahan 
et al., 2008).

Acknowledgments
The first author acknowledges the support given 
by the Consejo Nacional de Ciencia y Tecnología 

18.8 18.9 19 19.1 19.2 19.3
0

3

6

9

12

15

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

−3

−2

−1

0
x 10–3

Temperature (ºC) 

TS TA

17 17.5 18
0

1

2

3

−15

−10

−5

0
x 10–4

P
ot

en
tia

l f
un

ct
io

n 
(r

el
at

iv
e 

un
its

)

Temperature (ºC)       

Fig. 9. Potential function (dashed line) and steady probability density function (solid line) for ocean (left 
panel) and atmosphere temperatures (right panel). Stochastic parameterization of L↑.



291Analysis of the global temperature using a stochastic EBCM

(CONACyT) through the postgraduate scholarship 
program and the Universidad Nacional Autóno-
ma de México (UNAM) to conduct his doctoral 
studies.

References
Benzi R., A. Sutera and A. Vulpiani, 1981. The mecha-

nism of stochastic resonance. J. Phys. A-Math. Gen 
14, L453-L457. 

Benzi R., G. Parisi, A. Sutera and A. Vulpiani, 1982. Sto-
chastic resonance in climatic change. Tellus 34, 10-16, 
doi:10.1111/j.2153-3490.1982.tb01787.x.

Benzi R., G. Parisi, A. Sutera and A. Vulpiani, 1983. A the-
ory of stochastic resonance in climatic change. SIAM 
J. Appl. Math. 43, 565-578, doi:10.1137/0143037.

Brooks C., 2008. Introductory econometrics for finance. 
2nd ed. Cambridge University Press, New York, 740 pp.

Deser C., M. A. Alexander, S.-P. Xie and A. S. Phillips, 
2010. Sea surface temperature variability: Pat-
terns and mechanisms. Annual Review of Marine 
Science 2), 115-143, doi:10.1146/annurev-ma-
rine-120408-151453.

Dommenget D. and M. Latif, 2002. Analysis of observed 
and simulated sst spectra in the midlatitudes. Clim. 
Dynam. 19, 277-288, doi:10.1007/s00382-002-0229-9.

Gammaitoni L., P. Hänggi, P. Jung and F. Marchesoni, 
1998. Stochastic resonance. Rev. Mod. Phys. 70, 223-
287, doi:10.1103/RevModPhys.70.223.

Grima R. and T. J. Newman, 2004. Accurate discretization 
of advection-diffusion equations. Phys. Rev. E 70, 
036703, doi:10.1103/PhysRevE.70.036703.

Harvey L. D. D. and S. H. Schneider, 1985. Transient cli-
mate response to external forcing on 100-104 year time 
scales. Part 1: Experiments with globally averaged, 
coupled, atmosphere and ocean energy balance models. 
J. Geophys. Res- Atmos. 90, 2191-2205, doi:10.1029/
JD090iD01p02191.

Hasselmann K., 1976. Stochastic climate models. Part I: The-
ory. Tellus 28, 473-485, doi:10.1111/j.2153-3490.1976.
tb00696.x.

Higham D. J., 2001. An algorithmic introduction to 
numerical simulation of stochastic differential 
equations. SIAM Rev. 43, 525-546, doi:10.1137/
S0036144500378302.

IPCC, 1997. An introduction to simple climate models used 
in the IPCC second assessment report (J. T. Houghton, 
L. G. Meira Filho, D. J. Griggs and K. Maskell, Eds.). 
IPCC technical paper II, Intergovernmental Panel on 
Climate Change, Geneva, 51 pp.

Jacobs K., 2010. Stochastic processes for physicists. 
Understanding noisy systems. Cambridge University 
Press, 204 pp.

Kärner O., 2002. On nonstationarity and antipersistency 
in global temperature series. J. Geophy. Res.-At-
mos. 107, ACL 1-1-ACL 1-11, 4415, doi:10.1029/
2001JD002024.

Kunze E., E. Firing, J. M. Hummon, T. K. Chereskin and A. 
M. Thurnherr, 2006. Global abyssal mixing inferred from 
lowered ADCP shear and CTD strain pro files. J. Phys. 
Oceanogr. 36, 1553-1576, doi:10.1175/JPO2926.1.

McGuffie K. and A. Henderson-Sellers, 2005. A climate 
modelling primer. 3rd ed. John Wiley and Sons, 296 
pp., doi:10.1002/0470857617.

Monahan A. H., J. Alexander and A. J. Weaver, 2008. 
Stochastic models of the meridional overturning 
circulation: Time scales and patterns of variability. 
Philos. T. Roy. Soc. A 366, 2525-2542, doi:10.1098/
rsta.2008.0045.

Mudelsee M., 2010. Climate time series analysis. Classical 
statistical and bootstrap methods. 1st ed. Springer, 
New York, 474 pp. (Atmospheric and Oceanographic 
Sciences Library).

Nicolis C. and G. Nicolis, 1981. Stochastic aspects of 
climatic transitions – Additive fluctuations. Tellus 33, 
225-234, doi:10.1111/j.2153-3490.1981.tb01746.x.

North G. R., R. F. Cahalan and J. A. Coakley, 1981. Energy 
balance climate models. Rev. Geophys. 19, 91-121, 
doi:10.1029/RG019i001p00091.

Penland C. and B. D. Ewald, 2008. On modelling physi-
cal systems with stochastic models: Diffusion versus 
Levy processes. Philos. T. Roy. Soc. A 366, 2455-2474, 
doi:10.1098/rsta.2008.0051.

Vallis G. K., 2010. Mechanisms of climate variability 
from years to decades. In: Stochastic physics and 
climate modelling (T. Palmer and P. Williams, Eds.). 
Cambridge University Press, pp. 1-34.

Von Storch H. and F. W. Zwiers, 1999. Statistical analysis 
in climate research. 1st ed. Cambridge University 
Press, 496 pp.

Wilks D. S., 2008. Effects of stochastic parametrization 
on conceptual climate models. Philos. T. Roy. Soc. A 
366, 2475-2488, doi:10.1098/rsta.2008.0005.

Wilks D. S., 2011. Statistical methods in the atmospheric 
sciences. 3rd ed. Academic Press, 630 pp. (Internation-
al Geophysics Series, 91).

Williams P. D., 2005. Modelling climate change: The role 
of unresolved processes. Philos. T. Roy. Soc. A 363, 
2931-2946, doi:10.1098/rsta.2005.1676.



292 E. Moreles and B. Martínez

Wunsch C. and R. Ferrari, 2004. Vertical mixing, energy 
and the general circulation of the oceans. Annu. Rev. 
Fluid Mech. 36, 281-314, doi:10.1146/annurev.flu-
id.36.050802.122121.

Zhang R., 2007. Anticorrelated multidecadal vari-
ations between surface and subsurface tropical 
North Atlantic. Geophys. Res. Lett. 34, l12713, 
doi:10.1029/2007GL030225.



293Analysis of the global temperature using a stochastic EBCM

Table A.I Augmented Dickey-Fuller test for the daily-
standardized anomalies of TA. Random forcing in the 
ocean.

t-Statistic Probability

Augmented Dickey-Fuller test –28.69074 0.0000
Test critical values: 1% level –3.430191
5% level –2.861354
10% level –2.566711

Table A.II Augmented Dickey-Fuller test for the daily-standardized 
anomalies of TS. Random forcing in the ocean.

t-Statistic Probability

Augmented Dickey-Fuller test statistic –29.02809 0.0000
Test critical values: 1% level –3.430191
5% level –2.861354
10% level –2.566711

To estimate the autoregressive models the methodology developed by Box and Jenkins (1970) was used. 
This methodology is based on the use of graphic tools, like the autocorrelation function (ACF) and the par-
tial autocorrelation function (PACF) to identify the appropriate model to be fitted. The estimation method 
used was the least squares method. All of the calculations were carried out using the econometric package 
EViews 9.0.

A.1 Random forcing in the ocean
First of all, the non-stationarity of the daily temperature series was tested. The stationarity of a series was 
taken in the context of weak stationarity: constant mean, constant variance and constant autocovariances 
for each given lag. The null hypothesis (the series contain a unit root) was tested using the Augmented 
Dickey-Fuller test. The results are shown in Tables A.I and A.II. It is observed that, for both TA and TS, the 
values of the test statistics are more negative than the corresponding critical values, so the null hypotheses 
of a unit root were rejected.

Appendix A. Estimation of the autoregressive models

The PACFs and the tables of analysis of variance (ANOVA) for the daily and annual time scales and for 
each temperature are shown below.
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Fig. A.1 PACFs of the standardized anomalies of TA and Ts for the daily 
and annual time scales. Random forcing in the ocean.

Table A.III Model estimation for the daily standardized anomalies of TA. Random forcing in the 
ocean.

Variable Coefficient Standard error t-Statistic Probability

C –0.017150 0.034452 –0.497812 0.6186
AR(1) 1.836196 0.000448 4102.952 0.0000
AR(2) –0.836565 0.000461 –1815.704 0.0000
SIGMA 0.010865 1.95E – 07 604.6370 0.0000

R-squared 0.999879 Mean dependent variable –0.018107
Adjusted R-squared 0.999879 S.D. dependent variable 0.989095
S.E. of regression 0.010865 Akaike info criterion –6.206578
Sum squared residual 86.16977 Schwarz criterion –6.206515
Log likelihood 2265405. Hannan-Quinn criterion –6.206561
F-statistic 2.02E + 09 Durbin-Watson statistic 1.994695
Probability (F-statistic) 0.000000

Inverted AR roots 1.00 .84

Table A.IV Model estimation for the daily standardized anomalies of TS. Random forcing in the ocean.

Variable Coefficient Standard error t-Statistic Probability

C
AR(1)
SIGMA

–0.017180
0.997180
0.074251

0.030816
8.78E – 05
9.12E – 06

–0.557504
11352.77
604.6265

0.5772
0.0000
0.0000

R-squared 0.994367 Mean dependent variable –0.017936
Adjusted R-squared 0.994367 S.D. dependent variable 0.989298
S.E. of regression 0.074251 Akaike info criterion –2.362727
Sum squared residual 4024.600 Schwarz criterion –2.362679
Log likelihood 862398.2 Hannan-Quinn criterion –2.362713
F-statistic 64430554 Durbin-Watson statistic 2.024662
Probability (F-statistic) 0.000000

Inverted AR roots 1.00
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Table A.V Model estimation for the annual standardized anomalies of TA. Random forcing in 
the ocean.

Variable Coefficient Standard error t-Statistic Probability

C –0.018650 0.051000 –0.365696 0.7146
AR(1) 0.684513 0.016248 42.12862 0.0000
SIGMA 0.719286 0.016277 31.76920 0.0000

R-squared 0.468640 Mean dependent variable –0.020115
Adjusted R-squared 0.468108 S.D. dependent variable 0.986750
S.E. of regression 0.719646 Akaike info criterion 2.181700
Sum squared residual 1034.227 Schwarz criterion 2.190101
Log likelihood –2178.700 Hannan-Quinn criterion 2.184785
F-statistic 880.6401 Durbin-Watson statistic 1.918791
Probability (F-statistic) 0.000000

Inverted AR roots .68

Table A.VI Model estimation for the annual standardized anomalies of TS. Random forcing 
in the ocean.

Variable Coefficient Standard error t-Statistic Probability

C –0.018613 0.051000 –0.364958 0.7152
AR(1) 0.684604 0.016265 42.09188 0.0000
SIGMA 0.719051 0.016231 31.83879 0.0000

R-squared 0.468770 Mean dependent variable –0.020079
Adjusted R-squared 0.468238 S.D. dependent variable 0.986548
S.E. of regression 0.719411 Akaike info criterion 2.181048
Sum squared resid 1033.552 Schwarz criterion 2.189449
Log likelihood –2178.048 Hannan-Quinn criterion 2.184132
F-statistic 881.0988 Durbin-Watson statistic 1.918536
Probability (F-statistic) 0.000000

Inverted AR roots .68
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Table A.VIII Model estimation for the daily standardized anomalies of Ts. Stochastic 
parameterization of L↑.

Variable Coefficient Standard error t-Statistic Probability

C 0.030138 0.004861 6.199662 0.0000
AR(1) 0.891015 0.000531 1678.840 0.0000
SIGMA 0.452659 0.000339 604.4308 0.0000

R-squared 0.793908 Mean dependent variable 0.030151
Adjusted R-squared 0.793907 S.D. dependent variable 0.997103
S.E. of regression 0.452659 Akaike info criterion 1.252652
Sum squared residual 149576.7 Schwarz criterion 1.252700
Log likelihood –457215.1 Hannan-Quinn criterion 1.252665
F-statistic 1406044. Durbin-Watson statistic 2.043004
Probability (F-statistic) 0.000000

Inverted AR roots .89

Table A.VII Model estimation for the daily standardized anomalies of TA. Stochastic 
parameterization of L↑.

Variable Coefficient Standard error t-Statistic Probability

C 0.002593 0.003968 0.653493 0.5134
AR(1) 0.839744 0.000635 1322.740 0.0000
SIGMA 0.543298 0.000488 604.6721 0.0000

R-squared 0.705171 Mean dependent variable 0.002590
Adjusted R-squared 0.705171 S.D. dependent variable 1.000584
S.E. of regression 0.543299 Akaike info criterion 1.617692
Sum squared residual 215476.0 Schwarz criterion 1.617739
Log likelihood –590454.6 Hannan-Quinn criterion 1.617705
F-statistic 873003.7 Durbin-Watson statistic 1.995603
Probability (F-statistic) 0.000000

Inverted AR roots .84

A.2 Stochastic parameterization of L↑
PACFs and ANOVAs for the daily and annual time scales and for each temperature are shown below.

Fig. A.2 PACFs of the standardized anomalies of TA and Ts for the daily 
and annual time scales. Stochastic parameterization of L↑.
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Table A.X Model estimation for the annual standardized anomalies of TS. Stochastic 
parameterization of L↑.

Variable Coefficient Standard error t-Statistic Probability

C 0.055098 0.047793 1.152842 0.2491
AR(1) 0.648473 0.017097 37.92979 0.0000
SIGMA 0.751229 0.017606 32.03730 0.0000

R-squared 0.420636 Mean dependent variable 0.056339
Adjusted R-squared 0.420056 S.D. dependent variable 0.986953
S.E. of regression 0.751605 Akaike info criterion 2.268559
Sum squared residual 1128.124 Schwarz criterion 2.276960
Log likelihood –2265.559 Hannan-Quinn criterion 2.271644
F-statistic 724.9420 Durbin-Watson statistic 1.992152
Probability (F-statistic) 0.000000

Inverted AR roots .65

Reference for the Appendix
Box G. E. P. and G. M. Jenkins, 1970. Time series analysis: Forecasting and control. Holden-Day, San Francisco, 537 pp.

Table A.IX Model estimation for the annual standardized anomalies of TA. Stochastic 
parameterization of L↑.

Variable Coefficient Standard error t-Statistic Probability

C 0.016540 0.019000 0.870500 0.3841
AR(1) –0.175668 0.022223 –7.904585 0.0000
SIGMA 0.996381 0.031718 31.28405 0.0000

R-squared 0.030883 Mean dependent variable 0.016540
Adjusted R-squared 0.029912 S.D. dependent variable 1.012133
S.E. of regression 0.996880 Akaike info criterion 2.833142
Sum squared residual 1984.559 Schwarz criterion 2.841544
Log likelihood –2830.142 Hannan-Quinn criterion 2.836227
F-statistic 31.81935 Durbin-Watson statistic 2.059720
Probability (F-statistic) 0.000000

Inverted AR roots –.18


