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RESUMEN

El flujo de diseño es la base para la planeación y el diseño de obras hidráulicas. La precisión en el cálculo 
de flujos es importante para el análisis de viabilidad de dichas estructuras porque el valor estimado influye 
directamente en la evaluación de los efectos de falla. Sin embargo, en razón de la variabilidad, la precisión 
del cálculo se reduce de manera drástica cuando se utilizan muestras pequeñas en el análisis de frecuencia 
de inundaciones (FFA, por sus siglas en inglés) convencional. En este trabajo se plantea un nuevo enfoque 
basado en la simulación combinada de flujos anuales máximos y medios. El método se evaluó tomando en 
consideración submuestras de 10, 20, 30, 40 y 50 años obtenidas a partir de 13 estaciones pluviométricas 
ubicadas en la cuenca del río Susquehanna. Los resultados se compararon con los obtenidos mediante FFA 
y el análisis regional de estaciones-año. Este enfoque novedoso puede reducir la incertidumbre en las esti-
maciones del flujo de diseño cuando los datos asequibles son escasos.

ABSTRACT

The design flow is the basis for planning and designing different hydraulic works. The precision in estimated 
flows is important when analyzing the feasibility of such structures because the value directly influences the 
evaluation of the failure effects. However, due to flow variability, the precision of the estimate is drastically 
reduced when small samples are used in a conventional flood frequency analysis (FFA). This paper propos-
es a new approach based on a combined simulation of the annual peak and mean flows. The method was 
evaluated by considering 10-, 20-, 30-, 40- and 50-yr subsamples obtained from 13 gauging stations located 
in the Susquehanna River basin. The results were compared with those obtained by FFA and the regional 
station-year method. This new approach can reduce the uncertainty in estimating the design flow when few 
data are available.

Keywords: Flood frequency analysis, small samples, synthetic samples, uncertainty. 

1.	 Introduction
Flood frequency analysis (FFA) is the basis for plan-
ning and designing bridges, culverts and flood control 
structures (Chow et al., 1998). The maximum capac-
ity of these structures is defined by the design flow, 
which is the annual peak flow (APF) with a certain 
probability of being exceeded at least once during 
operation. This probability is known as risk and is 
usually expressed as a return period. Furthermore, 
this probability is selected by considering the eco-
nomic, social and environmental effects that would 

be produced by the failure of the structure. Therefore, 
precise design flow estimates are important when 
evaluating the feasibility of a structure. However, 
due to stream flow variability, the precision of the 
estimates is drastically reduced when small samples 
are used in a conventional FFA.

Conventional estimates of the design flow are 
achieved via a frequency analysis of the APFs 
measured over a long period at a single gauging 
station. Assuming that the APFs are independent 
and identically distributed (IID), a relation between 
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their magnitudes and non-exceedance probabilities 
can be achieved by fitting a cumulative probability 
function (CPF).

A regional flood frequency analysis (RFFA) is a 
well-known option for reducing the uncertainty in 
quantile estimates when sufficient and homogeneous 
data are available. A RFFA requires all available in-
formation from neighboring sites to obtain at-site es-
timates for a specific return period. Several previous 
papers have described the advantages of RFFA meth-
ods. Darlymple (1960) first introduced the index flood 
method. Chander et al. (1978) suggested a regional 
box-cox transformation. Wallis (1980) proposed the 
use of regional probability weighted moments. Boes 
et al. (1989) considered the Weibull distribution as a 
regional distribution. Moreover, Hosking and Wallis 
(1993) introduced select discordancy, heterogeneity 
and fitting measures. Cunnane (1998) suggested 
using the station-year method, whereas Sveinsson 
et al. (2001) proposed the population index flood 
method. The method introduced by Hosking and 
Wallis (1993) appears to display more acceptability 
in RFFA; its application can be found in Lim (2007), 
Saf (2009), Notto and Loggia (2009), Hussain (2011), 
and Rostami (2013).

Other options to reduce the uncertainty in esti-
mating quantiles are “transfer methods”. Zaidman 
et al. (2003) suggested two methods to transfer 
information from a donor basin to an object ba-
sin. In the first method, the standardized shape of 
the donor CPF is transferred. In the second method, the 
plotting positions of the events, occurring over 
the same period of time (year), are transferred. Dong 
et al. (2013) introduced a non-parametrical transfer 
method that uses an iterative procedure to gradually 
approximate the optimal CPF.

This paper proposes a new approach to reduce 
the uncertainty in the estimation of APF quantiles 
resulting from small sample sizes, and to dispense 
with neighboring information. This approach consists 
of simulating multiple APF samples to achieve a more 
accurate frequency distribution. To improve the accu-
racy, these synthetic samples must be conditionally 
simulated from a steadier variable. In this paper, APF 
samples are conditionally simulated using the annual 
mean flows (AMFs).

Hydrometric information from 13 gauging sta-
tions located in the Susquehanna River basin was 
employed in this study. APF quantiles were estimated 

according to the following methods: (1) a conven-
tional FFA method, (2) a station-year method, and 
(3) the proposed method. The uncertainty of each 
method was measured by computing the coefficients 
of variation (CV) between the quantiles estimated 
from 10-, 20-, 30-, 40- and 50-year subsamples with 
those obtained from historical information.

2.	 Materials and methods
2.1 Study region
The Susquehanna River is located in the northeast-
ern United States. With a length of 715 km, the 
Susquehanna is one of the longest rivers along 
the east coast. It has a normal flow of approximately 
15 926 million m3/yr (monitored at Havre de Grace 
in Maryland) (SRBC, 2015).

The Susquehanna River basin has an area of 
71 244 km2 and is divided into six major sub-basins: 
lower Susquehanna, middle Susquehanna, upper 
Susquehanna, Juniata, west branch Susquehanna, 
and Chemung. This basin belongs to the hydrolog-
ical region II or Middle Atlantic and is one of the 
most flood-prone areas in the United States (SRBC, 
2015).

2.2 Data
The stream flow time series used in this study were 
obtained from the National Water Information System 
of the United States (NWIS, 2015); 13 gauging sta-
tions in the Susquehanna River basin were selected. 
The locations of the study sites are shown in Figure 1.
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Fig. 1. Location of the gauging stations used in this study.
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To evaluate the independence of the series, the 
autocorrelation functions (ACFs) were contrasted 
with the limits proposed by Anderson (1942). To 
identify possible non- homogeneities, such as change 
points or trends in the time series, the Pettitt (1979) 
and Mann-Kendall tests (Kendall, 1938; Mann, 1945) 
were performed. A brief description of the series and 
the results are summarized in Table I.

2.3 Conventional FFA method
Let X represent the APFs and X = {x1,...,xn} be a 
sample of X at any site in the study region. Then, a 
conventional FFA method for APF quantile estima-
tion can be defined as follows:

Step 1: Sort in ascending order X, i.e., X = {x(1) ≤ 
∙∙∙ ≤ x(n)}.
Step 2: Obtain the empirical non-exceedance prob-
ability of each x(1) in X, i.e., Pr[X ≤ x(n)], using the 
Weibull’s plotting position formula:

p(i) =
i

n+1 	 (1)

Step 3: Estimate a theoretical CPF of X, i.e., Pr[X 
≤ x] (from Table II), by minimizing the sum square 
error (SSE) of the sample quantiles:

SSE = ∑n
i=1 {x(i) – x[p(i)]}2	 (2)

Table I. Selected characteristics of the annual peak flow series.

Site Length
[years]

Coefficient of Auto-correlation
Pettitt

[p-value]
Mann-Kendall

[p-value]Variation Skew Kurtosis Lag-1 Lag-2 Lag-3
[ad] [ad] [ad] [ad] [ad] [ad]

1503000 100 0.36 1.12 4.72 0.05 0.04 –0.01 0.05 0.09
1512500 100 0.45 3.32 21.40 0.14 –0.02 –0.04 0.04 0.06
1531500 100 0.40 1.44 6.68 –0.09 –0.11 0.06 0.20 0.23
1534000 99 0.49 0.91 4.05 –0.04 0.12 0.01 0.55 0.32
1536500 114 0.40 1.27 5.53 –0.13 –0.05 0.03 0.65 0.46
1540500 108 0.39 1.41 6.01 –0.10 –0.07 0.06 0.38 0.36
1541000 100 0.51 2.55 12.21 –0.14 0.04 –0.13 0.48 0.24
1543000 100 0.69 2.30 10.60 –0.08 –0.11 –0.05 0.35 0.34
1545500 104 0.56 2.46 11.77 –0.07 –0.02 0.06 0.00 0.00
1550000 99 0.66 1.99 7.94 –0.05 0.03 0.00 0.13 0.04
1551500 118 0.45 1.35 5.60 –0.14 –0.04 0.06 0.03 0.01
1562000 100 0.62 3.24 19.54 0.05 –0.04 –0.14 0.29 0.39
1570500 123 0.44 2.31 11.98 –0.16 –0.07 0.05 0.24 0.08

Table II. CPFs applied in the conventional FFA for this study.

Distribution CPF Restrictions

Log-normal FX(x; θ) = ∫
x

ξ

1
(t – ξ) σ √2π

exp{– 1
2 [ 1n (t – ξ) – µ

σ ]2}dt x ≥ ξ
σ > 0

Pearson III FX(x; θ) = ∫
x

ξ

1
µσ Γ(σ)

exp dt( t – ξ
µ )σ –1 ( t – ξ

µ )– x ≥ ξ
µ > 0; σ > 0

Log-Pearson III FX(x; θ) = ∫
x

ξ

1
tµσ Γ(σ) 

exp [ dt[ 1n (t) – ξ
µ ]σ –1

–
1n (t) – ξ

µ ] 1n(x) ≥ ξ
µ > 0; σ > 0

Weibull
FX(x; θ) = [ x – ξ

µ ]1 – exp – ( ) σ

x ≥ ξ
µ > 0; σ > 0

where ξ, µ, σ are the location, scale and shape parameters
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where x[p(i)] = inf{x ∈ ℝ: p(i) ≤ F (x; θ)}.

Step 4: Select (as the best CPF of X) the CPF with 
the smallest standard error of fit (SEF) (Kite, 1988) 
using the following relationship:

SEF = √SSE / (k– 1)	 (3)

where k is the number of distribution parameters.
Step 5: Estimate the quantiles of X as x(q) = inf{x 

∈ ℝ: q ≤ F (x; θ)}.

2.4. Station-year method
Let X represent the APFs and Xj = {xj

1,...,x j
nj} (for j = 

1,..., m) correspond to samples of X at m sites from 
any homogeneous region inside the study region. 
Then, a station-year method for APF quantile esti-
mation can be defined as follows:

Step 1: Standardize each Xj in the homogeneous 
region, i.e., y j

i = x j
i / x– j, where x– j is the sample mean 

of Xj. Therefore, the m series Yj = {y j
1,..., y j

nj} can 
be defined.

Step 2: Join all Yj at the homogeneous region in 
one station-year series Y = {Y1 | ... | Ym}.

Step 3: Apply the conventional FFA to series Y; 
find the best CPF of Y, i.e., F(y; θ).

Step 4: Estimate the quantiles of Y as y(q) = inf{y 
∈ ℝ: q ≤ F (y; θ)}.

Step 5: Estimate the quantiles of X as xj(q) = y(q) ∙ x– j.

2.5. Proposed method
Let Y represent the AMFs, Y = {y1,..., yn} be a sample 
of Y at any site in the study region, X represent the 
APFs and X = {x1,..., xn} be a sample of X at the same 
site over a consistent recording period. The proposed 
method for APF quantile estimation utilizes the fol-
lowing steps:

Step 1: Sort Y in ascending order, i.e., Y = {y(1) ≤ 
∙∙∙ ≤ y(n)}, maintaining each xt occurring at the same 
time t as y(i). Thus, an empirical relation {(y(1), xt1),..., 
(y(n), xtn)} can be defined.

Step 2: Obtain the APF ratios Θ {θ1,..., θn} by 
dividing each xt by its corresponding y(i), i.e.; θi = xti / 
y(i). Thus, an empirical relation {(y(1), θ1),..., (y(n), θn)} 
can also be defined.

Step 3: Apply the conventional FFA to Y to de-
termine the best CPF of Y, i.e., F(y; θ).

Step 4: Generate 100 000 random synthetic AMF 
defined as y(u) = inf{y ∈ ℝ: u ≤ F(y; θ)} by sam-
pling u from a continuous uniform distribution, i.e. 
u~U[0,1].

Step 5: For each generated y(u), find its closest 
y(i) in Y and its corresponding θi in Θ. Then using 
a window of size h = [n2/3] centered on y(i), define 
Φ = {ϕ1,...ϕm} as a subsample of Θ, where ϕ1 = θmax(1,i+h) 
and ϕm = θmax(n,i+h) (Fig. 2). The specific window size 
was obtained after a trial and error process. It was 
observed that a window of this width provides a 
reasonable balance between flexibility and precision 
of the results.

Step 6: Assume that every ϕj in Φ are equally 
likely to occur, i.e., Pr[ϕ = ϕj] = 1/m, and extract 
(from each Φ) a ϕ value, such that ϕ(ʋ) = sup{ϕj ∈ Φ; 
ʋ ≤ j/m}, by sampling ʋ from a continuous uniform 
distribution, i.e., ʋ~U[0,1].

Step 7: Multiply each generated y(u) by the ex-
tracted ϕ(ʋ), i.e., x(y) = x(u) ∙ ϕ(ʋ).

Step 8: Estimate the quantiles of X as the q-th 
percentiles of the generated x(y).

3.	 Reliability of the methods
To evaluate the uncertainty in the estimated quantiles 
determined using the former methods, historical quan-
tiles were first estimated from historical information. 
Then, different scenarios of available information were 
simulated by extracting 10-, 20-, 30-, 40- and 50-yr 
subsamples, and new quantiles were estimated. Finally, 
the coefficient of variation of the quantiles estimated 
from the 10-, 20-, 30-, 40- and 50-yr subsamples were 
computed using the following expression:

CVm
j (q) = 

√[xm
j (q) – xj(q)]2 + [Sm

j (q)]2

xj(q)
	 (4)

Fig. 2. Window centered on the closest generated AMF.
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where x–m
j (q) and Sm

j (q) are the mean and standard 
deviation of the q-th quantiles xj

i,m (q) estimated from 
each subsample i of size m at site j, respectively, and 
xj (q) are the q-th quantiles estimated from the his-
torical information available from the same site j.

3.1. Reliability of the conventional FFA method
Let X represent the APFs and Xj = {x1

j,..., xj
nj}(for j = 

1,...,13) correspond to the samples at the 13 sites in 
the study region. The uncertainty of the conventional 
FFA method was computed through the following 
steps:

Step 1: Apply the conventional FFA method to 
each Xj for all 13 study sites to estimate the histor-
ical quantiles xj (q) for different non-exceedance 
probabilities q.

Step 2: From each Xj extract i = 1,..., nj – m + 1 
subsamples with size m equal to 10, 20, 30, 40 and 
50 years for each site, i.e., Xj

i,m = {xi
j,..., xj

i+m–1}.
Step 3: Apply the conventional FFA method to 

each Xj
i,m for all nj – m + 1 subsamples from the 13 

study sites to estimate the quantiles xj
i,m (q) for the 

identical non-exceedance probabilities q (in Step 1).
Step 4: Compute the CV of each xj

i,m (q) for all 
nj – m + 1 subsamples with respect to each xj (q) for 
all 13 study sites, using Eq. (4).

3.2. Reliability of the station-year method
Let X represent the APFs and Xj = {x1

j,..., xj
nj}(for 

j = 1,...,13) correspond to the samples from the 13 
sites in the study region. The uncertainty of the 
station-year method was computed through the 
following steps:

Step 1: Apply the conventional FFA method to 
each Xj, for all 13 study sites to estimate the his-
torical quantiles xj (q) for different non-exceedance 
probabilities q.

Step 2: From each Xj extract i = 1,..., nj – m + 1 
subsamples with size m equal to 10, 20, 30, 40 and 
50 years for each site, i.e., Xj

i,m = {xi
j,..., xj

i+m–1}.
Step 3: Randomly select 500 combinations of 

three subsamples Xj
i,m with equal size m thus, 500 dif-

ferent regional information scenarios were simulated.
Step 4: Apply the station-year method on each com-

bination (in Step 3) to estimate the quantiles xj
i,m (q) 

for the identical non-exceedance probabilities q (in 
Step 1).

Step 5: Compute the CV of each xj
i,m (q), which 

was estimated before (in Step 4), with respect to each 
xj (q) for all 13 study sites using Eq. (4).

3.3. Reliability of the proposed method
Let X represent the APFs and Xj = {x1

j,..., xj
nj}(for j 

= 1,...,13) correspond to the samples from the 13 
sites in the study region. The uncertainty of the con-
ventional FFA method was computed through the 
following steps:

Step 1: Apply the conventional FFA method to 
each Xj for all 13 study sites to estimate the histor-
ical quantiles xj (q) for different non-exceedance 
probabilities .

Step 2: From each Xj extract i = 1,...,nj – m + 1 
subsamples with size m equal to 10, 20, 30, 40 and 
50 years for all sites, i.e., Xj

i,m = {xi
j,..., xj

i+m–1}.
Step 3: Apply the proposed method to each Xj

i,m 
for all nj – m + 1 subsamples from the 13 study sites 
to estimate the quantiles xj

i,m (q) for the identical 
non-exceedance probabilities q (in Step 1).

Step 4: Compute the CV of each xj
i,m (q) for all 

nj – m + 1 subsamples with respect to each xj (q) for 
all 13 study sites using Eq. (4).

4.	 Results and discussion
The CV values for each subsample size (10, 20, 30, 
40 and 50 years) by applying (1) the conventional 
FFA method, (2) the station-year method and (3) the 
proposed method were computed and contrasted.

Concerning all 13 study sites, approximately 200 CV 
values were computed for different q-th quantiles 
from each subsample size. Therefore, nearly 1000 CV 
values for each return period were computed for 
each method.

The variations in the set of estimated quantiles 
for the shortest length of records (i.e., 10 years) are 
shown in Figures 3-7. In these figures, the 50th per-
centile is the median of the estimates, and the 10th 
and 90th percentiles are considered as lower and 
upper bounds, respectively. These figures show that 
the proposed method generates the narrowest limits 
compared with those obtained using the conventional 
FFA approach.

In general, lower CV values were obtained in 71% 
of the cases using the proposed method instead of the 
conventional FFA method. Lower CV values were ob-
tained for a return of approximately two years in 33% 
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Fig. 3. Quantiles obtained from 10-yr subsamples at stations 1503000, 1512500 and 1531500.
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Fig. 4. Quantiles obtained from 10-yr subsamples at stations 1503400, 1536500 and 1540500. (Continue)
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Fig. 4. (Continued) Quantiles obtained from 10-yr subsamples at stations 1503400, 1536500 and 1540500.
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Fig. 5. Quantiles obtained from 10-yr subsamples at stations 1541000, 1543000 and 1545500. (Continue)
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Fig. 5.(Continued) Quantiles obtained from 10-yr subsamples at stations 1541000, 1543000 and 1545500.
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Fig. 6. Quantiles obtained from 10-yr subsamples at stations 1550000, 1551500 and 1552000.
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of the cases, whereas 99% of the cases showed lower 
CV values for return periods exceeding 100 years.

Furthermore, in 67% of the cases, lower CV 
values were obtained using the proposed method 
instead of the station-year method. In 50% of the 
cases, lower CV values were obtained for a return 
period of approximately two years, whereas lower 
CV values were found for return periods exceeding 
100 years in 93% of the cases.

The geometric means of all CV values for the 
same return period obtained from (1) the conventional 
FFA, (2) the station-year method and (3) the proposed 
method are contrasted in Figures 8-12.

5.	 Conclusions
A new approach for estimating APFs for different re-
turn periods is presented in this study. This approach 
consists of a conditional simulation process of syn-
thetic samples of APFs and AMFs to achieve the fre-
quency distribution. Thirteen gauging stations locat-
ed in the Susquehanna River basin, which is along 
the east coast of the United States, were used 
in this study.
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Fig. 7. Quantiles obtained from 10-yr subsamples at stations 1541000, 1543000 and 1545500.
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Fig. 8. CV obtained using 10-yr subsamples.
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Fig. 9. CV obtained using 20-yr subsamples.
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Fig. 10. CV obtained using 30-yr subsamples.
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Fig. 11. CV obtained using 40-year subsamples.
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To evaluate the proposed method, the uncer-
tainties in the quantiles estimated using (1) a 
conventional FFA, (2) a station-year method and 
(3) the newly proposed method were compared by 
computing .

The results indicated that the quantiles estimated 
using the proposed method varied less than those 
estimated via the conventional FFA, especially 
when they were estimated from 10-yr subsamples 
and for return periods exceeding 100 years. There-
fore, the proposed method can reasonably reduce 
the uncertainty in quantile estimation from small 
sample sizes.

The results also showed that the quantiles estimat-
ed using the proposed method are equal or less than 
those computed by the station-year method, even if 
only a third of the information is used. 

The analysis also demonstrated that the proposed 
method performed adequately when quantiles were 
estimated from the gathered samples. Moreover, 
more flexible frequency distributions were simulated 
using the proposed method than with the convention-
al frequency distributions.
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