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RESUMEN

Este artículo propone una metodología para descubrir patrones en datos climatológicos, particularmente 
temperaturas y precipitación, observados en unidades políticas subnacionales, usando un algoritmo de 
clasificación automática (un árbol de decisión producido por el algoritmo C4.5). Por lo tanto, los patrones 
representan árboles de clasificación, en el supuesto de que: 1) cada unidad de división política contiene al 
menos una estación climatológica y 2) los periodos de registro de las estaciones son relativamente similares 
en duración y en sus años iniciales y finales. Se produce una serie de modelos de clasificación mediante 
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el uso de diferentes subconjuntos de un conjunto de datos experimentales. Este conjunto de datos contiene 
información de 3606 estaciones climatológicas en México cuyos periodos de registro tienen diversas dura-
ciones, años iniciales y finales. La variable objetivo (dependiente) en todos estos modelos es el nombre de 
la unidad política (es decir, el estado). Los predictores son 36 características mensuales por cada estación 
climatológica: 12 corresponden a una temperatura mínima, 12 a una temperatura máxima y 12 a la precipi-
tación acumulada. También se usó la altitud como predictor adicional a los 36 mencionados, pero sólo para 
cuantificar su contribución adicional al modelado. Los resultados muestran que los árboles de clasificación 
son modelos eficaces para describir y representar los patrones no triviales que caracterizan a las unidades de 
división política, con base en sus temperaturas y precipitación mensual. Uno de los hallazgos destacables es 
que la precipitación acumulada de mayo es la característica con el mayor poder discriminatorio en esta tarea 
de caracterización, lo cual es consistente con el trasfondo teórico de la climatología mexicana. Además, los 
árboles de clasificación ofrecen alta expresividad a personas poco familiarizadas con aprendizaje automático.

ABSTRACT

This article proposes a methodology to discover patterns in observed climatologic data, particularly tem-
peratures and rainfall, in subnational political division units using an automatic classification algorithm 
(a decision tree produced by the C4.5 algorithm). Thus, the patterns represent classification trees, assuming 
that: (1) every political division unit contains at least one climatological station, and (2) the recording periods 
of the stations are relatively similar in duration and in their initial and ending years. A series of classification 
models are produced by using different subsets from an experimental dataset. This dataset contains informa-
tion from 3606 climatological stations in Mexico with recording periods whose durations, initial and ending 
years are diverse. The target (dependent) variable in all these models is the name of the political unit (i.e., 
the state). The predictors are 36 monthly features per each climatological station: 12 features correspond-
ing to a minimum temperature, 12 to a maximum temperature, and 12 to cumulative rainfall. The altitude 
feature is also used as one of the predictors, in addition to the other 36; however, it is used only to quantify 
its additional contribution to the modelling. The results show that classification trees are effective models 
for describing and representing non-trivial patterns to characterize the political division units based on their 
monthly temperatures and rainfalls. One of the remarkable findings is that the cumulative rainfall of May is 
the feature with highest discrimination capability to the characterization task, which is consistent with the 
theoretical background on Mexican climatology. In addition, classification trees offer higher expressivity to 
non-experts in machine learning.

Keywords: Climate patterns, political division, Mexico climate, data mining, data science, classification 
algorithms, classification trees, C4.5 algorithm.

1. Introduction
For more than a century, climatologists have ad-
dressed the characterization of climate patterns using 
classification methodologies or systems associated 
with global, regional or local geographic areas. These 
systems are useful for basic and applied research 
and diverse usages in a variety of human activities. 
Classification systems by Köppen (1936), Holdridge 
(1947, 1967), Trewartha (1968) and Thornthwaite 
(1948) have been among the most known and used. 
As our research uses climatological data from Mexico 
to perform a concept proof of our proposed methodol-
ogy, the work by García (1964) is a relevant reference 
because it is a reputed adaptation of Köppen’s system 
for the particular case of the Mexican climatology.

In the second decade of the 21st century, the char-
acterization and representation of climate patterns 
is a relevant research question. Reasons for this are: 

(1) The need to understand global climate phenome-
na, including climate change and its social, economic 
and political impacts; (2) the availability of vast 
databases containing climatological data, observed 
or from reanalyses; (3) the availability of techniques 
and software tools for data analysis and modeling 
that use statistics or machine-learning approaches.

The climate is a phenomenon that does not de-
pend on political division borders; however, with 
this in mind, the general approach in our research 
involves a reverse perspective: how to discover and 
to represent the patterns that characterize political 
division units from their climatological features. 
This also involves the relationships or similarities 
among these units based on common climatological 
characteristics. Figure 1 shows the 32 political units 
of Mexico. The primary motivation to address the 
climatological characterization of these units is that 
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the detailed knowledge of climate patterns that are 
associated to specific political units is highly useful 
not only to climate researchers, but also to public 
policy makers and to private company strategists. 
This is even more relevant if the climate change 
phenomenon and the necessity to develop new public 
policies are considered. For instance, a policy maker 
in the agriculture department of a state could match 
the need of crops dictated by markets, but neglected 
in this region, with the plants suitable for the climate 
of his state, to favor their cultivation. A pharmaceuti-
cal manufacturer could modify the containers shipped 
to certain states, based on their environment.

On the one hand, the most known climate clas-
sification systems define climate types depending 
on climatological features (e.g., rainfall and tem-
perature) and, eventually, other non-climatological 
features, such as biome. Then, the climate types are 
associated to specific territories on a map or a spatial 
database. However, the general approach in data 
mining consists in the discovery of patterns from 
analysis of the values of a series of features, usually 
without considering previous models of the data in 

the particular domain. We can solve our particular 
problem using automatic classification algorithms, 
mainly trees. In addition to characterizing the terri-
torial units from specific climatological values, it is 
possible to identify, trace and analyze the aggregation 
(and disaggregation) patterns of these groups, by 
using relatively simple rules that show thresholds 
and differences among the values of climatological 
variables. In general terms, this research is feasible 
because; (1) there exists a considerable amount of 
climatological data from Mexico; (2) there exist some 
automatic classification algorithms that are available 
in commercial or free software; and (3) the authors 
are knowledgeable in fields such as climatology and 
data science.

The paper has the following divisions: Section 1 
defines the research problem, delimitates its scope 
and describes the research approach. Section 2 pres-
ents related work in the area of climate classification 
systems. Section 3 discusses works on the applica-
tion of automatic classification algorithms in the 
climatology and meteorology areas. Section 4 gives 
a theoretical background on automatic classification 
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trees. Section 5 presents our methodology. Section 6 
describes the experimental data used to develop and 
evaluate our method. Section 7 presents the empir-
ical results obtained by applying the method to the 
experimental data. Section 8 discusses the results and 
suggests potential applications of the methodology 
and the results, and Section 9 presents the conclusions 
and suggests future research work.

2. Problem definition
The research problem is to develop a methodology 
that characterizes and represents the climate patterns 
of subnational political division units (e.g., states, 
provinces, departments) based on observed monthly 
temperatures and rainfalls, by exploiting the advan-
tages of automatic classification algorithms. In this 
research, a climate pattern is the combination of 
climatological features (i.e., monthly maximum and 
minimum temperatures and cumulative rainfall) and 
their respective specific values associated with a de-
termined political division unit (particularly, states). 
The reason for focusing on these climatological 
features is that they are the most frequently analyzed 
in the most used climate classification systems (e.g., 
Köppen, Holdridge, Thornthwaite, etc.). Therefore, 
they are the variables most commonly recorded by 
climatological stations worldwide and during long 
periods. Very often, these data are available as long 
and complete time series with acceptable levels of 
reliability. Although other climate classification sys-
tems analyze other different or additional features, 
this research work constitutes our first approach to 
the problem; therefore, simplicity is a constraint to 
test our methodology. Other climatological features 
can be incorporated in future work.

This research considers subnational units of 
political division because public policy makers 
need information on climate (and climate change) 
focused on their respective geographical scopes. 
Since the beginning of the XXI century, an accurate 
knowledge of the local environment, its patterns, and 
its variability is highly useful to decision-making in 
local governments and diverse industrial sectors. 
Therefore, in addition to global and regional climate 
classifications, subnational and local classifications 
have been introduced, for instance, García (1964), 
which are easier to understand to non-expert users 
and easier to exploit in areas different from climate 
science.

The usually applied procedure to characterize 
climatologically territorial units of political division 
consists in overlapping, either visually or mathemati-
cally, a political division map of the area of interest on 
a climate classification map. In other words, a climate 
classification system and its corresponding geograph-
ical representation on a map (or on a spatial database) 
are previously required for the task. The climate classes 
or typologies in the selected classification system 
depend on the climatological data used to produce 
the typology. It may happen that those data and the 
resulting typologies can be obsolete or inaccurate to 
characterize a particular territory on a given period. 
Thus, some the most known climate classification sys-
tems need occasional revision or adaptation to specific 
areas, for instance, the adaptation of Köppen’s system 
for the Mexican environments by García (1964). The 
obsolescence or inaccuracy can be larger due to the 
global climate change phenomenon.

The scope of this research is delimitated to imple-
ment an experiment in which a dataset containing cli-
matological features from a collection of climatological 
stations in Mexico is fed into an algorithm of the super-
vised machine-learning paradigm. The climatological 
features are monthly maximum and minimum tempera-
tures and cumulative rainfalls. Although available, no 
other features were used because Köppen (1936) and 
García (1964) focused only on these, and due to our 
previous experience in Mexico’s climate. The algorithm 
to produce classification trees is J4.8 (Witten and Frank, 
2000), also known as J48, which is the WEKA imple-
mentation of the C4.5 algorithm. This algorithm is se-
lected because: (1) classification trees are easy to under-
stand to non-experts of the machine-learning area, and 
(2) implementations of this algorithm are available in 
a wide variety of software toolkits, either commercial 
or free.

The particular approach of this research involves 
using a supervised machine-learning algorithm as a 
means to discover and to represent patterns that ex-
ist in climatological data that pertain to the specific 
political divisions of Mexico. The purpose is not 
to use the produced models as tools for automatic 
prediction or forecasting of the territorial unit (e.g., 
state) associated with a set of climatological features, 
but instead to use the models only as representations 
of the climatological patterns. The target attribute is 
the name of the political division unit (i.e., the state) 
corresponding to the location of every climatological 
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station. As the state is a known data that is available 
in the dataset, there is no need for using the models 
to predict this nominal value.

For a dataset, classification trees can automatical-
ly discover and represent the rules that constitute a 
particular climatological pattern, including the hier-
archies and interactions among the variables and their 
threshold values The intent is that this methodology 
can be applied to the climatological characterization 
of political division units of any country, using a 
similar collection of climatological features.

3. Climate classification systems
A climate classification system is a set of arithmeti-
cal and logical rules, and simple tags or labels that 
identify and define specific climate types based on 
climatological and, eventually, other complementary 
features. Most of these classification systems have 
been created to characterize the climate of large re-
gions of the world, and these areas are associated to 
the major world biomes. Then, the systems are adopted 
and adapted on more specific territories; for instance, 
Köppen (1936), Holdridge (1947, 1967), Thornthwaite 
(1948) and Trewartha (1968). Most of the world and 
regional climate maps have used Köppen’s classifi-
cation, which uses monthly temperatures and rainfall 
as climatological features to classify the climates. At 
present, these maps are updated and used to show 
changes in climate depending on climate change sce-
narios. The systems underwent some revisions and 
adaptations. For instance Belda et al. (2014), Kottek 
et al. (2006), and Rubel and Kottek (2010) have used 
recent climatological data of the second half of the 20th 
to produce updated classifications based on Köppen.

In the particular case of Mexico, three climate 
classification systems are adopted and widely used: 
Köppen, Holdridge, and Thornthwaite. In García 
(1964), a remarkable adaptation of Köppen’s classifi-
cation appears. In general terms, she used a procedure 
that is similar to Köppen’s, but she introduced a series 
of new climatological types, subtypes, and variants. 
García’s system is now used in Mexico since several 
decades ago, not only in climatology but also in other 
sciences, such as biology and agriculture.

4. Application of machine-learning algorithms 
to climatology and meteorology
Machine-learning algorithms have been applied to 
the climatology and meteorology fields for the last 

three decades, at least. The most used algorithms in 
these areas are artificial neural networks (ANN) and 
unsupervised clustering. The application of clas-
sification trees seems to be recent and infrequent. 
Regarding ANN, they are used in the modalities of 
self-organizing map (SOM), multi-layer perceptron 
(MLP) and neuro-fuzzy. See for instance, Badr et 
al. (2014), DeOliveira et al. (2009), Hewitson and 
Crane (2002), Jiang et al. (2012), Kisi and Shiri 
(2014), Robinson et al. (2013), and Shank et al. 
(2008). Cavazos (1999) applies SOM to the study 
of extreme precipitation in Northeastern Mexico. 
Clustering is used, for instance, by Bankert et al. 
(2009), Bravo-Cabrera et al. (2012), and McGuire 
and Tang (2013). Lu and Qin (2014) use a combina-
tion of ANN and clustering. Celik et al. (2014) use 
association rules, and Tavakol-Davani et al. (2013) 
use classification trees. Two very interesting works 
on the application of automatic classification trees 
are Zhang et al. (2013a, b), who use J4.8, the same 
tree generator algorithm used in our work, to model 
tropical cyclone rainfalls (see Fig. 2).

In turn, Faghmous et al. (2014) address the ap-
plication of data science to the research of climate 
change. Coria et al. (2013) successfully use J4.8 
to characterize political division units, particularly 
municipalities, from a demographical perspective 
addressing the digital divide phenomenon in Mexico. 
After a review, to our knowledge, no related work 
addresses the climatological characterization of ter-
ritorial units of political division by using automatic 
classification algorithms.

5. Theoretical background on automatic classifi-
cation algorithms
A reputed reference on data mining and automatic 
classification algorithms is Han et al. (2005). Clas-
sifying consist in assigning a class (a label) to an 
object, based on a set of its features. For instance, in 
Zhang et al. (2013a, b), the labels “makes a landfall 
along the Chinese coast” or “does not make a landfall 
along the Chinese coast,” are assigned to tropical 
cyclons, based on their latitude, minimum central 
pressure, 10-min maximum sustained wind speed, 
etc. A classifier is an algorithm that implements clas-
sification. A supervised classifier is built by giving 
it a set of objects, each one with its right class. The 
algorithm discovers or learns what combination of 
features indicates what class. This construction phase 
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is also known as the learning or training phase of 
the classifier, considered as a parameter tuning that 
is done by the classifier without human intervention. 
After training, a test phase is performed to measure 
the accuracy of the classifier model. After this, the 
classifier is ready to classify new objects: to assign 
a class to each one. The accuracy of a classifier is 
the ratio of correct classifications; e.g., a classifier 
that makes 12 mistakes when classifying 100 objects 
has an accuracy of 88%, where accuracy is equal to 

the number of objects correctly classified, over the 
number of total objects to be classified. The Kappa 
coefficient (Cohen, 1960) is another way to gauge 
the goodness of a classifier, defined as: Kappa = 
[acc - Pr] / [1 - Pr], where acc is the accuracy, and 
Pr is the probability that the classifier assigns a right 
class randomly. It is more robust than simple percent 
agreement (between the machine classifier and the 
reality) because it takes into account the agreement 
occurring by chance. Other measurements, like 
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Fig. 2. An example of a classification tree (reproduced from Zhang et al., 2013b) that classifies a 
cyclon into 0 (“does not make a landfall along the Chinese coast”) or 1 (“makes a landfall…”). 
These numbers are seen to the left of the left parenthesis in each leaf node (rectangles in the tree). 
Lat is the latitude; inten_indexSTH is the intensity index of the subtropical high, W_Westerly 
is the westerly index; lon is the longitude; area_indexSTH is the area index of the subtropical 
high. West_extSTH is the westward extension index; uwnd_200 is the zonal wind in the 200-
hPa layer; Monsoon_WF is the monsoon index; uwnd_400 is the zonal wind in the 400-hPa 
layer, and area_indexSTH is area the index of the subtropical high.
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recall, precision, and F-measure are also used to 
evaluate a classification model quantitatively.

When performing a model test, recall, precision 
and F-measure are computed for each class. Recall 
is the rate of true positives of a class. Recall (e) = 
correct classifications of stations to state e/number of 
stations in state e. Precision is the proportion of cases 
that truly are of a class divided by all classified into 
that class. Precision (e) = correct classifications of 
stations to state e/number of stations classified as e. 
High precision means the classifier had many more 
correct assignments to e than incorrect ones; high 
recall implies that the classifier classified most of the 
stations belonging to e as e. For state e, F-measure 
(e) = [2 × Precision (e) × Recall (e)]/[Precision (e) + 
Recall (e)]. These three indices measure the model´s 
skill is to recognize instances of a class. Then, the 
weighted average of F-measure is the average of all 
F-measures, each weighted according to the num-
ber of cases with that particular class label. Thus, 
the weighted F is an overall measure of the model 
goodness.

There are many types of supervised classifi-
ers. The tree-based classifiers make their decision 
procedure understandable to a person, which is an 
advantage. Thus, we selected the classifier J4.8 
(Witten and Frank, 2000) to analyze our dataset. It 
is inspired on the reputed C4.5 algorithm (Quinlan, 
1993), and it is available in the open-access WEKA 
data-mining tool (http://www.cs.waikato.ac.nz/ml/
weka/), another advantage.

The J4.8 algorithm is a generator of classifier 
trees. The input to the tree is an object to be classified. 
This object travels down the tree, selecting at each 
node of the tree a branch, according to the value of 
the feature that the node evaluates. For instance, if the 
first node of the tree assesses a cyclone latitude, 
then the input object will go to one of the branches 
less than or equal to 27 degrees, or greater than 
27 degrees (see Fig. 2), according to its latitude. In 
each subsequent node, a different test (usually on a 
different feature, for instance the intensity index of 
the subtropical high) is tried. The last node, a leaf, 
outputs the class of the object (for example, does not 
make a rainfall along the Chinese coast). The tree 
is available for examination by the user, yet another 
advantage. Every branch, from the root to a particular 
leaf, constitutes a classification rule (if-then rule). 
A rule has two parts: antecedent, and consequent. 

The antecedent (the if part) is the collection of 
comparisons (i.e., features with associated values) 
represented from the root through the node before 
the leaf. The consequent (the then part) is the leaf 
representing a class (a political division unit). Section 
8.4 shows some rules. Figure 2 is an example of a 
classification tree.

The construction of the tree depends on a set 
of samples (in our case, weather stations) labeled 
with their corresponding states. The tree is binary; 
each node has two branches or none (leaf node). A 
leaf node is one at which all the samples have the 
same label (they belong to the same state). If an 
unknown station “falls” into a leaf, it is assigned the 
state of the leaf.

A non-leaf node splits the objects to be classified 
according to the attribute of the node. The attribute 
and the value at which the split is produced are select-
ed so that the normalized information gain (difference 
in entropy) is greatest. The left and right branches are 
treated as smaller trees, and the algorithm is recur-
sively applied to them. A branch is split unless it is a 
leaf node or no more variable-value pairs remain. In 
this case, the expected value of the label is assigned 
to the leaf node. For instance, if 75% of the samples 
falling into this node have label Oaxaca, and 25% 
have label Chiapas, and there are no more tests pos-
sible, then the expected value is Oaxaca.

The J4.8 classifier produces binary splits for nu-
meric data, as most tree classifiers do, allowing the 
same variable to be used “partially,” permitting other 
variables to be tested and contribute to the decision, 
if they provide more information gain. Thus, the 
same variable can appear at different tree levels on 
a given branch. On the other hand, it is possible to 
construct a tree classifier with multiple splits when 
testing a variable, for instance, the KD-tree classifier 
(Guzmán, 1995). In a given branch, it tests a variable 
just once. Due to its inability to use the same variable 
at several levels on the same branch, it is, in general, 
less accurate than a binary tree.

6. Methodology
Based on data mining techniques, the following 
general steps should be followed as a methodology:

i. Determine the political division unit to be used 
as target attribute (e.g., state, department, prov-
ince) for the interested country.
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ii. Retrieve monthly climatological data from the 
source databases: 12 maximum temperatures, 
12 minimum temperatures, and 12 cumulative 
rainfalls to conform the 36 features for each 
climatological station previously selected. The 
name of the political division unit of every sta-
tion must be available, to be used as a target. All 
these data constitute the initial dataset.

iii. Check data quality considering missing values, 
outliers, or bias. The recording period should be 
continuous (i.e., no missing values for several 
consecutive months) and their minimum duration 
should be 30 years, to ameliorate the effects of 
periods of unusual climate. Allow missing values 
(the algorithm permits this), but a long sequence 
of them has a negative influence on the accuracy 
of the results. Make the initial and ending years of 
periods as similar as possible among the periods. 
Discard values beyond two standard deviations 
(outliers). Bias in the measurements was ignored 
in our case (it was too difficult to check).

iv. Rounding of numbers in climatological features 
(i.e., no decimals) is recommended to avoid the 
production of unnecessarily detailed models.

v. Perform descriptive statistics analyses (histo-
gram, column diagram, and Pareto) on these 
features: period durations, beginning and ending 
years, and political division units. In our case, 
data selection (step vi) and feature selection 
(this step) were as follows. For data selection, 
the 5329 climatological stations in the UNI-
ATMOS database ((Fernández-Eguiarte et al., 
2014; refer to section 6) were reduced to 3606 
by eliminating stations with too many missing 
or incomplete time series, although stations 
with periods less than 30 years were included. 
Of course, we did not remove a significant 
percentage of stations from any political unit 
(a compressed plot of these 3606 stations 
appears in Fig. 3). This yielded our initial 
dataset (Dataset 1 in Table I), from which an-
other eight groups of meteorological recordings 
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Fig. 3. Visualization of the periods corresponding to stations whose 
data are available in complete time series of at least 2 yrs. with 
all monthly data for maximum and minimum temperatures and 
cumulative rainfall. The vertical direction has been compressed to 
keep it to a reasonable size.
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were formed, each of them representing a 
distinct epoch (Datasets 2-9). The sizable 
recording period was a relevant aspect; thus, 
removing stations with less than 29 years of 
recording produced Dataset 2. Considering the 
starting time of recording yielded Dataset 3, 
which encompasses the second half of the 20th 
century, while Dataset 4 comprises the whole 
20th century. Dataset 5 is Dataset 3 considering 
long recording periods, that is, longer or equal 
to 39 years. Dataset 9 includes short periods, 
at least of 16 years. Datasets 6, 7 and 8 show 
variations on durations, initial and final years. 
These datasets underwent descriptive analyses, 
but they were not used to discard any of them. 
Instead, all nine datasets were used to produce 
classification trees, whose results are shown in 
section 7.

With respect to feature selection, it was 
not made by hand. Instead, the J.4.8 algorithm 
makes this selection automatically (from the 
dataset fed to it), placing those features with 
the largest discrimination power near the root of the 
tree (Witten and Frank, 2000), using entropy 
considerations. Section 7.2 shows the most 
discriminant features thus selected. Section 7.1 
covers the best trees (for Dataset 2) where these 
features appear, in fact, near the root.

vi. Different subsets of stations can be considered 
to produce other datasets from the initial data-
set, if different durations of periods or different 
initial and ending years in periods exist. In 
addition, the climate change phenomenon can 
be considered, and a particular year defined as 

the boundary to create different datasets (e.g., 
data before the year 1950, and after that year).

vii. Produce a classification tree model for every 
dataset by using the J4.8 algorithm (the WEKA 
software is recommended).

viii. Evaluate the trees quantitatively, analyzing the 
values of accuracy, Kappa, and F-measure. Aim 
to achieve an accuracy of at least 70%, which 
will provide confidence that the method produces 
reasonable results. For instance, in our case, the 
probability of a random assignment of a state to 
a station being correct is 1/32 (since Mexico has 
32 political units). More accurately, it is at most 
0.12, which is the ratio of the surface of the largest 
state, Chihuahua, to the whole surface of Mexico.

ix. Interpret, evaluate and determine the theoretical 
soundness of the best tree from the climatology 
perspective.

x. Extract and assign identifiers (e.g., integer num-
bers) to the classification rules in the best tree.

xi. Group the rules corresponding to every political 
division unit.

xii. Rank the rules in every political division unit 
based on its support value (i.e., the number of 
stations meeting each rule).

7. Experimental data
The experimental data in this research are organized 
as a series of datasets obtained from the UNIAT-
MOS database (Fernández-Eguiarte et al., 2014), 
which contains data from 1902 to 2011. However, 
the available periods of data records are not equal 
among all stations. UNIATMOS was created and 
updated by using daily data from the Servicio 

Table I. Statistical description of the nine experimental datasets to produce classification models (the total number of 
Mexican states is 32).

Dataset 
No.

Number 
of stations

Period duration in years Minimum 
initial year

Maximum 
final year

Number of Mexican states in a 
significant subset (80%) of the stationsShortest Largest 

1 3606 2 108 1902 2011 19
2 2399 29 108 1902 2011 19
3 1837 29 62 1949 2011 19
4 1292 4 98 1902 2000 15
5 957 39 59 1952 2011 18
6 484 29 79 1921 2000 15
7 427 29 35 1975 2010 15
8 410 29 66 1921 1999 16
9 298 16 51 1921 1985 15
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Meteorológico Nacional (Mexican Weather Service, 
SMN). It contains 5227 climatological stations 
with maximum temperatures, 5225 stations with 
minimum temperatures, and 5320 stations with 
cumulative rainfalls. Among other data, it includes 
36 yearly climate features per station (from January 
to December) as follows: 12 features  of maximum 
temperature, 12 features of minimum temperature, 
and 12 features of cumulative rainfall. Station ID, 
latitude, longitude, altitude, station name, munici-
pality, and state constitute data on every station. The 
state is the political division unit used as the target 
in the classification tree models. Climatological 
stations were placed in Mexico at different times 
and by various authorities. Budget played a role, too. 
Thus, they are not uniformly distributed (Table II 
gives the number of stations per state). Nevertheless, 
since  states generally have smaller budgets, their 
distribution tends to be somewhat balanced.

Statistical representativity is an essential aspect 
when producing analyses and models in climatol-
ogy and data mining. Therefore, differences in the 
durations and initial and ending years of periods of 
climatological stations in the database are considered, 
to produce a first dataset (Dataset 1). According to 
the methodology, values of climatological features 
(and altitude) were rounded to integers. Altitude is 
included in the dataset but only to determine its con-
tribution to the classification process. Temperature is 
in degrees Centigrade, cumulative rainfall is in milli-
meters, and the altitude is in meters above sea level.

Other eight alternate datasets were produced from 
Dataset 1 by selecting different subsets of stations. 
Table I presents the statistical description of all the 
nine datasets. There are important reasons to use nine 
different datasets: (1) durations, initial, and final years 
of recording periods of stations are heterogeneous; (2) 
climate change influences the climate patterns cor-
responding to the late 20th and early 21st centuries. 
The nine experimental datasets of this research are 
available at: http://tinyurl.com/gq6dc73.1

The original database of 5320 weather stations 
was reduced to 3606 in Dataset 1 by eliminating 
stations with missing or incomplete time series, 
although stations with periods less than 30 years 

1 http://tinyurl.com/gq6dc73 (the nine datasets). Ta
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were included. Dataset 2 is a subset of Dataset 1 
that only contains stations having periods of 29 or 
more years. Dataset 3 is a subset of Dataset 2 that 
focuses on the second half of the 20th century and 
the beginning of the 21st century (1949-2011). The 
climate in Mexico during the first half of the 20th 
century is different from that of recent decades, 
which would reflect climate change according to 
the Intergovernmental Panel on Climate Change 
(IPCC). Dataset 4 focuses on the whole 20th cen-
tury (1902-2000) and includes stations with short 
periods (four years as a minimum). The year 2000 
is selected conventionally as a time boundary, sup-
posing that patterns before this year are different 
from those after. Dataset 5 is similar to Dataset 
3 because both are focused on the second half of 
the 20th century and the beginning of 21st, but 
Dataset 5 uses only periods greater than or equal 
to 39 years. Datasets 6-8 are also variations on the 
durations and initial and final years of the periods; 
Dataset 9 includes short periods (the minimum 
length is 16 years).

The last column in Table I shows the number of 
Mexican states in a significant subset (80%) of the 
stations. It is computed by performing a Pareto anal-
ysis on the state name in every dataset. The analysis 
calculates the cumulative relative frequency of sta-
tions, and counts the states. The purpose is to verify 
the representativeness of states in every dataset. 
Considering that the total number of Mexican states 
is 32, they are suitably represented in every dataset, 
as Table I shows.

Since the number of stations per state is not the 
same, this introduces certain bias. Nevertheless, we 
preferred not to delete any station, since this amounts 
to discarding useful information.

8. Results
8.1 General aspects
Table III summarizes the results of 18 models (nine 
with the altitude attribute and nine without it) that 
the J4.8 algorithm produced on the nine datasets. 
Two trees are created for each dataset: one that in-
cludes the altitude feature as one of the predictors, 
and one that does not. All these models are available 
at: http://tinyurl.com/zctyjqa.2 The reason to produce 
18 models is that comparisons between their accura-
cies, Kappas, quantities of leaves, and F-measures are 
necessary to identify advantages and disadvantages in 
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each case. The quantity of leaves refers to the number 
of terminal nodes in a tree.

In the literature, there is no unanimity regarding 
the acceptance criteria in the evaluation of classifi-
cation trees because this depends on the particular 
domain and purpose of the models. However, it is 
clear that an accuracy much larger than that produced 
by a random assignment should be attained; the closer 
to 100%, the better.

According to Table III, the trees with highest 
accuracies, Kappas and F-measures are the two 
which were produced using Dataset 2 (containing 
2399 climatological stations). The effect of using 
the altitude feature as one of the predictors is only 
marginal, although consistent: in eight of the nine 
models, accuracies increase 1 or 2 percentage points, 
at most, and Kappas increase by 0.01 or 0.02 units. 
In turn, the quantity of leaves in the trees does not 
present a consistent or significant effect. As altitude 
is not strictly a climatological feature, the tree that 
does not include altitude is selected as the best model. 
This tree and its corresponding numbered rules can 
be downloaded from: http://tinyurl.com/zeoytgd.3 Its 
accuracy, Kappa, and F-measure are 60.5, 0.59, and 
0.604%, respectively. These results are lower than our 
desired goal (point viii of the methodology section), 
but still acceptable, in our opinion.

Dataset 2 is the most efficient to produce the 
models due to these possible reasons:

1. It includes long enough periods whose duration 
is at least 29 years.

2. Its minimum initial year is 1902 and its maximum 
final year is 2011, respectively, which offers al-
most all of the available historical scope.

Climate homogeneity or heterogeneity of a state 
with respect to its size is immaterial to our study, 
since our unit of analysis is the meteorological station 
(and not the political unit). Therefore, the result is 
given according to how stations are grouped by the 
parameters that the classifier considers, independent-
ly of the size of the state, or how close a station is to 
another station in a contiguous state. According to 
the map in Figure 4, there is a climatically defined 

area occupying two complete states, BCand BCS. 
In addition, an entire state (Son) and three-quarters 
of another state (Chih), or several states (Mex, Hgo, 
Pue, Tlax, Qro), definitely have different climate from 
the first two ones.

8.2 The most discriminant features
The root is the feature located at the top node of the 
tree model. This feature is important because it has 
the highest classification capability; i.e., it contributes 
most to the classification process. In seven of the nine 
trees, the root is rainfall_may (cumulative rainfall of 
May) (see table III). The root of the other two trees 
is rainfall_jun (cumulative rainfall of June), relevant 
from the Mexican climatology perspective because 
May is the month in which the rainy season begins 
in Mexico, and June is the second month of this 
season. In the best tree (http://tinyurl.com/zeoytgd), 
rainfall_may is also the most discriminant feature; its 
threshold value is 26 mm. The second most discrim-
inant features are rainfall_jun (threshold: 50 mm), 
and max_temp_jan (maximum temperature of Janu-
ary, threshold: 26 ºC). January is usually the coldest 
month in Mexico. Therefore, in general terms, this 
model expresses that the two major aspects consid-
ered to characterize the political division units are: 
rainfall at the beginning of the rainy season and 
maximum temperature in the coldest month.

As the best tree is the corresponding to Dataset 2, 
the map in Figure 4 presents its 2399 stations and the 
most general climate patterns discovered and repre-
sented by that tree. The number of description rules in 
a tree is equal to the number of its leaves (329 in this 
tree). However, the deepest leaves usually describe a 
very low number of instances, indicating that those 
patterns are not highly frequent. Therefore, the most 
general (i.e., most frequent) patterns are those that are 
described by features with the highest discriminant 
capability, which are located at the highest levels in 
the tree (i.e., the root and the features that are near-
est to it). Thus, the feature at the root (May rainfall) 
splits the 2399 stations into two branches (i.e., two 
subsets): those greater than 26 mm, and those less 
than or equal to 26 mm. If the two highest levels in 
the tree are considered (May rainfall, Jan max temp, 

2 http://tinyurl.com/zctyjqa (all models).
3 http://tinyurl.com/zeoytgd (the best tree and its rules).
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and Jan rainfall), then four collections of stations 
are identified. If three or more levels are considered, 
then eight, 16, 32, etc. collections can be identified. 
Therefore, the four most general climate patterns are:

1) May rainfall > 26 mm and Jan max temp ≤ 26 ºC 
(light blue)

2) May rainfall > 26 mm and Jan max temp > 26 ºC 
(dark green)

3) May rainfall ≤ 26 mm and Jan rainfall > 50mm 
(light orange)

4) May rainfall ≤ 26 mm and Jan rainfall ≤ 50mm 
(intense red)

This is interesting because the spatial distribution 
of the four patterns can be clearly visualized on the 
map: light blue is located at the center and the east, 
dark green is at the south and south-east, light orange 
is at the west, and intense red is at the north-west.

8.3 Characterization of the Mexican states
Every Mexican state can be characterized by se-
lecting and grouping all its leaves from the best 
classification tree (http://tinyurl.com/zeoytgd) and 
joining them using the OR logical operator. There-
fore, 32 groups of OR-joined rules describe the 
climatological profiles of all the Mexican states. 
Sorting the rules by support value in every state 
group is recommended so that the most supported 
rules of the state are presented first. These groups 
and the sorted rules can be downloaded from: 
http://tinyurl.com/hl4gzcr.4 The comprehension 
(and user friendliness) of a rule is enhanced if the 
user, on a first reading, “simplifies” it by ignoring 
its branches with small support. See in this regard 
section 8.4.

Table II presents the quantity of rules per state 
in the best tree (http://tinyurl.com/zeoytgd). The 
four states with more rules are: Jal (25), Oax (22), 

4 http://tinyurl.com/hl4gzcr (rules grouped by state).

United States of America

Gulf of Mexico

Pacific Ocean

N

State polygon
Coordinate system: WGS 1984 UTM zone 14N

Projection: Transverse mercator
Datum: WGS 1984

Guatemala

Fig. 4. The four basic climate patterns based on the features with highest discriminant 
capability at the top two levels in the best tree (from Dataset 2 with 2399 stations). 
Each point is a climatological station. Light blue: May rainfall > 26 mm and Jan max 
temp ≤ 26 °C. Dark green: May rainfall > 26 mm and Jan max temp > 26 °C. Light 
orange: May rainfall ≤ 26 mm and Jan rainfall > 50mm. Intense red: May rainfall ≤ 
2 6mm and Jan rainfall ≤ 50 mm.
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Gto (20) and SLP (20), and the 3 states with fewer 
rules are Q.R. (2), Tab (2) and Yuc (2). It contains, 
in addition, the classifier accuracy by state. The 
number of rules per state depends, mainly, on two 
aspects: the quantity of climatological stations in the 
state, and the diversity of climates in that state. As an 
example, the detailed characterization of two states 
are presented below:

State = Tlax: IF
rainfall_may > 26, max_temp_jan ≤ 26, max_temp_
jul ≤ 29, rainfall_apr > 20, rainfall_jan ≤ 35, rain-
fall_aug > 97, min_temp_jan ≤ 5, rainfall_jan ≤ 13, 
rainfall_may ≤ 81, rainfall_jan > 5, min_temp_jan ≤ 
4, rainfall_apr > 34, rainfall_aug > 99, rainfall_dec 
≤ 8, min_temp_jun ≤ 9 (9 stations, 1 exception) [rule 
R183]

or

rainfall_may > 26, max_temp_jan ≤ 26, max_
temp_jul ≤ 29, rainfall_apr > 20, rainfall_jan ≤ 35, 
rainfall_aug > 97, min_temp_jan ≤ 5, rainfall_jan 
≤ 13, rainfall_may ≤ 81, rainfall_jan ≤ 5, min_
temp_may ≤8 (5 stations, no exception) [rule R170] 

or
rainfall_may>26, max_temp_jan ≤ 26, max_temp_jul 
≤ 29, rainfall_apr > 20, rainfall_jan ≤ 35, rain-
fall_aug > 97, min_temp_jan ≤ 5, rainfall_jan ≤ 13, 
rainfall_may > 81, rainfall_jun ≤ 196, max_temp_nov 
≤ 22, min_temp_jul ≤ 9, max_temp_mar > 23 (5 
stations, 1 exception) [rule R189].

or

rainfall_may > 26, max_temp_jan ≤ 26, max_temp_
jul ≤ 29, rainfall_apr > 20, rainfall_jan ≤ 35, rain-
fall_aug > 97, min_temp_jan ≤ 5, rainfall_jan ≤ 13, 
rainfall_may ≤ 81, rainfall_jan > 5, min_temp_jan ≤ 
4, rainfall_apr ≤ 34, rainfall_feb ≤ 9, min_temp_jul ≤ 
11, rainfall_jul ≤ 159, rainfall_may > 64, rainfall_jan 
≤ 10 (4 stations, no exception) [rule R173].

State = BCS: IF
rainfall_may ≤ 26, rainfall_jun ≤ 50, rainfall_
may ≤ 8, rainfall_jun ≤ 2, min_temp_oct > 13, 
max_temp_aug ≤ 38, rainfall_apr ≤ 3, rain-
fall_jun ≤ 1 (58 stations, 1 exception) [rule R2] 

or

rainfall_may ≤ 26, rainfall_jun ≤ 50, rainfall_may 
≤ 8, rainfall_jun ≤ 2, min_temp_oct > 13, max_
temp_aug ≤ 38, rainfall_apr ≤ 3, rainfall_jun > 1, 
min_temp_jan ≤ 9 (4 stations, 1 exception) [rule R3]

or

rainfall_may ≤ 26, rainfall_jun ≤ 50, rainfall_may ≤ 
8, rainfall_jun > 2, rainfall_sep > 121, max_temp_jan 
≤ 25 (3 stations, no exception) [rule R15].

8.4 Rules with highest support
The most significant rules in a classification tree are 
those with the highest support. Support is the number 
of climatological stations that are described by the 
antecedent of the rule. A law can present exceptions, 
i.e., stations that meet the antecedent but do not meet 
the consequent (do not belong to that state). Confi-
dence of a rule is the ratio of instances (stations) in 
that rule that match its antecedent and in fact belongs 
to the state designated by the rule, divided by the 
total numer of stations that just match the anteced-
ent. From the best tree (http://tinyurl.com/zeoytgd) 
the rules with the highest support are identified and 
presented in Table IV with their respective confidence 
values. All sorted 329 rules can be downloaded from: 
http://tinyurl.com/jxo5gul, with their support. The 
two first rules of Table IV are shown below (R2, the 
third rule, was already presented above with the other 
rules for BCS):

R9: IF rainfall_may ≤ 26, rainfall_jun ≤ 50, rain-
fall_may ≤ 8, rainfall_jun > 2, rainfall_sep ≤ 121, 
min_temp_dec> –1, min_temp_jan ≤ 8 THEN 
Son (91 stations, 2 exceptions). Support of R9 is 

Table IV. The five rules with highest support in the best 
tree.

No. Rule
ID

State Support 
(divided 
by 2399)

Exceptions Confidence

1 R9 Son 91 (3.8%) 2 97.8%
2 R196 Mex 67 (2.8%) 8 89.3%
3 R2 BCS 58 (2.4%) 1 98.3%
4 R248 Tamps 53 (2.2%) 1 98.1%
5 R299 Gro 51 (2.1%) 1 98.1%
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91/2399=3.8%, since 91 stations out of the 2399 fall 
into R9; confidence of R9 is 91/(91 + 2) = 0.978 = 
97.8%, since two of these 91 stations do not belong 
to Sonora.

R196: IF rainfall_may > 26, max_temp_jan ≤ 26, 
max_temp_jul ≤ 29, rainfall_apr > 20, rainfall_jan 
≤ 35, rainfall_aug > 97, min_temp_jan ≤ 5, rain-
fall_jan > 13, rainfall_jun > 115, rainfall_dec ≤ 19, 
rainfall_jul ≤ 275, min_temp_jun ≤ 11, rainfall_feb 
≤ 14 THEN Mex (67 stations, 8 exceptions).

If the support of a rule is among the highest of 
the tree, then that particular pattern is among the 
most frequent in the dataset and, particularly, in that 
specific state. For instance, R9 describes a climate 
pattern that is typical of Sonora (Son), a dry territory 
with cold winter, and R196 describes a typical pattern 
of the State of Mexico (Mex), with rainy summer and 
cold and wet winter.

8.5 Confusion matrix
The confusion matrix is automatically produced in 
the test phase of the model. It shows the confusion of 
the model while classifying the stations into states. 
Figure 5 shows the confusion matrix of the best tree. 

It is a square (n × n) matrix, where n is the number of 
Mexican states. An item in the array tells how many 
stations were (correctly or incorrectly) classified 
into a state. Each row represents a state. A column 
represents the classification determined by the model 
(i.e., classified as). The sum of every row is equal to 
the total number of stations of a state.

A number on the diagonal gives the quantity of 
correctly classified stations regarding a particular 
state. For instance, the model determined that 32 
stations belong to Ags, which is true (see the item 
in the first row and first column). Every number that 
is out of the diagonal represents stations classified 
into a wrong state. For instance, number six at the 
first row and eleventh (k) column represent stations 
that the model considers belonging to Gto, when 
they really belong to Ags. This matrix is interesting 
because it suggests that most of the confusions occur 
among climatological stations that belong to neighbor 
states; for instance, in the first row, stations of Ags 
are confused with those of Gto, Jal or Zac (see map 
in Fig. 1).

The sum of all values along the diagonal rep-
resents the total quantity of correctly classified in-
stances (i.e., true positives); therefore, the difference 
of the total number of stations in the dataset minus 

Fig. 5. Confusion matrix of the best tree, produced with the Dataset 2 (2399 stations).

<-- Classified as
===  Confusion Matrix  ===
a b c d e f g h i j m n o p q r s t u v w x y aa ab ac ad aez afk l

a  = Ags32 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

6 0
b  = BC0 42 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 10 0
c  = BCS0 4 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 01 00 0
d  = Camp0 0 0 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 4 100 00 0
e  = Coach0 0 0 0 29 0 0 2 0 2 0 1 0 0 0 0 6 0 0 0 0 4 0 0 1 0 0 00 01 0
f  = Col0 0 0 0 0 11 0 0 0 0 0 4 0 5 0 4 0 0 0 0 0 0 0 0 0 0 10 00 00 0
g  = Chis0 0 0 0 0 0 64 0 0 0 2 0 1 0 7 0 0 8 1 0 0 0 0 5 0 0 10 00 00 3
h  = Chih0 0 0 0 2 0 0 55 0 7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 01 20 0
i  = CDMX0 0 0 0 0 0 0 0 7 0 0 0 5 1 0 0 0 2 2 1 0 1 0 0 0 0 0 00 01 0
j  = Dgo1 0 0 0 1 0 0 5 0 35 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 02 162 0
k  = Gto1 0 0 0 0 0 1 0 1 0 7 10 1 9 0 0 1 0 0 4 0 7 0 0 0 0 0 00 1670 0
l  = Gro0 0 0 0 0 2 7 0 1 0 0 1 3 9 6 0 0 4 6 0 0 0 0 0 0 0 2 00 00 83
m  = Hgo0 0 0 0 0 0 3 0 1 0 26 0 8 1 0 0 2 0 9 3 0 6 0 0 1 6 3 00 05 0
n  = Jal8 0 0 0 0 7 0 0 1 1 1 95 0 17 0 8 0 1 0 0 0 2 0 0 0 0 1 00 84 2
o  = Mex0 0 0 0 0 0 0 0 6 0 8 0 99 7 4 0 0 6 5 3 0 0 0 0 0 6 0 00 02 7
p  = Mich0 0 0 0 0 3 0 0 1 0 0 22 1 62 2 1 0 1 0 0 0 0 0 0 0 0 1 00 016 12
q  = Mor0 0 0 0 0 0 1 0 1 0 0 0 2 2 16 0 0 4 3 0 0 0 0 0 0 0 0 00 00 14
r  = Nay0 0 0 0 0 3 0 0 0 1 0 9 0 0 0 16 0 0 0 0 0 0 2 0 0 0 0 00 00 0
s  = NL0 0 0 0 7 0 0 0 0 0 3 0 0 0 0 0 37 0 0 0 0 6 0 0 19 0 0 00 01 0
t  = Oax0 0 0 0 0 0 11 0 4 0 2 3 6 0 2 0 0 44 8 0 0 0 0 0 0 0 13 00 00 7
u  = Pue0 0 0 0 0 0 2 0 1 0 13 1 5 1 3 0 2 7 27 0 0 1 0 0 0 2 6 00 01 4
v  = Qro0 0 0 0 0 0 0 0 1 0 3 1 4 0 0 0 0 1 1 2 0 4 0 0 0 0 1 00 15 0
w  = Q.R.0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 1 0 0 0 30 00 0
x  = SLP1 0 0 1 2 0 0 0 1 0 2 0 2 1 0 0 3 0 1 1 0 72 0 0 9 0 10 10 96 0
y  = Sin0 0 2 0 0 0 0 2 0 1 0 1 0 0 0 1 0 0 0 0 0 0 45 0 0 0 0 08 00 0
z  = Son0 2 2 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 091 00 0

aa  = Tab0 0 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 00 00 0
ab  = Tamps0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 10 0 0 1 0 18 0 0 92 0 6 00 10 0
ac  = Tlax0 0 0 0 0 0 0 0 0 0 4 0 6 0 0 0 0 2 2 0 0 0 0 0 0 9 0 00 00 0
ad  = Ver0 0 0 1 0 0 12 0 0 0 4 1 0 1 0 0 1 7 5 0 1 6 0 2 7 0 102 00 00 2
ae  = Yuc0 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 2 290 00 0

11 0 0 0 1 0 0 3 0 14 0 7 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 00 445 0 af  = Zac
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the real positives is equal to the number of incorrectly 
classified stations. An ideal although very unusual 
confusion matrix would present values greater than 
0 along its diagonal only, and equal to 0 in any other 
position. WEKA uses the confusion matrix to com-
pute automatically true positives, true negatives, 
false positives and false negatives. In turn, these are 
used to calculate accuracy, Kappa, recall, precision, 
and F-measure.

9. Discussion and suggested applications
The empirical results in Table III show that the 
models offer accuracy in the classification of clima-
tological stations into states that are greater than or 
equal to 0.46 (the worst cases are Datasets 8 and 9) 
and less than or equal to 0.60 (best cases, Datasets 1 
and 2). A naïve baseline can be obtained by a random 
assignment of a given weather station to a state. The 
probability of this assignment to be correct is at most 
0.12, as stated in step viii of section 6. Moreover, this 
work does not seek to find where to place a meteo-
rological station in certain state. The stations were 
installed along many years by different government 
agencies. For this analysis, those stations fulfilling 
certain criteria were selected, as pointed out in the 
methodology section.

A series of the most significant patterns in the 
Mexican climate identified by the tree models are:

1) May rainfall is the feature with the highest ca-
pability for discrimination of states, which is 
consistent with theories and systems using this 
as a critical piece of information. It determines 
the beginning of the rainy season in Mexico.

2) The particular value of 26 mm for the May rainfall 
determines a threshold to classify the states.

3) The next two features with highest discrimina-
tion capability in the best tree are June rainfall 
(threshold: 50 mm), and maximum temperature 
of January (threshold: 26 ºC), involving summer 
rains and the coldest month, respectively.

4) Robust patterns of states with very typical climate 
emerge; for instance, dry seasons and cold win-
ter in Son, and rainy summer with cold and wet 
winter in Mex.

The main reasons for using the J4.8 algorithm 
are: (1) the patterns are represented as classification 
rules in the tree branches, (2) these rules are easy 

to understand, so they are highly useful, and (3) the 
rules are highly detailed, allowing to describe subtle 
similarities and differences between pairs of states.

In contrast to the usually applied procedures, 
our methodology does not depend on any previous 
climate classification system, but only on observed 
data. If these data are recent and reliable, the clima-
tological characterization of the territorial units can 
be more accurate and dependable than the character-
ization produced by the usually applied procedure. 
In addition, our methodology is easily used on new 
observed data as these become available.

The tree models offer a new perspective on the 
identification and representation of climatological 
patterns for political division units. Among other 
aspects, the tree models allow to discover and to 
represent how similar two given territorial units are. 
The model uses climatological features possessing 
discriminant capability, along with their respective 
threshold values. This combination is able to distin-
guish between different territorial units.

This work has produced a methodology, a col-
lection of datasets, a series of descriptive statistics 
analysis, and several machine-learning models that 
are valuable research products by themselves. They 
can be applied to other tasks involving analysis, 
modeling, and visualization. Several applications 
are suggested below.

The methodology can be used to characterize 
the climates of the political division units of other 
countries besides Mexico, for which data on monthly 
maximum and minimum temperatures, and cumu-
lative rainfall should be available. The minimum 
duration of periods in the available data should be 
30 years, approximately.

The main application of the best tree (http://
tinyurl.com/zeoytgd) of the Mexican dataset has 
been the climatological profiling of the states of this 
country. The nine datasets correspond to different 
subsets of climatological stations in the Mexican 
territory. As the produced datasets consider distinct 
periods, they can be exploited to perform other 
statistical analyses and machine-learning models. 
For instance, attractive models may be created 
using other algorithms, such as classification rules, 
multi-layer perceptrons, or clustering. This latter 
procedure can be used to discover, for instance, a 
small number of clusters, based on the 36 climato-
logical features.
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An application of the best tree model and its corre-
sponding dataset is the production of a new database 
with one additional feature in which climatological 
stations are labeled depending on the tree branch (or 
sub-branch) they belong to. The collection of stations 
represented in it can split into two, four, eight, 16, 
or 32 subsets. The number of subsets is a power of 
two because the tree is binary. Every subset can be 
labeled with a nominal value, for instance a color, 
and shown on a map. Figure 4 shows a map with 
stations in four colors.

Finally, although it can be very unusual, the best 
tree can be used, with some certainty level, to deter-
mine the political division unit where a climatological 
station is placed, in case that this specific data is not 
available due to some extraordinary reason.

10. Conclusions and future work
This article has presented a methodology to dis-
cover and to represent climate patterns of political 
division units in a country using monthly maximum 
and minimum temperatures and rainfalls, by means 
of automatic classification trees. This methodology 
assumes that every territorial unit contains at least one 
climatological station and that the recording periods 
of stations are similar in their durations and in their 
initial and ending years. Based on the experimental 
results, our claim is that the classification tree is a 
useful technique to discover and represent these pat-
terns, and offers high expressivity to climatologists.

Our theoretical contributions are both from the 
conceptual and the methodological perspectives. 
From the conceptual perspective, we formalized 
a notion of climatological characterization of 
political division units by means of models using 
classification trees. In addition, the climate patterns 
(and their representation) of the political division 
units corresponding to a specific country (Mexi-
co, in this case) constitute innovative knowledge 
by themselves. In turn, from the methodological 
perspective, our proposal offers an effective and 
original procedure to characterize political division 
units (states, in this case) by means of their clima-
tological features. In addition, our methodology is 
different from the most common approaches to this 
problem because it does not depend on any pre-
vious climate classification system (e.g., Köppen, 
Holdridge, García, etc.), or any map representation 
of climate typologies.

The strengths of this methodology are, among 
others, the following:

1. Climate patterns discovered and represented by 
the tree models are finely detailed by means of 
subsets of the 36 climatological features with their 
respective threshold values.

2. The most useful features to perform the discrim-
ination are automatically identified by the tree 
production algorithm (i.e., the most discriminant 
features are placed at the top of the tree) and, in 
turn, the least useful features are automatically 
placed at the bottom or disregarded by the algo-
rithm.

3. Although the models make some mistakes, these 
generally occur between pairs of states that either 
are neighbors or have very similar climates.

4. The tree models offer a fine granularity that shows 
the subtle differences that can exist within one 
single territorial unit or between two territories 
with very similar climates.

Future research work should address creating anal-
yses and models with this methodology on data from 
other climatological datasets, either from Mexico or 
from other countries, considering different features and 
other scopes of political division units, either larger or 
smaller. As an improvement to our work with J4.8, it 
is possible to construct many decision trees and then 
select the best (the random forest algorithm [RF]). 
Other automatic classification algorithms could be 
used; e.g., classification rules or clustering.

An interesting work would be an empirical 
comparison of the classification results obtained 
by these classification models vs. those by expert 
climatologists using the 36 climatological features. 
Another interesting product can be a map of Mexico 
showing types of climatological stations as colored 
points using two, eight or 16 colors, depending on 
the branches of the best tree, as explained in section 
8 and shown in Figure 4. Finally, our analyses and 
models can be used as preliminary inputs to a more 
ambitious research work that aims at revising or 
updating a known climate classification system, for 
instance, García’s system for Mexico.

It is interesting to see how predictability changed 
with time, analyzing different periods. We left that 
for a future work, in order to keep our report to a 
reasonable extention.
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