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RESUMEN

Se delimitan las regiones climáticas de México mediante el análisis jerárquico de agrupamiento. Los datos 
utilizados fueron medias mensuales de temperatura máxima y mínima y la precipitación mensual acumulada, 
obtenidas de estaciones climáticas en México para el periodo 1961-2004. Este método de agrupamiento asigna 
cada variable de precipitación y temperatura a grupos con base en características estadísticas similares. Se 
realizó un análisis de componentes principales para obtener una matriz estandarizada que se utilizó en el 
agrupamiento. Aplicando dos criterios de agrupamiento (K-means y Ward) fue posible definir estadística-
mente los grupos de estaciones que delimitan regiones de clima similar. Además, la metodología empleada 
describe la distribución de la vegetación dominante para cada región climática. Este análisis puede contribuir 
a la generación de nuevos escenarios climáticos, donde puede incluirse la dinámica de la cobertura vegetal 
como bioindicador del clima. 

ABSTRACT

The climate regions of Mexico are delimitated using hierarchical clustering analysis (HCA). The data used 
consists of monthly means of maximum and minimum temperatures and monthly-accumulated precipitation. 
The dataset was obtained from heterogeneously distributed climatic stations in Mexico for the period from 
1961 to 2004. This cluster method assigns precipitation and temperature variables to groups of clusters based 
on similar statistical characteristics. We carried out a principal components analysis to obtain a standardized 
reduced matrix to be used in HCA. By applying two clustering criteria (K-means and Ward´s method) it 
was possible to define statistically groups of stations that delimit regions of similar climate. In addition, the 
applied methodology describes the dominant vegetation distribution for each climate region. This analysis 
may contribute to the generation of new climate scenarios, where the dynamics of land vegetation cover 
could be included as a biomarker of climate.

Keywords: Hierarchical clustering analysis, principal component analysis, climate of Mexico, vegetation 
distribution.
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1. Introduction
The relationship between climate and vegetation 
distribution has been used to make inferences about 
changes in the behavior patterns of both components. 
The classification of climatic regions can contribute 
to the knowledge about climate change and the po-
tential distribution of vegetation (Bonan et al., 2003). 
There has been a climate typing attempt to introduce 
a series of rules in order to generate climatic region-
alization based on the statistical analysis of long-term 
meteorological data. One of these statistical analyses, 
based on eigen techniques, represents an alternative 
that can be used to generate reproducible climatic 
maps (Richman, 1981). The climatology of Mexico 
has been described by some authors (García, 2004; 
Comrie and Glenn, 1998; Englehart and Douglas, 
2002; Giddings et al., 2005, Bravo et al., 2012). 
However, for new methodologies to be introduced, it 
is indispensable to understand climatic zoning based 
on statistical data analysis. When defining climate 
regions, typically, long-term monthly means are 
employed from a set of climatic observations (tem-
perature and precipitation) regarding a number of 
climatic stations (Pineda-Martínez et al., 2007). The 
principal aim of this research is to apply a hierarchical 
clustering analysis to historical meteorological data 
of Mexico.

Another aspect is the connection between cli-
mate and vegetation. The distribution of potential 
global vegetation is entirely related to the climate 
and geographical conditions (Neilson, 1995; 
Bonan et al., 2003). The estimation of vegetation 
distribution in terms of climatic regions can be a 
useful tool for future approaches not only for the 
climate but also for the redistribution of potential 
vegetation under climate change scenarios. These 
interactions are key for understanding the water 
balance and its impact on the hydrological cycle 
(Farmer et al., 2003).

The regions of native vegetation are adapted to 
contemporary climate conditions. As the climate 
changes every type of vegetation must change as 
well. The sites where climate becomes a factor of 
stress can cause changes in vegetation patterns and 
promote the invasion of exotic species (Cramer 
and Leemans, 1993). This kind of alteration of the 
vegetation cover may modify significantly the soil 
properties. The relationship between vegetation and 

climate is essential to understand the interactions 
between the ability of the soil to store water and 
its impact on the processes of potential evaporation 
and precipitation.

This work aims to define climate regions for the 
whole territory of Mexico based on hierarchical clus-
tering analysis from 2324 selected climatic stations. 
Cluster analysis is a useful tool to define groups of 
objects within a dataset based on similarity, thus it 
allows to define climatic regions. Also, we generate 
a classification of the main types of vegetation in 
each climatic region. The database of vegetation 
types used for this study corresponds to the nation-
al forest inventory of 2000 (Palacio-Prieto et al., 
2000). Vegetation types are grouped by dominant 
vegetation type in representative groups (Miranda 
and Xolocotzi, 1963).

In this paper we generate a climatic regional-
ization based on a robust statistical analysis. In the 
regionalization of climate we use vegetation cover 
as a guide to the discussion of the results. In this 
way, we focus on describing the main relationships 
between our climatic regionalization and vegetation 
patterns, and the topographic influence. 

2. Data and methodology
2.1 Climate data
We use 2324 stations across Mexico’s territory 
(14º N, 86º W to 33º N, 118º W) for which the date 
record spans 40 years. The data was obtained from 
the Comisión Nacional del Agua (Mexican water 
commission), and it includes observations from sta-
tions throughout Mexico (Fig. 1) (http://clicom-mex.
cicese.mx). 

For this research work, we consider monthly 
means of temperature maxima (January = T1 to 
December = T12), monthly means of temperature 
minima (January = t1 to December = t12) and 
monthly means of accumulated precipitation (P) 
(36 variables in total), for a period from 1961 to 
2004. In order to obtain a matrix of average values, 
we included stations with continuous information 
during the considered period and those with no more 
than 2% missing data. Precipitation and temperature 
values were evaluated using quality controls similar 
to Zhu and Lettenmaier (2007). The variables were 
standardized to a 0 mean and a standard deviation 
of 1. No methods were applied to fill missing data. 
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2.2 Principal components
The PCA was implemented as described in Gong 
and Richman (1995). The data matrix was used to 
compute the covariance between all variables or 
entities (A). The data matrix X contains n stations 
and m variables (2324 × 36). The n × m data matrix 
yielded a m × m matrix. Since data were standardized 
the resulting product matrix of the anomalies would 
be a standardized anomaly matrix, also known as a 
correlation matrix. As mentioned by Estrada et al. 
(2009), a correlation matrix is used to avoid that 
variables with larger magnitudes would dominate in 
the PCA results. The matrix was diagonalized into a 
m × m matrix of eigenvalues and a matrix of eigen-
vectors. The eigenvectors were scaled by the square 
root of the corresponding eigenvalue. Once this was 
accomplished, some assessment of dimensionality 
is often applied to reduce the m new variables (the 
principal components) to a smaller set, r (Gong and 
Richman, 1995). For this research, we retained the 
principal component with eigenvalue > 1. 

The m × r matrix was transformed by a varimax 
orthogonal rotation to obtain an m × r matrix of 
rotated principal component loadings. From these 
rotated loadings, an n × r set of principal component 
scores are formed and a Euclidian distance measure 
is applied to those scores. The distances are used as 
inputs for the cluster analysis. 

This PCA has the goal of replacing the correlated 
climatic original variables with new components, 

which are mutually uncorrelated based on the princi-
ple that each component is defined by an orthogonal 
basis (Richman, 1981). Thus, the eigenvector matrix 
resulting from this type of PCA is often truncated. 
retaining PC with eigenvalues ≥ 1 (Gong and Rich-
man, 1995).

The entries of this matrix, the eigenvectors or 
loadings, define new variables, consisting of linear 
transformations of the original variables. Thus, PCA 
generates another matrix that represents new uncor-
related variables (Richman, 1981). 

2.3	Cluster	analysis
Hierarchical cluster analysis (HCA) allocates a set of 
objects into groups or clusters on the basis of some 
measurement of similarity. This similarity or distance 
is an Euclidean measurement, i.e., it is a simple 
difference between two objects (Fovell and Fovell, 
1993; Karlsen and Elvebakk, 2003). 

Agglomerative cluster is an algorithm that starts 
with n clusters, each containing one single object, 
and then neighbor cluster pairs merge iteratively at 
each step to create new clusters (Elmore and Rich-
man, 2001). Thus, the number of remaining clusters 
is reduced by one after every step and the procedure 
finishes when only one cluster containing all the ob-
jects is created (Karlsen and Elvebakk, 2003). 

In order to identify the minimum number of suit-
able clusters, a K-means clustering was carried out 
to group the data based on similarity of PC’s. The 
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Fig. 1. Elevation map of Mexico including its main topography features. 
The most representative climate regions are indicated. The points repre-
sent the position of the considered stations.
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K-means algorithm is a convergent method where 
k seed points are specified as a set of centroids of k 
clusters. The Euclidean distance is computed; then 
each entity is assigned to a cluster having the nearest 
centroid to attain an initial partition. The minimum 
cluster number is determined under a convergent 
criterion by comparing the distances to all the k 
clusters centroids. 

Once a maximum number of clusters were ob-
tained, we carried out an agglomerative hierarchical 
clustering using Ward’s method, which is an ag-
glomerative hierarchical cluster method that merges 
cluster pairs with the smallest inter-cluster Euclidean 
distance. Ward’s method, the most frequently used 
for climatic classification (Kalkstein et al., 1987), uti-
lizes inter-cluster minimum variance as the distance 
criterion for merging cluster pairs that show the mini-
mum squared distance between centroids (Fovell and 
Fovell, 1993; De Gaetano, 1996). Ward’s algorithm 
was carried out for the retained components from the 
PCA to obtain a climatic regionalization (Kalkstein 
et al., 1987). Since our final goal is the delimitation 
of climatic regions, every cluster will be classified 
using the Köppen climate classification modified by 
García (2004). 

2.4	Silhouette	coefficient	
In order to determine the minimum cluster, the sil-
houette coefficient (SC) was computed. The method 
of silhouette coefficients combines both cohesion and 
separation (Tan et al., 2005).

In order to compute the silhouette coefficient for 
an individual point, a process that consists of the 
following three steps is carried out: 1) for the ith 
object, its average distance to all other objects in its 
cluster ai’ is calculated; 2) for the ith object and any 
cluster not containing the object, the average distance 
to all the objects in the given cluster is calculated; 
the minimum value with respect to all clusters is bi; 
and 3) for the ith object, the silhouette coefficient is 
Si	=	(bi – Ui)/max(ai’ bi)’.

The value of the silhouette coefficient can vary 
between –1 and 1. A negative value is undesirable be-
cause it corresponds to a case in which Ui, the average 
distance to points in the cluster, is greater than bi, the 
minimum average distance to points in another cluster. 
We want the silhouette coefficient to be positive (ai < 
bi), and for ai to be as close to 0 as possible, since the 

coefficient assumes its maximum value of 1 when Ui	=	
0. We can compute the average silhouette coefficient of 
a cluster by simply taking the average of the silhouette 
coefficients of points belonging to the cluster. 

3. Results and discussion
3.1	Principal	component	analysis	
Figure 2 shows PC loadings for the three first com-
ponents; it is possible to observe that all variables 
are grouped on different sectors. PCA results show 
a distribution of temperatures associated to the first 
principal component (PC1) and precipitation vari-
ables associated to the second component (PC2). PC 
loadings are characterized by temperature variables 
through the PC1 with an explained variance of 52.9% 
and by precipitation variables through the PC2 with 
an explained variance of 19.2%. The first three prin-
cipal components amounted to 82.1% of the total 
explained variance. Additional components had a 
lower effect on variance explanation (eigenvalue < 1).

As shown in Figure 2, monthly means of min-
imum temperature had the highest contribution to 
PC1, revealing the large variability of this parameter. 
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Fig. 2. Plot of principal components scores PC1, PC2, and 
PC3 for the 1961-2004 dataset. Precipitation (P) variables 
are represented in PC2 while PC1 is totally explained by 
maximum (T) and minimum (t) temperatures, respectively. 
PC3 represents seasonal variability. 
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For instance, from an average temperature of 24 °C 
in warmer climates (state of Tabasco) to –4.25 ºC in 
colder ones (in the western Sierra Madre of Chihua-
hua, see Fig. 1). It is reflected in major correlation 
values for these variables (from November to March). 
Maximum temperatures are associated with negative 
loadings in PC2 except from January to March. Less 
variability in temperature is observed through all 
data for spring and summer months. In contrast, PC3 
shows an influence of summer temperatures and for 
precipitation in winter months.

3.2	Cluster	analysis
In order to generate the climate classification, it 
is necessary to delineate groups of stations which 
share similar meteorological characteristics. This 
delimitation was carried out by applying Ward’s 
agglomerative hierarchical clustering to the three 
first retained principal components. The spatial in-
terpolation was done using a geostatistical ordinary 
kriging method and an exponential variogram in 
order to represent each cluster in its geographical 
context. Krigging was used to interpolate the position 
of the stations in the climatic groups. We used the 
cluster number assigned to each station after clus-
tering. Once the interpolation was carried out, the 
climatic classification was performed for each clus-
ter. Based on the results of the SC we examined the 
12-level clustering solution (Table I). 

The average silhouette coefficient is always posi-
tive for all clusters, though some values are relatively 
low (close to 0) for specific groups of stations that 
present exceptional rainy climates (cluster 9). For 
these stations, grouped into clusters with larger SC 
values, the ranges of precipitation and temperature 
are low. 

3.3	Climate	regions	classification	
Clusters 4 and 5 reflect the semiarid climate regions 
(BSh and BSk) from the central part of Mexico north-
wards (Chihuahuan Desert). These climates present 
low seasonal precipitation during summer due to a 
subtropical high-pressure zone and as a result of the 
geographical barriers of the main mountain ranges of 
Mexico. The difference between these two climates 
is the maximum temperature for the warm months 
(from May to July). Other arid zones that include the 
Sonoran Desert and the Baja California Peninsula 
were grouped in clusters 7 and 8 (BS0 and BS1). 
Despite their statistical similitude in terms of tem-
perature values, cluster 7 clearly defined areas within 
the region delimited by cluster 8 with a difference in 
total precipitation and low precipitation/temperature 
(P/T) ratio.

The transition between the southernmost part of 
the highlands (2000 masl) and the area in which the 
western and eastern Sierra Madre converge in the 
central highland are defined in clusters 1, 2 and 9. 

Table I. Characteristics of the clusters produced by clustering analysis.

Cluster
ID

Maximum 
temperature 

(ºC)

Minimum 
temperature

(ºC)

Silhouette
coefficient

Annual accumulated 
precipitation

(mm)

P/T* Climate  
classification

1 26.33 10.37 0.314 790 43.07 Aw1hb3gx
2 31.24 19.06 0.390 1192 47.40 Aw1hgx
3 20.77 6.04 0.456 952 70.99 Cw2k’b3gx
4 31.29 15.89 0.187 524 22.21 Bs0hb3x
5 24.75 8.13 0.177 563 34.26 Bs1kb3n’x
6 33.08 18.79 0.227 1067 41.14 Aw1hb3gx
7 29.31 12.24 0.384 266 12.79 Bs0h
8 28.88 12.71 0.187 734 35.30 Bs1h
9 30.28 19.34 0.050 2104 84.82 Aw2hb3gx
10 25.74 9.18 0.178 372 21.30 Bs0kb3n’x
11 23.34 12.02 0.324 1428 80.79 Cfkb3gx
12 28.67 18.52 0.244 3654 154.85 Aw2hx

* P/T = mean annual precipitation/mean annual temperature.
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Cluster 9 (AW2) delimited the transition between 
temperate and humid climates near the Western Si-
erra Madre. The wetter climate regions in the south-
eastern part of Mexico were grouped in clusters 3 
and 11 (Cwmh and Cfh) defining the humid and 
temperate climate regions. These regions are located 
in the coastal plains, in the Yucatán Peninsula and 
in the highlands of Chiapas. Cluster 11 (Cfh) delin-
eated all of the central mountain formations from 
the western Sierra Madre to the lowlands (El Bajío) 
in the central part of Mexico. Overall, the Yucatán 
Peninsula and regions in the coastal zone of the Gulf 
of Mexico are contained in cluster 2 (Aw1), which 
thus defined the rainy climates. Cluster 1 (AW1b3) 
is located in the regions of tropical rainy forests 
with a seasonal precipitation regime and temperate 
climate. The rainiest climate regions are delimited 
by clusters 11 (Cfk) in Tabasco and the southeast 
of Chiapas, where usually tropical cyclones impact 
(García, 2004).

The P/T relation gives us an idea of the similitude 
between stations or groups. For instance, clusters 9 
and 12 represent the same climate classification but 
under a different P/T regime. Thus, while cluster 9 
has a P/T ratio of 84.82, for cluster 10 the ratio is 
154.85. This means that large precipitations are most 
influenced by events such as tropical cyclones. 

There are some implications for climate region-
alization under global climate changes. Obviously, 
the present climates distribution will suffer changes 
for specific variables. In arid and semiarid regions 
in Mexico, the diurnal temperature oscillation has 
changed, mainly in its lower limits (Brito-Castillo 
et al., 2010). There is also a negative trend in soil 
moisture content from mid-latitude zones to the 
north-central region of Mexico, mainly due to low 
precipitation. This indicates a negative change in 
effective daily precipitation above 1 mm (Seager 
et al., 2007). These features needs to be considered 
in futures works on regional and local climate 
research. 

3.4 Vegetation and climatic regions
Climate and topography control the distribution of 
many plants (Kelly and Goulden, 2008). Different 
species of plants have suffered some effects due to 
changes in temperature, especially during daytime. 
This has caused a variation in the species composition 

in latitudinal and altitudinal gradients (Chen et al., 
2011). Another important factor is the variation 
of drought periods that can affect the composition 
of species through the seed establishment of new 
individuals. In addition, areas of native vegetation 
have been modified and disturbed by the direct 
action of human activities. The intensification of 
these activities has impacted simultaneously with 
the changing climate conditions at a regional scale. 
In many cases, the vegetation groups include, at 
least partially, communities that cannot be catego-
rized as climax, but its existence is largely linked 
to the characteristics of the substrate (Miranda and 
Xolocotzi, 1963; Chapin et al., 2011). The present 
knowledge about land vegetation cover in Mexico 
does not allow comparative assessments in suffi-
cient detail, except for specific sites and at a small 
scale (Rzedowski, 2006). Studies on vegetation are 
mainly focused on major vegetation types and they 
only show vegetation types as the basic unit of work. 
From the dynamic point of view, all vegetation types 
are described as stable biotic communities or plants 
based on the factors of the physical environment 
in which they live. For instance, although there 
are forests classified as secondary (mainly pine), 
others are the original plant or a mixture of both. 
Thus, vegetation types are grouped by dominant 
vegetation type in representative groups (Miranda 
and Xolocotzi, 1963). However, in this research 
work, we can infer reconstructions of the original 
vegetation. It is also possible to observe a relation-
ship between the recent dominant vegetation and 
climate classification. This can be seen in Figure 3.

Figure 4a shows the climate regionalization by us-
ing the Ward algorithms of HCA outputs. In Figure 4b 
the climatology of García (2004) is included. In 
the climate maps of García, more detail is included 
regarding the types and subtypes of climates. In the 
climate regionalization of this study only the main 
climatic types of Mexico are considered, as it is 
observed in Figure 4c. The foremost similarities are 
shown for the main zones of the principal climatic 
groups, Aw1, Aw2, B1, B0, Cf and C. These are 
generally distributed in the same regions as those 
proposed by García (2004). The main differences are 
observed in the boundaries of each type of climate, 
since the allocation of climate regionalization is 
based on totally different methodologies and philos-
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ophies. While García (2004) includes geographic 
and topographic assessment criteria for boundary 
assignment, we base spatial boundary assignments 
on geostatistical techniques.

Figure 4d shows the cover vegetation; it is ob-
served a pattern width of dominant crops in climates 
Bs and Aw, principally where rain-fed crops are 
established. Historically crops were established in 
rangelands of dominant grasslands landscapes. 

Arid and semi-arid climates (type) B cover 
most of the Mexican territory from the northwest 
in the peninsula of Baja California, and especially 
in the central-north region. This region is defined 
by a geographic effect. The differences in altitude 
between the center highlands and the coastal plains 
result in a large climate mosaic and vegetation gra-
dient. Furthermore, the arrangement of mountains 
directly influences the distribution of moisture and 
temperature ranges. These factors partially define 
the aridity of that region known as the Altiplano. 
The large proportion of continental land in the north 
part of Mexico is characterized by arid regions that 
limit areas of scrubland and grassland. Therefore, 
grasslands are widely distributed in these climatic 
regions, with precipitation conditions as the main 
driver, expressed in different representative spe-
cies of grassland within each region. For example, 
semiarid grasslands of the Chihuahuan Desert can 
be distinguished in the semi-dry and cold climate 
BS0 and Bs1 groups.

The northwestern part of Mexico is significantly 
affected by a high-pressure cell for most of the year 
increasing the degree of aridity (Mosiño and García, 
1973). Additionally, this region is directly influenced 
by a cold Pacific Ocean current that has a noticeable 
effect on the climate of the Baja California peninsula 
and of the state of Sonora, which drives the vegetation 
of this region, marked by the dominance of arid spiny 
shrubland distinctive of Bs0 climates. Shrublands 
are almost uniformly distributed throughout almost 
all of the climatic regions due to the large number 
of species and groups of shrubs found in Mexico. 
Nevertheless, it is possible to make a sub-classifi-
cation of types of shrubland in correlation with the 
climatic classification in a gradient of moisture, from 
semi-desert scrubs in regions with annual average 
rainfall of 300 mm, to xeric scrub in regions with 
precipitation of 500-650 mm.

4. Conclusions
By applying techniques that include a combination 
of PCA and HCA, it was possible to carry out a fast 
clustering method based on the number of the princi-
pal climate regions of Mexico; it allowed determining 
the maximum clusters number. By using the first 
three PC in the clustering method, the classification 
presented by multivariate techniques give a very close 
representation of previous regionalization work of 
García (2004). 

The inclusion of the silhouette coefficient as a 
criterion to evaluate the clustering was very useful not 
only for grouping but also for determining the number 
of clusters. Therefore it was possible to determine a 
maximum number of clusters for hierarchical agglom-
erative clustering algorithms. The Ward algorithm 
gives a better grouping using the silhouette coefficient 
as a criterion. In agglomerative clustering algorithms it 
is important to obtain an adequate number of clusters, 
which can be evaluated by means of the silhouette 
coefficient. Our results show mostly positive values 
for this coefficient, which tells us that the grouping 
criteria are adequate. Ward´s method is advantageous 
since it creates more homogeneous clusters from a 
covariance or correlation matrix.

This paper presents the results based on the correla-
tion matrix, which delivered groups according to their 
variability. The importance of this regionalization for 
Mexico is that it provides the basis for further analysis 
on regional climate variations, according to their vul-
nerability to climate change. The statistical techniques 
applied to the climatic database to generate a climate 
map show a high correspondence with the land cover 
map. By disaggregating station in groups, we can 
infer, in terms of the dominant vegetation, which of 
these regions will be more susceptible in its climatic 
structure under global climate variations. 
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