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RESUMEN

Los datos de paleoclima incluyen mediciones de la cantidad de dióxido de carbono en la atmosfera, así como 
el nivel y temperatura de los océanos, entre otras. Los registros recientes de datos de cambio climático se 
han realizado en tiempos equidistantes, es decir, las distintas variables se han medido al mismo tiempo para 
que puedan llevarse a cabo estudios de asociación. Sin embargo, no hay registros de datos de hace miles de 
millones de años. Los científicos han tenido que diseñar formas alternativas de obtener esta información, por 
lo general a través de mediciones indirectas como las basadas en núcleos de hielo, donde tanto la variable 
de interés como el tiempo de medición tienen que estimarse. Como resultado de estos procedimientos, los 
datos de paleoclima son una colección de observaciones que no están distribuidas de manera uniforme. Aquí 
revisamos un método estadístico bayesiano para producir series equiespaciadas y lo aplicamos a tres bases 
de datos de paleoclima que van de 300 millones de años atrás a la fecha.

ABSTRACT

Paleoclimatology data includes measures of the amount of carbon dioxide in the atmosphere and level and 
temperature of the oceans, among others. Recent records of climate change data were done at equidistant 
times; the different variables were typically measured at the same time to allow for association studies among 
them. However, there are no registered records of climate change data for thousands or millions of years ago. 
Scientists have had to device alternative ways of measuring these quantities. These methods are usually a 
result of indirect measurements, such as ice coring, where both the variable of interest and the time have to 
be estimated. As a result, paleoclimate data are a collection of time series where observations are unequally 
spaced. Here we review a Bayesian statistical method to produce equally spaced series and apply it to three 
paleoclimatology datasets that span from 300 million years ago to the present.
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1. Introduction
Direct and continuous measurements of carbon di-
oxide (CO2) in the atmosphere extend back only to 
the 1950s (British Antarctic Survey, 2014). However, 
scientists developed alternative ways of measuring 
greenhouse gases (GHG) concentrations in the 
earth’s atmosphere that prevailed far in the past. One 
of these techniques is based on ice core sampling. 
The core samples are cylinders of ice drilled out of an 

ice sheet or glacier (British Antarctic Survey, 2014), 
which contain small bubbles of air that trapped a 
sample of the atmosphere. The deepest ice cores ex-
tend to 3.26 km in depth, at only a few meters above 
bedrock. The oldest continuous ice core records to 
date extend back 800 000 years (Jouzel et al., 2007). 
To determine the date of the ice cores, scientists may 
use either snow accumulation and a mechanical flow 
model (Parrenin et al., 2007), or a firn densification 
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model (Loulergue et al., 2007) to further compensate 
for differences in the age of the gas and the age of 
the surrounding ice.

The European Project for Ice Coring in Antarctica 
(EPICA) drilled two deep ice cores at Kohnen and 
Concordia. At the latter station, also called Dome C, the 
team of researchers produced climate records focusing 
on water isotopes, aerosol species and GHG. Tempera-
ture measurements are not observed but inferred from 
deuterium observations (Jouzel et al., 2007).

To estimate GHG concentrations in the earth 
beyond one million years ago, other techniques are 
required. Recently, Montanez-Boti et al. (2015) esti-
mated CO2 levels from the Pliocene period (around 
three million years ago). These estimations were 
based on the boron isotopic composition of Globigeri-
noides ruber, a surface mixed-layer dwelling planktic 
foraminiferal species from the Ocean Drilling Pro-
gram (ODP) site 999. The boron isotopic composition 
is a well-constrained function of seawater pH. It is 
well correlated with the aqueous concentration of 
CO2 (CO2aq). In the absence of major changes in 
surface hydrography, CO2aq is largely a function of 
atmospheric CO2 levels.

On the other hand, for the late Paleozoic degla-
ciation (around 300 million years ago), Montanez 
et al. (2007) use the stable isotopic compositions 
of soil-formed minerals, fossil- plant matter, and 
shallow-water brachiopods to estimate atmospheric 
partial pressure of carbon dioxide (pCO2) and tropical 
marine surface temperatures.

The aim of this paper is to interpolate several 
paleoclimate datasets and make them available to 
the global community for further statistical analysis.

There are several interpolation methods for 
climate time series, which are mostly summarized 
in Mudelsee (2010). The most popular stochastic 
interpolation method is linear interpolation, which 
assumes a standard Brownian motion process (e.g., 
Chang, 2012; Eckner, 2012). More recently, Nie-
to-Barajas and Sinha (2015) proposed an interpola-
tion method based on a Gaussian process model with 
a novel parameterization of the variance function. 
They compared their proposal with alternative mod-
els and showed that it is superior according to some 
specific fitting measures.

Interpolation of climate time series has been criti-
cized by several authors (e.g., Schulz and Stattegger, 

1997; Schulz and Mudelsee, 2002) arguing a loss of 
high-frequency variability and a spectral bias towards 
low frequencies. However, Bayesian stochastic in-
terpolation methods account for the uncertainty in 
the estimation by means of the posterior predictive 
distribution, which allows to produce not only point 
predictions but posterior credible intervals for the 
interpolated series.

According to Rehfeld and Kurths (2014), paleo-
climate time series are more challenging than the 
data in other disciplines since neither observation 
time nor the climatic variable are known precisely. 
Both have to be reconstructed, resulting in irregular 
and age-uncertain time series. To avoid interpola-
tion these authors have studied the performance of 
dependence measures such as the Gaussian kernel 
based cross correlation and a generalized mutual 
information function. On the other hand, individual 
time series models have been proposed to account for 
the uneven time spacing. Robinson (1977) and Schulz 
and Mudelsee (2002) defined a first order autoregres-
sive process where the autocorrelation parameter as 
well as the variance of the errors are functions of the 
time difference between two observed points. Alter-
natively, Polanco-Martínez and Faria (2015) estimate 
the wavelet spectrum of the time series.

The contents of the rest of the paper are as follows: 
In Section 2 we first present the datasets to interpo-
late. In Section 3 we recall the Bayesian thinking and 
describe the Gaussian process Bayesian model used 
for interpolation in Section 4. The actual interpolation 
of the series is presented in Section 5 and we conclude 
with some final remarks in Section 6.

2. Datasets
We will be using several datasets with different time 
scales. Variables measured are temperature, CO2 and 
methane (CH4). Actual temperatures are not usually 
provided. Instead, temperature anomalies with re-
spect to a specific reference value are reported. The 
scale used is degrees centigrade (ºC). CO2 is usually 
reported in parts per million by volume (ppmv) 
and CH4 is measured in parts per billion by volume 
(ppbv). We start with the most recent information 
and progress backwards in time to approximately 
300 million years ago.

The first dataset covers recent history from 1950 to 
2013 for a period of 65 years and is shown in Figure 1. 
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The top panel contains global land temperature 
anomalies with respect to the mean temperature 
in the years 1951-1980 (Hansen et al., 2010). The 
middle panel contains CO2 values from two different 
sources: atmospheric values derived from flask air 
samples collected at the South Pole (line) (Keeling 
et al., 2008), and Law Dome ice core records (dots) 
(MacFarling Meure et al., 2006). As can be seen, 
the dots follow the trend of the line, which confirms 
the ice core sample acts as an accurate measure of 
atmospheric gas concentrations. The bottom panel 
contains methane records from the law dome ice core 
(MacFarling Meure et al., 2006).

The second dataset covers the marine isotope 
stage, including a long range of 800 000 years before 
present. These data are shown in Figure 2. The top 
panel presents temperature anomalies with respect 
to the average temperature of the millennium (Jou-
zel et al., 2007). The middle panel includes carbon 
dioxide concentrations (Luthi et al., 2008), and the 
bottom panel contains methane values (Loulergue 
et al., 2008).

The third dataset covers the late Pliocene extend-
ing from 2.3 to 3.3 million years ago. The data are 
shown in Figure 3. The top panel contains interpo-
lated relative mean annual sea surface temperature 
(SST) change (Montanez-Boti et al., 2015). The 
second panel presents the interpolated relative mean 
annual surface air temperature change (van de Wal et 
al., 2011). The bottom panel shows atmospheric CO2 
reconstructions based on multi-site boron-isotope 
records (Montanez-Boti et al., 2015).

The fourth dataset covers the late Paleozoic de-
glaciation from 265 to 300 million years ago. The 
data are presented in Figure 4. The top panel shows 
paleotropical SSTs and the bottom panel presents 
estimated atmospheric pCO2. Both datasets were 
obtained from Montanez et al. (2007).

3. Bayesian thinking
Bayesian statistics is an alternative way of making 
inference about the unknown parameters in a prob-
ability model. It is based on decision theory, which 
establishes the foundations of inferential procedures 

1950 1960 1970 1980 1990 2000 2010

11
06

.5
16

81
.6

C
H

4

31
2

35
2

39
3

C
O

2

−0
.2

0.
3

0.
9

Years AD

Te
m

p

Fig. 1. Recent history data. Top: land temperature anomalies; middle: CO2, atmospheric values derived 
from flask air in the South Pole (line) and Law Dome ice core records (dots); bottom: CH4 Law Dome 
ice core records.
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Fig. 2. EPICA dome C ice core 800 thousand years data. Top: Antarctic temperature anomalies; middle: 
CO2; bottom: CH4. 
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by treating them as decision problems (DeGroot, 
2004). As part of the inferential process, it is neces-
sary to quantify the uncertainty about the unknown 
quantities (parameters or future observations) by 
using probability distributions. This quantification 
can reflect the beliefs of the statistician, or the lack 
of knowledge about the problem. As a consequence 
of this quantification, all observable variables, as well 
as the fixed parameters of the model, are described 
through probability distributions, simplifying so the 
inferential procedure. For a comprehensive exposi-
tion on the Bayesian foundations see Bernardo and 
Smith (2000) and references therein.

The methodology establishes how to formally 
combine an initial (prior) degree of belief of a re-
searcher with currently measured or observed data in 
such a way that it updates the initial degree of belief. 
The result is called posterior belief. This process is 
called Bayesian inference since the updating pro-
cess is carried out through the application of Bayes’ 
theorem. The posterior belief is proportional to the 
product of the two types of information, the prior 
information about the parameters in the model, and 
the information provided by the data. This second 

part is usually thought of as the objective portion of 
the posterior belief. We explain this process below. 
In what follows we denote by f (•) a density function 
of the argument inside the parenthesis, and a vertical 
bar “|” to denote conditional probabilities.

Let X = (X1, X2,..., Xn) be a set of random variables 
whose joint distribution is denoted by f (x|θ), where 
θ is a parameter vector that characterizes the form 
of the density. In the case of independence, f (x|θ) = 

(xi|θ)fΠn
i=1  where the marginal distribution for each 

of the Xi is coming from a probability model with 
density function f (xi|θ). Function f (x|θ) is usually 
referred to as the likelihood function. Prior available 
information on the parameter is described through a 
prior distribution f(θ) that must be specified or mod-
eled by the researcher. Then formally, it follows that

f (θ|x) = 
f (x|θ) f (θ) 

f (x)
 (1)

where f(x) is the marginal joint density of x defined 
as f(x) = ∫ f (x|θ) f (θ)dθ if θ is continuous, and f(x) = 
∑θf (x|θ)f(θ) if θ is discrete. This is Bayes’ theorem 
that rules the updating of the information. Consider-
ing that f(x) is just a constant for θ, then the updating 
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mechanism can be simply written as f(θ|x) ∝ f(x|θ)
f(θ), where “∝” indicates proportionality. In other 
words, the posterior distribution of the parameters, 
conditional on the observed data, is proportional to 
the product of the likelihood function and the prior 
degree of belief. Any inference on the parameters is 
now carried out using the posterior distribution f(θ|x).

As can be proved (DeGroot, 2004), the only 
criterion for optimal decision making, consistent 
with the axiomatic system, is the maximization of 
the expected utility. Alternatively, this criterion is 
equivalently replaced by the minimization of a loss 
function. Therefore, in the Bayesian framework, 
parameter estimation is done by minimizing the ex-
pected value of a specified loss function l(θ̂ , θ) with 
respect to θ̂, where the expected value is taken with 
respect to the posterior distribution of the parameter 
θ given the data y. In particular, a quadratic loss 
function l(θ̂ , θ) = (θ̂  – θ)2 leads to the posterior mean 
θ̂  = E(θ|x) as an optimal estimate for the parameter. 
On the other hand, a linear loss function l(θ̂ , θ) = 
|θ̂   – θ| yields the median of the posterior distribution 
as an optimal estimate θ̂ for θ. 

When the main purpose of modeling is prediction, 
then the observed data x are used to predict future 
observations XF by means of the posterior predictive 
distribution. In the continuous case the predictive 
distribution is defined as

f (xF|x) = ∫ f (xF|θ, x) f (θ|x)dθ (2)

where f (xF| θ, x) becomes f (xF|θ) in the case that XF 
and X are conditionally independent given the param-
eter θ. In (2) the parameters have been marginalized 
(integrated out). Therefore, only information in the 
observed data is used in the prediction. Finally, the 
optimal point predictor x̂ F, assuming a quadratic loss 
function, is the mean of the predictive distribution, 
i.e. E(XF|x).

For the interested reader, we suggest Renard et 
al. (2006), who provide an excellent review of the 
Bayesian thinking applied to environmental statistics.

4. A Gaussian process model for interpolation
The model of Nieto-Barajas and Sinha (2015) aims 
to produce equally spaced observations via stochas-
tic interpolation. It assumes a Gaussian process 
with a correlation function parameterized in terms 

of a parametric survival function and allows for 
positive or negative correlations. For parameter 
estimation they follow a Bayesian approach. Once 
posterior inference on the model parameters is 
done, interpolation is carried out by using the pos-
terior predictive conditional distributions of a new 
location given a subset of size m of neighbors, in a 
sliding windows manner. The number of neighbors 
m is decided by the user. This procedure is similar 
to what is done in spatial data known as Bayesian 
kriging (e.g. Handcook and Stein, 1993; Bayraktar 
and Turalioglu, 2005).

4.1 Model
In time series analysis, the observed data are a result 
of an evolving process in time where independence 
in the observations is no longer hold. The probability 
law that generates the data is typically described in 
terms of a stochastic process which characterizes all 
dependencies among the observations. A stochastic 
process can be thought of as a family of random 
variables linked via a parameter (usually time) which 
takes values on a specific domain (usually the real 
numbers).

Let {Xt} be a continuous time stochastic process 
defined for an index set t ∈ T ⊂ R and which takes 
values in a state space χ ⊂ R. We will say that Xt1, 
Xt2..., Xtn is a sample path of the process at possible 
unequal times t1,t2,...,tn with n > 0. In a time series 
analysis we only observe a single path that is used 
to make inference about the model. This is possible 
since the likelihood is defined as the joint distribu-
tion of the observed path, which depends on the n 
observed times. This will later be given in (5) for our 
particular model.

It is assumed that Xt follows a Gaussian process 
with constant mean E(Xt) = µ and covariance function 
Cov(Xs, Xt) = Ʃ(s, t). In notation

Xt ~ GP (µ,Ʃ(s, t)),  (3)

this assumption implies that the joint distribution of 
the path (Xt1, Xt1..., Xtn) is a multivariate normal with 
mean vector (µ,...,µ) of dimension n, and variance-co-
variance matrix of dimension n × n with (i, j)th 
element Ʃ(ti, tj).

It is further assumed that the covariance is a 
function only of the absolute times difference |t – s|. 



131Interpolation of paleoclimatology datasets

In this case it is said that the covariance function 
is isotropic (Rasmussen and Williams, 2006). By 
assuming a constant marginal variance for each Xt, 
the covariance function can be expressed in terms 
of the correlation function R(s,t) as Ʃ(s,t) = s2R(s,t). 
Nieto-Barajas and Sinha (2015) noted that isotropic 
correlation functions behave like survival functions 
as a function of the absolute time difference |t – s|. 
In particular, they considered two alternatives: A 
Weibull survival function Sθ(t) = exp(–λtα), and a 
log-logistic survival function Sθ(t) = (1 + λtα)–1, with 
θ = (λ, α) in either case. Therefore, the covariance 
function they proposed is

Ʃσ2,θ,β (s, t) = σ2Sθ (|t – s|)(–1)β|t–s| (4)

with β ∈ {1, 2} in such a way that β = 1 implies a 
negative/positive correlation for odd/even time dif-
ferences |t – s|, and it is always positive regardless 
|t – s| being odd or even, for β = 2. Note that |t – s| 
needs to be an integer since the power of a negative 
base becomes imaginary.

4.2 Prior distributions
Let x = (xt1, xt2,...,xtn) be the observed unequally 
spaced time series at times t1, t2,...,tn, and η = (µ, σ2, 
θ,β) the vector of model parameters. The joint dis-
tribution of the data x induced by model (3) is a 
n-dimensional multivariate normal distribution of 
the form

f (x|η) = (2πσ2)

{ }
|Rθ,β|

–exp (x – µ)' Rθ,β (x – µ)–11
2σ2

– n
2 – 1

2

 (5)

where µ = (µ,...,µ) is the vector of means, Rθ,β = 
rij θ,β is the correlation matrix with (i, j) term rij θ,β = 
Ʃσ2,θ,β(ti, tj)/σ2 and Ʃσ2,θ,β is given in (4).

The proposed priors for η are conditionally con-
jugate for µ, σ2 and β, but unfortunately there is no 
conjugate prior for the vector θ = (λ,α). A priori all 
parameters are independent and the specific choices 
are: µ~N(µ0, σµ

2), i.e., a normal distribution with 
mean µ0 and variance σµ

2; σ2~IGa(aσ,bσ), i.e., an in-
verse gamma distribution with mean bσ/(aσ–1) and 
whose density can be found in Bernardo and Smith 
(2000: 431); β – 1~Ber(pβ), i.e., a Bernoulli distri-
bution with probability of success pβ; λ~Ga(aλ, bλ), 

i.e., a gamma distribution with mean aλ/bλ; and 
α~Un(0,Aα), i.e., a continuous uniform distribution 
on the interval (0,Aα).

Posterior inference is obtained by implementing 
a Gibbs sampler (Smith and Roberts, 1993), which 
is a particular case of the Markov chain Monte Carlo 
(MCMC) algorithms frequently used in Bayesian 
analysis. The Gibbs sampler is an algorithm that 
generates a Markov chain whose stationary distri-
bution is the posterior distribution of η, f(η | x). The 
algorithm is based on iteratively sampling from each 
of the conditional distributions of the elements of 
η, say µ, σ2, θ, and β given the most recent values 
of the other parameters. The posterior distribution of 
η is obtained via the Bayes' Theorem (1), and the 
conditional distributions for each of the elements of 
η are simply proportional to the joint distribution. 
For example, the conditional distribution of µ is 
f(μ|x,σ2,θ,β)  f(μ,σ2,θ,β|x), where f(η | x) is only 
seen as a function of μ. For the other parameters the 
conditional distributions are obtained in a similar 
way. The set of conditional distributions as well as 
the details of the simulation strategy can be found in 
Nieto-Barajas and Sinha (2015).

4.3 Interpolation
Once posterior inference is done, as a result of run-
ning a Gibbs sampler, the output consists of a series 
of samples from the posterior distribution of η = (μ, 
σ2, θ, β). Let (η(1),…,η(L)) denote this sample of size 
L from f(η | x). Posterior summaries can then be ob-
tained with this sample such as posterior means and 
credible (probability) intervals. 

Our most important inference goal is the interpo-
lation of unequally spaced series, to produce equally 
spaced series. Within the Bayesian paradigm, this 
inferential procedure is done via the posterior pre-
dictive distribution. Nieto Barajas and Sinha (2015) 
propose to interpolate using the posterior predictive 
conditional distribution given a subset of neighbours. 
Their procedure is as follows. Let xs = xs1,...,xsm 
be a set of size m of observed points, such that s = 
(s1,…,sm) are the m observed times nearest to time 
t, with sj ∈ {t1,…,tn}. If m = n, xs = x is the whole 
observed time series. Therefore, the conditional 
distribution of the unobserved data point Xt given 
its closest m observations and model parameters is a 
univariate distribution given by 
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f (xt |xs,η) = N(xt|μt,σt
2) (6)

with scalars μt = μ + Σ(t, s)Σ(s, s)−1(xs − μ) and σt
2 = 

σ2 − Σ(t, s) Σ(s, s)−1 Σ(s, t), where, as before, Σ(t, s) 
= Σ(s, t)' = Cov(Xt, Xs) and Σ(s, s) = Cov(Xs, Xs). 

We need to integrate out the parameter vector η 
from (6) using its posterior distribution, that is, f(xt | 
xs, x) = ∫ f(xt | xs, η) f (η | x)dη. This marginalization 
process is usually done numerically via Monte Carlo as

f(xt | xs, x) ≈ (1/L) ∑L
i=1 f(xt | xs, η(l)). 

The interpolation procedure is better understood 
if we consider the specific case when m = 2, so that 
xs = (xs1,xs2) consists of the two closest observations 
to time t. Then, from (6) we obtain that E(Xt | xs, η) 
becomes 

µt = µ +

(ρt,s1 – ρt,s2 ρs1s2)(xs1 – µ) +
(ρt,s2 – ρt,s1 ρs1s2)(xs2– µ)

1–ρ2
s1,s2

 (7)

where ρt,s = Cor(Xt, Xs) = Σ(t, s)/σ2. The conditional 
expected value (7) is a linear function representing a 
weighted average of the neighbour observations xs 
where the weights are given by the correlations among 
xt, xs1 and xs2. Finally, the marginal posterior predictive 
expected value E(Xt | xs, x) = Eη|x {E(Xt|xs, η)} is the 
estimated interpolated point under a quadratic loss. 
This is usually approximated via Monte Carlo. 

In general, for any m > 0, the estimated interpo-
lated point at time t will be a weighted average of the 
closest m observed data points, as sliding windows, 
with weights determined by their respective correla-
tions with the interest point Xt. As will be seen by the 
examples in Section 5, the larger the value of m, the 
smoother the interpolated series becomes. 

5. Data analysis 
In Section 2 we described several datasets that con-
tain earth climate measurements at different ages. 
The recent history dataset (Fig. 1) that contains mea-
surements from the years 1950 to 2013; the marine 
isotope stage dataset (Fig. 2) obtained from the EPI-
CA dome C ice core which contains measurements 
up to 800 000 years ago; the Pliocene dataset (Fig. 3) 
that extends from 3.3 to 2.3 million years ago; and 
the Paleozoic dataset (Fig. 4) covering from 300 to 

265 millions years ago. Recorded variables include 
temperature anomalies, carbon dioxide, and in some 
cases methane. 

Apart from the records from recent history, in the 
rest of the datasets the available variables are mea-
sured at unequally spaced times. Additionally, apart 
from the Paleozoic dataset, the observation times are 
different from one variable to another, so causal or 
simple association studies are not possible to perform. 

We therefore proceed to interpolate the different 
time series to produce equally spaced observations. 
We start with the Pliocene dataset, move on with the 
Paleozoic dataset and finish with the marine isotope 
era dataset. 

The reason we start analyzing the Pliocene dataset is 
because it has very interesting interpolation properties, 
which need some comment and explanation first. There 
are three variables available in this dataset, temperature 
anomalies in the sea surface, temperature anomalies in 
the air, and CO2. These three variables are measured 
at the same, but unequally spaced, times. Figure 5 
shows three graphs. The first one corresponds to the 
time series of temperatures anomalies in the air. The 
middle panel includes the observed time differences 
(ti − ti−1) versus the final observed time ti and the 
last panel corresponds to a histogram of the time 
differences. Most of the observations were made at 
a frequency of less than 0.02 million years, with the 
largest gap of slightly more than 0.05 million years. 
The median frequency (time difference) is 0.01 mil-
lion (10 000) years. 

We implemented the interpolation methodology 
described in Section 4. According to Nieto-Barajas 
and Sinha (2015) the log-logistic survival function to 
define the covariance matrix has better performance 
than the Weibull due to its flexibility to capture slow-
er and faster decays, so the log-logistic will be our 
choice for all cases considered here. Prior specifica-
tions of the Bayesian model are those considered in 
Nieto-Barajas and Sinha (2015), which are: μ0 = 0, 
σµ

2 = 100, aσ = 2, bσ = 1, aλ = bλ = 1, Aα = 2 and pβ = 
0.5. The value of Aα is particularly important since it 
constrains the support of parameter α. Larger values 
of Aα would make the posterior exploration unstable. 
The Gibbs sampler was run for 20 000 iterations with 
a burn in of 2000 and keeping one of every 10th 
iteration. In the end, posterior inferences including 
interpolation, are based on 1800 samples. 
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The interpolation process, as described in Section 
4, is done via the posterior predictive distribution 
based on the closest m neighbours. The choice of this 
parameter plays an important role in the smoothness 
of the interpolation series. The larger the value of 
m the smoother the interpolated series becomes. 

The best value of m depends on the specific data at 
hand and its impact is highly dependent on the es-
timated correlation function. For the pliocene data, 
the correlation functions for the three variables (air 
temperature, SST, and CO2) are included in Figure 6. 
From the graphs we can see that the correlation 

2.4 2.6 2.8 3.0 3.2

−3
−2

−1
0

1
2

Million years before present

Te
m

pe
ra

tu
re

2.4 2.6 2.8 3.0 3.2

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Te
m

p 
ob

s 
tim

e 
di

ff

Million years before present

0.00 0.01 0.02 0.03 0.04 0.05

0
20

40
60

80

Temp obs time diff (million years)

D
en

si
ty

Fig. 5. Late Pliocene climate records. Temperature anom-
alies in the air. From top to bottom: data, observed time 
differences versus time, and histogram.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t)

Fig. 6. Late Pliocene climate records. Correlation function 
estimates. From top to bottom: air temperature, SST, and 
CO2.



134 L. E. Nieto-Barajas

function for the air temperature variable (left panel) 
decays fairly fast reaching the value of zero at around 
one million years. The correlation for SST (middle 
panel) also presents a very fast decay in the first 0.1 
million years but remains almost constant with a very 
slow rate of decay afterwards. On the other hand, 
the estimated correlation for CO2 (right panel) has 
almost no decay, remaining very close to one even 
after one million years. 

When the correlation function has a fast decay, 
as is the case of the two temperature variables, the 
choice of m for interpolation has almost no impact. 
Figure 7 shows the interpolated series for the two 
temperature variables with m = 10 closest neighbors 
and an equal spacing of one and five thousand years, 
respectively. In all cases the dots correspond to the 
observed data and the lines to the interpolated data. 
The shadows correspond to a 95% pointwise credi-

ble interval (CI). As can be seen from the graphs the 
shadows become larger between two observed data 
points due to the higher uncertainty in the prediction. 
The interpolated series at every one thousand years 
(left column) follows closely the path of the observed 
points whereas the interpolated series at every five 
thousand years (right column) has a smoother path, 
sometimes not reaching the observed points.

As was mentioned before, the estimated correlation 
function for the CO2 variable is very high. In this case 
the choice of m has a large impact in the interpolated 
series. Figure 8 presents the interpolated series using 
m = 2 (top row) and m = 10 (bottom row) closest 
neighbors at every one (left column) and five (right 
column) thousand years, respectively. From this graph 
the impact of m is clear. For the case of m = 10 at every 
five thousand years (bottom left panel), the interpolated 
series follows the path of the observed data but for the 
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non observed times the interpolated series quickly 
goes down/up to an average value. However this over 
smoothing effect is not present when m = 2 for the 
same spacing of five thousand years (top left panel). 
Given the large correlation in this CO2 variable, it is 
preferable to interpolate using the smaller value of m 
= 2 neighbors to avoid over smoothing. 

We move on to the Paleozoic data. There are two 
variables available, temperature anomalies and CO2. 
These two variables have not been measured at the 
same times and are not equally spaced. Moreover, 
the temperature was recorded from 265 to 303.5 
million years before the present, whereas CO2 was 
measured from 273.3 to 300.2 million years before 
the present. The observation time for the CO2 vari-
able has a shorter span and its range lies within that 
of the temperature. See also the two panels in the 
first column of Figure 9. The frequency with which 
these two variables were measured is also shown in 

Figure 9 (middle and right columns) where we plot 
the observed time differences. For the CO2 variable 
(bottom row), most of its observations were measured 
at a frequency less than 0.5 million years, whereas 
temperature (top row) was measured at more dis-
persed frequencies with most of the observations 
made at time differences larger that 0.5 million years. 

The estimated correlation functions for these two 
variables have a fast decay (not shown), so we decid-
ed to use m = 10 closest neighbors for interpolation. 
The interpolated series for both variables at every 
0.1 and 0.5 million years are shown in Figure 10, 
respectively. Something to note in these graphs is 
the interpolation uncertainty obtained for the CO2 
variable. Within the observed time range the 95% 
credible intervals are very narrow and are almost 
indistinguishable from the point estimate (solid line 
in the graph). However, if we go beyond the observed 
time range, which is below 273.3 and above 300.2 
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Fig. 10. Late Pliocene climate records. Interpolated data using m = 10 closest neighbors at every 0.1 (first column) and 
0.5 (second column) million years. Temperature (top row) and CO2 (bottom row). Full dots correspond to observed 
data, lines to interpolated series, and shadows to 95% CI. 

million years, the predicted series shows a huge 
uncertainty that increases as we move away. Strictly 
speaking, for these times beyond the observed time 
range we are doing an extrapolation of the time se-
ries, and going far beyond the limits produces a huge 
uncertainty. The shadows in the two bottom panels 
for the times beyond the observed range increase in 
size very fast as we go away. Note that in the graph 
the shadows were only included for the closest ex-
trapolated times to avoid increasing the scale of the 
graph. For the further away time points we decided to 
report only the point predicted values and are shown 
as dashed lines in the graphs. 

Finally, we analyze the marine isotope stage 
dataset. There are three variables available: tem-
perature anomalies, carbon dioxide, and methane. 
Figure 11 includes the observed time series for these 
three variables (first column). The middle and right 

panels report the observed time differences vs. time 
and a histogram, respectively for the three variables. 
Broadly speaking, temperature and CH4variables 
were measured at an increasing frequency, that is, 
they were measured very frequently close to present 
and less frequent as we go back in time up to 800 
thousand years. The CO2 variable, on the other hand, 
has a reversed path in terms of frequency it was not 
measured very often close to present time, but was 
measured more frequently as we go back in time. 
The maximum gap between measurements is 1.36 
thousand years for temperature, 6.02 for the CO2 
variable, and 3.46 for the CH4 variable. The median 
observed time differences are 0.06, 0.58 and 0.31 
thousand years, respectively for the three variables. 

We implemented the methodology of Section 4 
and produced interpolated series using the m = 10 
closest neighbors for the three variables at every 
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Fig. 12. EPICA dome C ice core 800 thousand-years data. Interpolated data using m = 10 closest neighbors at every 
100 (first column) and 500 (second column) years. Temperature (top row), CO2 (middle row) and CH4 (bottom row). 
Lines correspond to interpolated series and shadows to 95% CI. 
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0.1 and 0.5 thousand years. The interpolated series 
together with a 95% credible interval are presented 
in Figure 12. Note that the credible intervals are 
larger in regions were the observed data are more 
spaced (less frequently measured), that is, closer to 
800 thousand years for the temperature (top row) and 

methane (bottom row) variables, and closer to zero 
for the carbon dioxide (middle row) variable. 

We implemented the methodology of Section 4 
and produced interpolated series using m = 10 closest 
neighbors for the three variables at every 0.1 and 
0.5 thousand years. The interpolated series together 
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with a 95% CI are presented in Figure 12. Note that 
CIs are larger in regions where the observed data are 
more spaced (less frequently measured), that is, closer 
to 800 000 years for the temperature (top row) and 
methane (bottom row) variables, and closer to zero 
for the CO2 (middle row) variable.

6. Concluding remarks
In this article we collected four important data sets 
for climate change study. Three of these datasets are 
representative of the paleoclimate covering periods 
from marine isotope stage, passing by the late Plio-
cene up to the late Paleozoic deglaciation.

We used a Bayesian statistical method to inter-
polate the datasets and produced equally spaced 
observations in the observed range. The original 
data as well as the interpolated values are available 
as supplementary material.

Interpolated values include point predictions 
(predictive means) and quantiles of order 2.5% and 
97.5%. The latter two can be used as the lower and 
upper limits, respectively, to produce 95% CIs as 
those shown in Figures 7, 8, 10 and 12.

One important challenge that is worth exploring 
in paleoclimate statistical research is to consider the 
age-uncertainty into the model, that is, to produce a 
joint modeling of the climatic variable as well as the 
observation time. This would produce a better model 
since all sources of uncertainty would be taken into 
account.
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