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RESUMEN

Los procesos que ocurren en la superficie terrestre desempeñan un papel fundamental en el reparto de la energía 
superficial y la circulación atmosférica dentro de un sistema climático. La representación errónea del estado 
actual del suelo —en particular de aspectos espaciales específicos como cobertura del suelo, parámetros topo-
gráficos y biofísicos— contribuye a la incertidumbre en las simulaciones meteorológicas tanto a escala local 
como regional. El presente estudio analiza el impacto de los datos de superficie en el desempeño del modelo 
de investigación y pronóstico del tiempo (Weather Research and Forecasting, WRF) para realizar simulaciones 
micrometeorológicas/cercanas a la superficie, en particular de variables sensibles como temperatura, humedad 
relativa, radiación solar y velocidad del viento. La hipótesis es que las bases de datos de superficie actualizadas 
podrían ayudar a mejorar los pronósticos micrometeorológicos sobre el dominio que comprende a los estados 
de Punjab, Haryana y Uttarakhand en la India. Para inicializar el modelo se utilizan la base de datos de uso y 
cobertura del suelo derivada del sensor avanzado de campo amplio (AWiFS, por sus siglas en inglés); datos 
de elevación proporcionados por la misión topográfica de radar a bordo del transbordador espacial (SRTM, 
por sus siglas en inglés), y el índice de área foliar (LAI, por sus siglas en inglés) basado en el espectrorra-
diómetro de imágenes de resolución media (MODIS, por sus siglas en inglés). Para evaluar el desempeño 
de la simulación, las condiciones limítrofes del suelo, tanto controladas (por defecto) como modificadas, se 
comparan con datos in situ procedentes de una red automatizada de estaciones meteorológicas operada por la 
Agencia India de Investigación Espacial. En la corrida modificada, el modelo captó con mayor precisión 
la evolución temporal de temperatura superficial, humedad relativa, velocidad del viento, presión superficial 
y radiación solar. La mejora de estas variables meteorológicas cercanas a la superficie en pronósticos de 24 
horas fue de 15 a 30%. Pruebas ulteriores del desempeño del modelo para realizar pronósticos de ocho días 
de variables micrometeorológicas mostraron que la corrida modificada produjo resultados consistentes. Los 
valores promedio de la raíz del error cuadrático medio (RMSE, por sus siglas en inglés) para temperatura mí-
nima y máxima, velocidad del viento, humedad relativa y precipitación son 2.5 y 3 ºC, 2 m s–1, 18% y 3.5 mm, 
respectivamente. La modificación ayudó al desempeño del pronóstico mediante la disminución de la propa-
gación de errores. Por lo tanto, se enfatiza el hecho de que una mejor representación de los parámetros de 
superficie tiene un efecto evidente en simulaciones del tiempo a escala local o regional. En países como la 
India, donde los mecanismos de retroalimentación tierra-atmósfera son más prominentes debido a caracte-
rísticas climáticas inherentes, es crucial mejorar los datos del estado inicial del suelo.

ABSTRACT

Land surface processes play a critical role in governing the surface energy partitioning and the atmospheric 
circulation within a climate system. Improper representations of present land state, particularly spatially 
specific fields such as land cover, topographical and biophysical parameters contribute to the uncertainty 
in the model’s weather simulations extending from local to regional scales. The present study investigates 
the impact of superior land surface datasets on the performance of the Weather Research and Forecasting 
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(WRF) model in simulating micrometeorological/near-surface weather, particularly sensible variables such 
as temperature, relative humidity, solar radiation and wind speed. The hypothesis is that the updated land 
surface datasets would help in improving micrometeorological forecasts over the domain comprising of Pun-
jab, Haryana and Uttarakhand states in India. A land use land cover (LULC) dataset derived from Advanced 
Wide Field Sensor (AWiFS); an elevation dataset from the Shuttle Radar Topography Mission (SRTM), and 
a Leaf Area Index (LAI) based on the Moderate Resolution Imaging Spectroradiometer (MODIS), are used in 
model initialization. Performance evaluation of the model’s simulation is done for controlled (default) and 
modified land boundary conditions with in situ weather from a network of automatic weather stations (AWS) 
operated by the Indian Space Research Organization (ISRO). In the modified run, the model more closely cap-
tured the temporal evolution of surface level temperature, relative humidity, wind speed, surface pressure and 
solar radiation. Improvement in 24-hr forecast ranges from 15 to 30% for these near-surface weather variables. 
Further testing of the model’s performance on its capability to forecast 8-day micrometeorological weather 
variables revealed that the modified run gave consistent results. The average RMSE values for minimum 
and maximum temperature, wind speed, relative humidity and precipitation are 2.5 and 3 ºC, 2 m s–1, 18% and 
3.5 mm, respectively. The modification helped in increasing the lead-time of the model’s forecast by reduc-
ing the propagation error. Thus, this study emphasizes the fact that improved representation of land surface 
parameters has a definite effect on weather simulations at local to regional scales. For a country like India, 
where the feedback mechanisms between land and atmosphere are more prominent due to inherent climatic 
characteristics, it is critical to concentrate and improve on the inputs that represent the initial land state. 

Keywords: Numerical weather prediction, WRF, land surface modeling, remote sensing data, near-surface 
weather forecasts, AWiFs, MODIS LAI, SRTM DEM.

1. Introduction
The availability of high-resolution weather forecasts 
at different time scales has gained importance in 
a wide range of applications for optimized deci-
sion-making. Particularly, agricultural and hydro-
logical impact studies require micrometeorological/
near-surface weather forecasts at considerable quality 
on various spatial and temporal domains. Regional 
weather models use mathematically modeled rela-
tionships to downscale the global outputs from global 
circulation models (GCMs) available at coarser res-
olutions, with the help of local land state conditions. 
Based on the initial state of the atmospheric and 
land boundary conditions, the land fluxes evolve in 
three dimensions to reproduce the structure of the 
planetary boundary layer (PBL) at different vertical 
levels, which enables circulations between horizon-
tal columns as a resultant of the simulated energy 
fluxes. From previous studies (Segal and Arritt, 
1992; Yang et al., 1994; Ge et al., 2008; Sertel et al., 
2009), it is apparent that differential heating due to 
heterogeneity in the underlying earth surface gives 
rise to atmospheric circulation in the PBL over a 
wide range of spatial and temporal scales. Increased 
latent heat flux humidifies the PBL and increases the 
moist static energy (MSE) of the near-surface air, 
consequently leading to the convergence of clouds 

(Eltahir, 1998). The coarser resolution and outdated 
nature of the land-state input datasets often failed to 
capture the recent fine scale heterogeneities of the 
land concerning topography, soils, land cover and 
other land surface properties, which are very critical 
to the model’s simulation at local and regional scales. 
Improper representation of land surface parameters 
derived from climatological datasets induced uncer-
tainty in the model’s simulation of weather (Prabha 
et al., 2011; Xue et al., 2014). In recent years, with 
the availability and easy access of satellite data, many 
studies have emphasized the role of high-resolution 
land surface boundary datasets in producing more 
precise weather forecasts with finer spatial resolution 
(< 15 km) (Matsui et al., 2005; Ravindranath et al., 
2010; Kumar et al., 2013). Walker et al. (1996) have 
demonstrated a strong dependence of mesoscale at-
mospheric model simulations on the local geographic 
data representation with detailed discussion on sur-
face elevation and its representation within the model. 
They have explained that elevation plays a critical 
role in most of the mesoscale models not only due to 
its role in defining the nature of the lower boundary 
but also the landform representation derived from 
the Digital Elevation Model (DEM) from the Shuttle 
Radar Topography Mission (SRTM) modifies spa-
tial/grid discretization. Among the significant land 
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surface characteristics, leaf area index (LAI), topog-
raphy, soil type and moisture, fractional vegetative 
cover, roughness length, and albedo play substantial 
roles in meteorological modeling (Crawford et al., 
2001; Pienda et al., 2004). Kurkowski et al. (2003) 
observed improvement in surface temperature fore-
casts after using updated fractional vegetation cover 
dataset from the Advanced Very High-Resolution 
Radiometer (AVHRR) in the Eta model. He et al. 
(2017) updated all the land surface information fields 
like elevation, land-use data, vegetation fraction 
data and soil type data in the Weather Research and 
Forecasting (WRF) model and tested its capability 
of simulating near-surface temperature and precipi-
tation. They concluded that the modified land surface 
representation had significant impacts on temperature 
and precipitation simulations reducing the root mean 
squared error values by 7 and 2.3%, respectively. Sun 
et al. (2017) demonstrated the sensitivity of WRF 
model to the selection of land-use dataset and the 
land surface models in simulating sensible near-sur-
face weather variables. The study showed significant 
improvements in the near-surface weather forecast 
for complex terrain.

This study incorporated the latest and updated 
high-resolution (56 m) land use/land cover (LULC) 
dataset in the WRF model. The DEM at a resolution 
of 90 m represented the topography of the domain in a 
spatially explicit manner within the model. A monthly 
varying LAI dataset derived from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) is added 
as an additional input to the model. The study tried to 
capture the difference in the model’s forecast capabil-
ity with the existing sources of land surface informa-
tion as against the updated datasets for a 24-h forecast 
period. It also focused on quantifying the impact of 
the proposed methodology (modified datasets) on 
eight-day forecasts of micrometeorological weather 
variables in the study domain. Key objectives of the 
study can be listed as: (i) investigation of the changes 
in the representation of the datasets at model’s resolu-
tion, (ii) quantification of the impact of updated land 
surface parameters on micrometeorological weather 
simulations at local (at selected stations) and regional 
(domain-averaged) scales, and (iii) evaluation of the 
impact of modification on the model’s performance 
in forecasting micrometeorological weather variables 
for an extended time period (eight days).

2. Data and methods 
2.1 Study domain
The study area covers Punjab, Haryana and Uttara-
khand states, which are located in northern India. 
Punjab and Haryana are well-formed plains with 
elevation ranging from 200 to 800 m. They comprise 
the intensive agricultural zones of the country with 
urban parcels in growing phase after the late 1990s. 
Uttarakhand is located in the foothills of the Hima-
layan mountain ranges, having 86% of mountainous 
area, 65% of its territory being covered with forest 
land-use. The regions of interest receive most of the 
rainfall from the south-west monsoon covering the 
months of June to September.

2.2 Model description and setup
The WRF model (Skamarock et al., 2008) ver-
sion 3.4.1 (http://www.wrf-model.org) was used 
for forecasting weather parameters in this study. 
The mesoscale numerical model serves both for 
operational forecasting and regional atmospheric 
modelling. It is a limited-area, non-hydrostatic (with 
hydrostatic option) primitive equation model with 
multiple options for various physical parameter-
ization schemes. Physics options used in this study 
include the Kain-Fritsch cumulus parameterization 
scheme (Kain, 2004) and the Purdue Lin scheme 
(Lin et al., 1983) for microphysics. The planetary 
boundary layer parameterizations are based on the 
Yonsei University boundary layer scheme (Hong 
et al., 2006), and definition of the land surface pro-
cess is based on the multi-layer Noah land surface 
model (LSM) model (Chen and Dudhia, 2001). 
The long-wave radiation scheme is based on the 
Rapid Radiative Transfer Model (RRTM) (Mlawer 
et al., 1997) and the Dudhia scheme (Dudhia, 1989) 
represents short-wave radiation. The selected set 
of physics options has proven to give good results 
for the Indian domain (Ravindranath et al., 2010; 
Kumar et al., 2013).

The setup contains three domains configured with 
one parent and two nests implemented with two-way 
nesting options. The three domains were run at 15, 
5 and 1 km resolutions, respectively (Fig. 1). The 
centre point was fixed at 76º 14’ 13” E, 30º 18’ 8” N 
with the parent domain (15 km resolution) covering 
parts of Asia (225 × 270 grid points). The first nest 
(5 km resolution) has 325 × 375 grid points spanning 
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to an extent covering northern parts of India. The 
second nest (1 km) roughly delimits the study area 
with 575 × 550 grid points and is the domain used for 
analysis. All the domains are terrain-following and 
have 36 vertical levels with the top of the atmosphere 
located at 50 hPa.

2.3 Simulation experiments
The control run represents a simulation by the WRF 
model with the default datasets, and the modified run 
is the simulation with updated datasets.

2.3.1 Case 1 
Two experiments with default conditions (control) 
and updated datasets (modified) were run for 24 h 
from 0000 GMT starting on October 1, 2008. The 
evaluation was done for the 12-h period from 1200 
GMT allowing the first 12 h as model’s spin-up 
time. Lin et al. (2016) concluded that the impacts 
on near-surface variables are high during nighttime 
for the non-urban areas and thus the simulation time 
was selected to comprehend the maximum variation. 
The month of October was chosen to demonstrate the 
ability of the model to simulate sensible weather vari-
ables on a calm/stable day with fewer disturbances. 

October 1, 2008 had temperatures ranging from 23 to 
27º C, average wind speed of 0.5 m s–1, 80% humidity 
and no rainfall.

2.3.2 Case 2 
Two experiments with default conditions (control) 
and updated datasets (modified) were run for 48 h 
from 0300 GMT initialized on October 16, 2008. 
The evaluation was done for a 24-h period from 
0300 GMT allowing the first 24 h for spin-up of the 
model. October 17, 2008 had strong showers only at 
stations located in hilly regions (Shivalik hills and 
adjacent areas). Thus, this date was specially chosen 
to test the impact of alteration of land parameters on 
the model’s performance in capturing short duration 
spells due to local disturbances (which is usually 
common in October).

2.3.3 Case 3
An experiment with updated datasets was run for 
eight days from March 24-31, 2009. The model was 
initiated at 0300 GMT on March 24 and evaluated 
from March 25, allowing for a 24 h spin-up time. The 
case study aims to analyze the ability of the updated 
model to forecast weather for longer lead times.

2.4 Model input data and analysis
2.4.1 Land surface datasets
The role of vegetation parameters in WRF is to 
estimate evapotranspiration components such as 
soil evaporation, wet canopy evaporation and can-
opy transpiration, and thus simulate surface energy 
balance in the Noah land surface model. Besides, 
land-use types also represent land surface parameters 
like albedo, roughness, emissivity and LAI within the 
model that are vital parameters, accounting for the 
energy partitioning at the surface. DEM is used in 
determining the displacement height and roughness 
length in the lower surface level, modulating the 
surface heat fluxes and the exchange coefficients 
within the planetary boundary layer (Chen and 
Dudhia, 2001).

Most of the studies using meteorological models 
(MM5, Eta, REMO, RCM) including the WRF had 
been using coarser resolution data. For example, 
LULC at 1 km resolution based on the U.S. Geolog-
ical Survey (USGS) land classification scheme de-
rived from 1-yr (1992-1993 cycle) temporal AVHRR 

Scale: 1 cm = 278 km

Fig. 1. Model domains. 
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data (Loveland et al., 2000). The USGS data lacks the 
finer details of land cover classes and presumably are 
outdated since significant changes in global land cov-
er took place post-1993 (Ravindranath et al., 2010). In 
this study, multi-temporal satellite datasets from the 
Advanced Wide Field Sensor (AWiFS) onboard the 
IRS-P6 satellite, is used to derive LULC maps based 
on supervised classification (2008-2009 cycle), which 
is also verified by ground truth procedures (Biswadip, 
2014). AWiFS has a spatial resolution of 58 m, and 
the land-use was prepared at a scale of about 1:250 
000 under national repository programs of the Indian 
Space Research Organization (ISRO). AWiFS LULC 
captures the spatial variability of the cropping pat-
tern using three land-use classes, viz. Kharif, Rabi 
and Zaid, representing the different crop seasons in 
India. The product also accurately represents other 
land-uses like forest types, urban, water bodies and 
wasteland. As concluded by Sertel et al. (2009), the 
default land-use data is affected by outdated nature 
and misclassification of the land-use type due to 
the coarser resolution. In domains 2 and 3, which 

comprise the region of interest, both errors are 
prevalent. Land use changes are widespread in the 
Indo-Gangetic plains (Fig. 2a, b) aligned with the 
observations made by Ravindranath et al. (2010). For 
example, about 22% of the area that was classified 
as dry cropland in the USGS dataset has been cate-
gorized as irrigated cropland in the AWiFS dataset, 
which is the reflection of technological advancements 
post 2000. The increase in barren lands due to land 
degradation in the neighborhood of the Thar Desert, 
Rajasthan, has led to extended desertification, which 
is captured well in the updated LULC dataset. Urban 
areas surrounding Delhi, as well as in Punjab and 
Haryana states have drastically increased since the 
1990s (Rahman et al., 2011); accordingly, 7% of ir-
rigated cropland and 2% of shrubland category in the 
default data belongs to urban land-use in the modified 
dataset. Snow cover over the northern part of Jammu 
and Kashmir has increased marginally, while the 
barren lands have declined significantly. Misrepre-
sentations are prominent in the forest regions where 
5 and 3% of evergreen forest (actual land-use) appear 
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as deciduous forest and shrubland categories in the 
default dataset. Similarly, about 2% of the deciduous 
forest was represented as cropland in the default data-
set. Thus, an overall change of about 40% is observed 
within the study area, which makes the modified 
dataset very pertinent to the study. The modification 
captures the spatiotemporal variability of the dynam-
ic land-use types in the region of interest. Figure 3 
exemplifies a prominent case in the Uttarakhand 
region, where the better representation of the land-
use variability in Shivalik and adjacent areas by the 
modified dataset is evident.

The terrain is represented with the latest 
90 m resolution DEM from the SRTM, a joint 
NASA-NGA partnership, available from http://
srtm.csi.cgiar.org. The accuracy of the generat-
ed DEM is high, which is validated across the 
globe. The distinct differences are exhibited 
in areas with complex terrain, while in plains 
contrasts are marginal. For example, Figure 4 
represents the variation in the elevation of Uttara-
khand state captured well by the SRTM dataset. The 
default coarser resolution DEM showed a gradual 
increase in elevation, while the modified DEM cap-
tures the variability in elevation, particularly over 

the Shivalik ranges (lower Himalayan regions), the 
valley in between (Dehradun and adjacent areas), 
and the increasing elevation towards the upper 
Himalayas, which is not prominent in the former.

LAI is defined as a one-sided green leaf area per 
unit ground area. Conceptually it is a representation 
of the amount of ground covered or left uncovered. 
The model typically uses a default lookup table 
(LUT) approach in which a constant LAI is assigned 
to each USGS land-use category. Such static LAI for 
each land cover category at model’s resolution often 
fails to capture the spatial and temporal heterogene-
ity of the index, which is the vertical component of 
the vegetation. LAI is essential to address the par-
titioning of energy between latent and sensible flux 
components. Prescription of spatially and temporally 
explicit information on LAI to the WRF model is thus 
inevitable (Tian et al., 2004). Model initialization is 
done with a freely available and globally validated 
MODIS-LAI product (Pandya et al., 2003; Yuan et al., 
2011). The eight-day composite LAI product at 1-km 
resolution is obtained from https://lpdaac.usgs.gov, 
a website maintained by the NASA Land Processes 
Distributed Active Archive Center (LP-DAAC), 
which is processed to get monthly LAI datasets. 
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Significant dissimilarities are observed throughout 
the study domain, revealing that the new LAI infor-
mation from MODIS has better captured the spatial 
and temporal variability of LAI within individual 
vegetation land-use types. On the contrary, LAI based 
on the LUT approach yielded unrealistic values. For 
instance, LAI values are in the range of 4-5 for the 
deciduous forest in Shivalik hills, which is a rarity 
at the beginning of the winter season due to shed-
ding of leaves. In another instance, modified dataset 
correctly captured low LAI values occurring in the 
agricultural lands of Punjab due to maturity/harvest 
of crops during October, while the default LUT 
approach showed LAI values in the range of 3.5-4, 
which is considerably high in that month (Fig. 5).

The different land surface datasets used for the sim-
ulations are tabulated in Table I. Upscaling from finer 
resolution to coarser resolution is always superior to 
direct usage of the coarser dataset, which is addressed 
in this study. Even if the model is implemented in 
coarser resolutions, an external upscaling of the mod-
ified input like the one explained below is necessary 
to avoid interpolation uncertainties being introduced 
within the model. Smoothening of the finer resolution 
images (to avoid noise) are performed externally, and 

the smoothened dataset is upscaled to the model’s 
resolution (here, 1 km) using the nearest neighbor 
method, before feeding input into the model. Walk-
er and Leone (1994) demonstrated the importance 
of smoothening, especially for DEM. Figures 3-5 
represent the high variability at model’s resolution, 
thus proving the need for external smoothening and 
interpolation to retain essential classes/values.

2.4.2 Initial and boundary data
The initial and lateral boundary conditions for the 
WRF model are provided by the Global Forecast 
System (GFS) data, downloaded at a 0.5º reso-
lution with 47 pressure levels. GFS is a coupled 
spectral model that provides global forecasts from 
one to 16 days. Data is downloaded at 1200 GMT 
model cycle with three-hourly forecast intervals to 
match with the model simulation dates mentioned 
in section 2.3. 

2.5. Evaluation methods
The performance of the WRF model for different cases 
is evaluated with the data of 15 automatic weather 
stations (AWS) installed by the Indian Space Research 
Organization (ISRO) within Punjab and Haryana 

(a) (b)
77º45' 78º15'78º0' 77º45' 78º15'78º0'

30
º1

5'

30
º1

5'

30
º1

5'

30
º1

5'

Longitude E Longitude E

La
tit

ud
e 

N

77º45' 78º8' 78º15'77º45' 78º8' 78º15'

Elevation

400 600 800 1000 1200 1400 1600 1800 2000 2200 (masl)

Places
Scale: 1 cm = 4 km

Fig. 4. Complexity of the terrain (m) captured at models’ resolution (1 km). (a) Default (DEM [GTOPO 
30]). (b) DEM (SRTM) modified input. The units are in meters above mean sea level.



172 S. M. Kirthiga and N. R. Patel

(Fig. 6a). The bilinear interpolation method is used to 
select the pixel from the model’s output that is closest 
to the observational station. Temperature and humidity 
are considered at a 2 m height while wind speed is 
considered at a 10 m height for verification.

Statistical measures such as mean bias, root mean 
square error (RMSE) and mean absolute percent error 
(MAPE) are used to evaluate the performance of the 
WRF model’s forecast. RMSE serves to aggregate 
the magnitudes of errors in predictions for various 
times into a single measure of predictive power, and 
is a good measure to compare forecasting errors of 
different models for a particular variable. MAPE 
essentially combines the individual percentage errors 
without offsetting the negative and positive values. 

The improvement factor, which is found to be 
very relevant to compare the performance of climate 
models/simulations (Kumar et al., 2013), is used to 

compare the performance of the control and modified 
runs. It provides the percentage improvement of one 
simulation (here, modified run) over the other (default 
run), and is given by: 
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Table I. Land surface inputs for the control and modified runs of the WRF.

Station number Land surface parameter Control run Modified run

1 LULC USGS-LULC (1 km) AWIFS-LULC (56 m)
2 LAI Default LUT approach MODIS-LAI (1 km)
3 Elevation GTOPO (1 km) DEM SRTM (90 m) DEM
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marginal improvements are observed in those sensi-
tivity experiments except for LULC, where a notable 
improvement in the simulated weather variables was 
observed. Since the land parameters selected for mod-
ification are complementary, combined sensitivity 
analysis yielded better results, and henceforth it is 
discussed in this manuscript. 

3. Results and discussion
3.1 Effect of land surface boundary changes on 
weather forecast over a spatial domain
WRF simulations were spatially analyzed to charac-
terize the behavior of positive or negative deviations 
in the forecasted parameters during a 12-h forecast 
period (Fig. 7). Pixel values are averaged across the 
time of simulation, and the difference between the 
modified and control run represents the mean bias 
image, which is used for investigating different 
weather variables.

The mean bias image (i.e., modified minus con-
trol) for temperature, ranged from –4 to 6 ºC with 
major values ranging from –2 to +1 ºC. The spatial 
temperature variation is a direct function of elevation 

and vegetation. The updated DEM and land boundary 
conditions adequately captured the process of differ-
ential heating over the surface and led to the alteration 
of energy fluxes contributing to the positive and neg-
ative bias in hilly regions and plains, respectively. On 
a spatial scale, the negative bias is predominant in the 
study domain, which shows that the modified run gen-
erated lesser night-time temperatures compared to the 
control run, reducing the well-known overestimation 
(night-time temperatures) issues in WRF (Zhang et 
al., 2013). For example, the plains of Haryana, where 
25% of the land cover changed to irrigated cropland 
in the updated land cover dataset, a temperature bias 
of about –2 ºC for the late evening hours and +1 ºC for 
early morning hours is recorded. The observed bias 
in temperature is attributed to changes in the thermal 
inertia, surface roughness, albedo and stomatal resis-
tance associated with irrigated cropland (Pienda et 
al., 2004). The major contributor is the low thermal 
inertia of irrigated cropland, since it could simulate a 
cooler layer in the evening and a warmer layer during 
the early morning. Figure 7a shows another instance 
where the temperature bias is very high in Shivalik 
hills and adjacent areas (Dehradun). The negative 
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bias (about –3 ºC) is observed in valleys, where crop-
lands are the predominant vegetation, and the positive 
bias (as high as 4 ºC) is noticed in the hilly terrain 
with forest cover. Forests serve as a heat-trap due 
to higher surface roughness and canopy cover, thus 
having higher nighttime temperatures than croplands 
(Lee et al., 2011). This phenomenon is captured well 

by the modified run, where simulated temperatures 
are high (low) in forest (croplands) regions.

The difference of relative humidity (RH) at the 
2-m level exhibited almost a similar pattern of spatial 
variation as temperature but an opposite behavior due 
to the inverse relationship between temperature and 
RH. The updated land surface boundary with distinct 
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land cover changes in the valley and hilly areas of 
Uttarakhand (Fig. 7c) showed a significant difference 
in RH between the modified and control runs ranging 
from –12 to 12%, with most values falling within –6 
to 9%. Earlier studies have reported underestimation 
(overestimation) of nighttime RH for croplands 
(forests). In agreement with the previous results, the 
negative bias is seen in the hilly forest regions and 
a positive bias is observed in the plains and valley 
areas with croplands, elucidating the improvement 
offered by the modified run.

The difference in solar radiation values ranged 
from –50 to 200 Wm-2. Since during nighttime 
incoming solar radiation is not present, values are 
more representative of the emittance (long-wave 
radiation). The modified run gave slightly higher 
values (positive bias) in the plains and valleys, 
where the modified datasets improved the repre-
sentation of emissivity.

Case 2 was used for evaluation of rainfall simu-
lations. The bias in rainfall lies between –140 to 20 
mm day–1 for modified and control runs on a rainy 
day (from local disturbances). A positive bias of 2 to 
5 mm day–1 in rain precipitation was found across 
the plains, particularly in areas where agricultural 
land use has shifted from dry land to irrigated crop/
pasture. The substantial negative bias in some regions 
showed that the modified run reduced the false alarm 
simulated by the control run. A value of 140 mm day–1 
as forecasted by the control run is very unrealistic 
for October in the study domain and the modified 
run eliminated this error. The improved roughness 
and moisture flux simulations in the lower boundary 
layer helped to reduce the unrealistic rainfall alarm 
in the valley (Fig. 7d). The hilly areas covered with 
evergreen forests showed a realistic rainfall pattern 
in the modified run with an increased rainfall amount 
due to the improved representation of orography and 
LAI. The increased moisture availability at lower lev-
els would have given the potential for convergence. 
Although the rainfall simulation from modified 
runs followed a similar pattern as that of observed 
values by reducing false alarms, the rainfall amount 
is largely overpredicted for this event. Rainfall is a 
result of combined processes of physics and dynamics 
at a certain location, and land surface changes alone 
are insufficient to capture the entire variability (He 
et al., 2017). 

3.2 Impact of land state changes on weather fore-
cast over selected stations

In order to evaluate the performance of the WRF 
model in a detailed manner, AWS at Roopanagar, 
Patiala and Bhatinda were considered (Fig. 6b). The 
selected stations represent the variability in topog-
raphy and land-use of the study region. Roopnagar 
station exemplifies the hilly region and partly has 
forest cover; Patiala station is located in the transition 
region from the plains to the hilly zone, being mostly 
an agricultural area, and Bhatinda station is located 
entirely in the plains, belonging principally to the 
urban category. A grid of 10 × 10 km assessed the 
percentage changes of land cover in the selected sta-
tions (Table II). The influence of the land state change 
is evaluated based on the degree of positive/negative 
mean bias and associated RMSE for the forecasted 
weather variables from the two experiments against 
the actual station data at these three locations (Fig. 8). 
It is evident that land surface changes have a more 
clear and profound effect on 2-m height air tempera-
ture simulations. For Patiala station, the land use 
in the model’s default dataset is irrigated cropland 
(80%) and urban (13%), while AWiFS based land 
use consists of 68% irrigated cropland and 26% 
urban. Since there is not a profound change, tem-
perature curves for the control and modified runs 
are relatively close (Fig. 8a). The relatively cooler 
simulated temperature during night hours in the mod-
ified run is possibly due to increased thermal inertia 
associated with the reduced irrigated crop areas and 
urban expansion. The model reproduced temperature 
reasonably well at the Patiala station but with a cold 
bias of 1.30 ºC in the modified run. A slightly high 
RMSE (1.32 ºC) with new land surface boundary 
reveals that no improvements have occurred in the 
temperature simulation at Patiala station for the sim-
ulated time period. At Roopanagar, deciduous forest 
(40%), which is the dominant land cover category, 
was misclassified as mixed dry/irrigated cropland 
(54%) in the default dataset. Thus, as a reflection, 
the model-simulated temperature remains high for 
the modified run when compared to the control run 
(Fig. 8b). As discussed in the previous section, the 
forest acts as a trap of energy and is comparatively 
warmer during nighttime, which is well captured 
in the modified run. The higher values of thermal 
inertia and less moisture availability due to reduced 
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LAI, associated with the deciduous forest have led 
to reduced evaporative cooling and hence simulation 
of higher temperatures.

The modified run thus attempted to minimize the 
cold bias, and the new land boundary led to a reduction 
in RMSE from 2.28 ºC in the control run to 1.34 ºC 
at this station. Our results are in line with those re-
ported in previous studies (Pienda et al., 2004; He 
et al., 2017). Significant changes in land cover are 
observed at Bhatinda due to urbanization. Mixed dry 
and irrigated cropland categories in the default dataset 
have changed to urban land use in approximately 
41%. The model predicted cooler temperatures than 
the control run nearly for all forecast hours (Fig. 8c), 
which is attributed to the lowering of nocturnal warm 
bias. Cooler near-surface air temperature is simulated 
with the new land cover because of the modulation 
of the surface energy fluxes through changes in the 
parameters (albedo, surface resistance, roughness 
factor, and thermal inertia). Conversion of agricultural 
to urban land caused an increase in surface roughness 
length and thermal inertia, which in turn partitioned 
more energy to sensible and latent heat fluxes, which 
subsequently cooling down the layer near the surface 
(Nicholas and Lewis, 1980). Thus, the positive (warm) 
bias of temperature reduced from 1.9 to 0.9 ºC at 
Bhatinda by modifying the land boundary (Table II). 
The modified run has also decreased RMSE (1.08 ºC) 
compared to the control run at this site.

The modification of land boundary conditions did 
not show much difference in the simulated RH at Pa-
tiala, which is identical with temperature simulations. 
The model predicted RH agreed with observation in 
the control run (bias = –0.21 ºC), but a positive bias 
(3.26 ºC) is noticed in the modified run at Patiala (Table 
II). For the other two stations, the model mostly un-
derestimated RH in both experiments, with a reduced 
magnitude of underestimation in the modified run. The 
updated model improves the prediction of RH at both 
stations, which is evident from the reduction in mean 
bias from –10 to –7.65% at Roopanagar and –17.6 to 
–11.2% at Bhatinda. Flaounas et al. (2010) reported 
similar results for RH simulations. The relatively high-
er humidity simulated with the new land cover could be 
attributed to the higher magnitude of fluxes, and more 
partitioning of energy to latent heat flux and sensible 
heat flux due to the conversion of irrigated cropland 
to deciduous forest or urban land cover.Ta
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Fig. 8. Simulation of 2-m temperature and wind speed for 12-h forecast period over the three stations: 
(a) Patiala, (b) Ropnagar, and (c) Bhatinda.

Both control and modified runs produced a strong 
positive bias in wind speed during all the forecast 
hours (Table II). The simulated wind speed for both 
runs followed the observed wind speed patterns but 
largely over predicted the values (Fig. 8). Zhang et 

al. (2013) also observed the nighttime overestimation 
of wind values. We also noticed the overprediction 
of surface wind speed over plains and valley areas 
in the southwest of the study area and the underpre-
diction over hilly regions in its northeast portion. 
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et al., 2013). The wind simulation agrees with the 
reports in peninsular India using the MM5 model 
(Srinivas et al., 2011). Marginal improvement in 
the simulated wind speed is noticed in the modified 
run. The updated land state parameters have led to 
predictable atmospheric circulation associated with 
realistic heating/cooling processes over these regions.

3.3 Statistical analysis across available stations
The temporal evolution of model-simulated mean 
weather parameters during forecast hours (beginning 
at 12:00 GMT) is compared to the corresponding 
temporal pattern of observations from a network of 
ISRO-AWS stations (Fig. 9). The correspondence and 
accuracy of the model simulations are evaluated with 

Previous studies (Beljaars et al., 2004; Case et al., 
2008; Jiménez and Dudhia, 2012) have reported sim-
ilar results demonstrating the tendency of the WRF 
model to overestimate surface winds in the plains and 
underestimate its values over hilly terrain. A positive 
bias ranging from 1.04 to 2.41 m s–1 is noticed for all 
the three stations. The drag resulting from unresolved 
orography due to the lack of parameterization of fine 
roughness elements within the model is one of the 
primary reasons for the systematic positive bias in 
the model simulated wind speed (Jiménez and Dud-
hia, 2012). Also, the improper representation of the 
decoupling between near-surface and above-layer 
air by the model leads to the over-prediction of wind 
speed values, especially during the nighttime (Zhang 
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RMSE, MAPE and the improvement factor (Table III). 
The model has simulated cooler temperatures until 
midnight (i.e., 20:00 GMT) after which the values 
exceeded the observed values. The improvement 
factor of the modified run over the control run for 
surface temperature is 21% with a mean RMSE and 
MAPE of 1.36 and 4.24 ºC, respectively. Results are 
in agreement with a similar study conducted in the 
Indian region by Srinivas et al. (2011). Among all 
variables under evaluation, RH showed the highest 
level of improvement during 12-h forecasts. The 
hourly pattern of simulated RH from the modified 
case closely followed the pattern of actual values. 
The improvement factor in RH with the altered 
land boundary conditions is 30%. The modified run 
yielded a comparatively lower RMSE (10.8%) and 
MAPE (10.1%) than the control run. The model 
underpredicted the surface pressure, but it captured 
the hourly trend of observed surface pressure. 
The values of RMSE and MAPE for surface pressure 
did not show much difference between the control 
and modified experiments. The surface winds from 
the model are overestimated in both simulations. The 
RMSE and MAPE associated to the modified run are 
1.65 m s–1 and 23.9%, respectively. An improvement 

factor of 13% is noticed over the control run. The 
results confirm that there is a specific impact on 
temperature and RH simulations. The feedback mech-
anisms are captured accurately with the near-to-real 
representation of the land state parameters, which has 
led to the increase in the quality of forecasts made 
by the modified run (Tian et al., 2004). 

3.4. Evaluation of the temporal variability of near-
surface variables
The updated datasets are used in the WRF model 
to simulate micrometeorological weather for a 
longer time-period of seven days (with one-day 
spin-up time) (case 3). The results are tabulated in 
Table IV, which explains the temporal evolution of 
RMSE for various near-surface weather variables. 
Appreciable results are obtained for temperature 
simulations especially for maximum temperatures, 
which are simulated close to observations (Fig. 10a). 
A comparatively significant error in the simulated 
minimum temperature shows that the model has 
issues in reproducing nighttime temperatures as 
observed in section 3.1. Minimum temperatures for 
starting days (March 25-27, 2009) are underpre-
dicted, while the remaining days are overpredicted 

Table III. Evaluation of WRF forecasts against ISRO-AWS station data.

Variables Control run Modified run Improvement
factor (%)RMSE MAPE RMSE MAPE 

Temperature at 2 m (ºC) 1.75 5.61 1.36 4.24 21
RH at 2 m (%) 15.5 14.86 10.8 10.1 30
Surface pressure (mb) 5.19 0.36 5.04 0.35 4
Wind speed at 10m (ms–1) 1.89 27.98 1.65 23.9 13

Table IV. Day-wise RMSE values for a seven-day forecast across stations.

Day Minimum temperature
at 2 m (ºC)

Maximum temperature
at 2 m (ºC)

Wind speed
at 10 m (ms–1)

RH at 2 m
(%)

Total precipitation
(mm)

1 3.17 3.87 2.24 7.51 3.84
2 2.79 1.27 1.84 9.32 2.96
3 2.17 3.46 1.63 19.88 13.77
4 1.83 2.78 3.21 25.04 0.80
5 1.92 3.21 2.72 28.44 3.11
6 3.22 1.97 1.12 22.57 0.00
7 2.82 1.49 2.14 15.98 0.00
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due to the dropping actual minimum temperatures 
after March 27, 2009. The model’s systematic bias 
to underestimate high temperatures and to overesti-
mate low temperatures is very evident in this case. 
The RH plot (Fig. 10b) shows that the simulated 
values closely follow the pattern of observed val-
ues. However, the model mostly underpredicted 
RH. Wind speed, in general, is overestimated by 
the modified run (Fig. 10b) due to the unresolved 
decoupling between different layers of the model 

and radiative cooling. The modified run followed 
the observed rainfall patterns but underpredicted 
the amount of rainfall (Fig. 10c) for the simulation 
period. The forecast performed consistently across 
the lead times with an average RMSE of 2.5 ºC 
for maximum temperatures, 3 ºC for minimum 
temperatures, 2 m s–1 for wind speed, 18% for RH 
and 3.5 mm for rainfall. The results are in accord 
with results obtained from earlier studies (Case et 
al., 2008; Liu et al., 2008; Zhang et al., 2013).

Fig. 10. Evaluation results of seven-day forecasts from March 25, 2009 to March 31, 2009. (a), (b) and (c) Variation 
of simulated variables (maximum and minimum temperature, RH, wind speed and precipitation with actual data). 
(d) RMSE variations between stations.
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Across stations, ISRO 346, ISRO 352 and ISRO 
354 have large errors while ISRO 344 and ISRO 348 
have fewer errors for all the simulated weather vari-
ables (Fig. 10d). Interestingly, the stations that had 
large errors are located in low-lying areas and pre-
dominantly have urban and fallow land-uses, while 
the stations with fewer errors belong to upland agri-
cultural zones. This behavior reveals that modified 
datasets are useful for realistic micrometeorological 
weather simulations for extended time periods in 
vegetated areas. The significant errors in urban and 
fallow land uses proved that the adjusted datasets 
(LULC, LAI and DEM) alone are insufficient to 
capture the entire weather variability in those regions.

4. Conclusion and future scope
Results demonstrate an explicit influence of the initial 
land boundary conditions (e.g., land cover, terrain 
and LAI) on micrometeorological weather fore-
casts, especially surface temperature and humidity. 
Several cases of simulations were attempted to study 
the varied impact of these variables on a calm day, 
a rainy day and for an extended time-period. Over-
all, improvement factors in the range 15-30% are 
observed in the quality of the short-term prediction 
of micro-meteorological elements like 2-m surface 
temperature, RH, wind speed and solar radiation. 
Furthermore, the study has illustrated that selecting 
an optimum resolution and the interpolation methods 
applied while representing boundary conditions at 
model resolution are vital to improve the mesoscale 
model performance. Advanced interpolation tech-
niques used in this study helped in preserving critical 
land-uses at the model’s resolution, which is usually 
lost while upscaling datasets. The modified run per-
formed consistently well for time scales extending 
from 12 h to seven days, which shows that the model 
ingested the modified datasets without experiencing 
any shock. Thus, such methodology is feasible for 
forecasting micrometeorological weather at different 
spatial and temporal scales. The modification of land 
state parameters had a higher influence on near-sur-
face temperature, RH and solar radiation simulations. 
However, significant overestimation of wind speed 
is still noticed in the modified run, which demands 
further experimental study. The model outperformed 
the control run and simulated near-surface weather 
exceptionally well in vegetated areas. Realistic 

simulations are facilitated with the increase (decrease) 
in canopy evapotranspiration (soil evaporation) due 
to the update of LULC, LAI and DEM in these areas 
(Tian et al., 2004). As the representation of vegetation 
is resolved, most of the surface fluxes are determined 
by canopy physics rather than the bare soil physics 
formulation, which leads to discrepancies (biases) in 
weather simulations (RH and minimum temperature) 
in the region (Yang et al., 1994; Mitchell et al., 2002; 
Kurkowski et al., 2003). The biases are more prom-
inent in fallow/barren lands where the contribution 
of soil evaporation on sensible heat flux simulation 
is high. Thus, soil moisture ingestion/assimilation in 
the limited-area model becomes vital. Future work 
would involve ingesting the vegetation fraction 
and soil moisture inputs along with assimilation of 
real-time observational data from high-frequency 
meteorological satellites for improving micromete-
orological weather forecasts. 
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