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RESUMEN

Se realiza un análisis fractal de los eventos de lluvia registrados en Baja California, México, una región se-
miárida que presenta amplia variabilidad climatológica. Se utilizan series de precipitación de 92 estaciones 
climatológicas con longitudes de registro mayores a 30 años. Se determinan patrones y características en 
las series de precipitaciones a partir de valores espaciales y temporales del exponente de Hurst, así como su 
relación con la temperatura y precipitación media anual, altitud y distribución climatológica. Se emplean con 
éxito los métodos de rango reescalado, conteo de cajas y análisis multifractal de fluctuación sin tendencia, lo 
cual permite obtener el valor promedio del exponente de Hurst para diferentes escalas de tiempo. Los datos 
muestran que la series de precipitación diaria tienden a presentar un patrón persistente; además, los valores 
del exponente de Hurst se relacionan con el tipo de clima, la altitud, el régimen de lluvias y la temperatura en 
la zona de estudio. El análisis del exponente de Hurst para diferentes escalas de tiempo evidencia que dicho 
exponente aumenta a medida que la escala de tiempo en consideración es menor; por lo tanto, la persistencia 
de la serie se hace más fuerte. Por otra parte, se puede confirmar que la teoría fractal permite analizar el 
comportamiento de una variable climática, en este caso, la precipitación.

ABSTRACT

A fractal analysis from rainfall events registered in a semiarid region was carried out. The analysis was 
executed for Baja California, Mexico, a region that presents a high climatological variability. Rainfall data 
from 92 climate stations distributed along the region of study with at least 30 years of records were used. By 
studying the rainfall series patterns, the Hurst exponent values were obtained (both spatial and temporal) as 
well as their relation with the variables for annual average temperature, annual average rainfall, altitude and 
climatological distribution. The rescaled range method, box counting method, and multifractal detrended 
fluctuation analysis were successfully applied, having as a result the average value of the Hurst exponent for 
different time scales. Data showed that the daily rainfall series tend to present a persistent pattern; besides, 
the Hurst exponent values (Hu) were related to the type of climate, altitude, rainfall regime, and temperature 
of the studied area. The analysis of the Hurst exponent for different time scales showed that, at a smaller time 
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scale, the Hurst value tends to increase; thus, the series present a stronger persistent behavior. Moreover, it 
can be confirmed that the fractal theory methodology allows analyzing the behaivor of a climate variable, 
in this case rainfall.

Keywords: Time scale, fractal dimension, climate variable.

1. Introduction
The aim of this research is to analyze the fractal 
behavior of rainfall events in a semiarid region 
located in Baja California, northwestern Mexico. 
Two analyses were performed to: (1) find a relation 
with climatological distribution, altitude, average 
temperature and average annual rainfall, and (2) 
compare different scales for the same time series. In 
order to achieve this goal, 92 climate stations with at 
least 30 yrs of records were analyzed; subsequently, 
using the Hurst exponents, a spatial and temporal 
analysis was carried out in order to compare it with 
the previously mentioned variables. The results 
could help analyzing the effects of climate change 
in this region. 

It is well known that rainfall, being a random 
variable and part of a complex and chaotic system 
(Xu et al., 2015), evolves during time and space and 
exhibits extreme variability (Brunsell, 2010; Gires 
et al., 2014), as well as temporal trends (Shi et al., 
2014), which also implies that these two dimen-
sions are not mutually independent. It has been also 
found that the evolution ratio of rainfall is invariant 
through time and space in a dynamic scale, and that 
over wide ranges, atmospheric spatial variability 
can be well described (Pinel et al., 2014). Rainfall 
events are very erratic at short and large temporal 
and spatial scales (Millan et al., 2011). According 
to Zhang et al. (2013), rainfall extreme events have 
become more frequent and intense under global 
warming conditions, causing an increase in the num-
ber of days with extreme rainfall events; therefore 
studying the spatial correlation structure exhibited 
by rainfall measurements can provide useful results 
for understanding the effects produced by the inter-
action between meteorological patterns (Sirangelo 
and Ferrari, 2014). The statistical structure depen-
dence of rainfall in space and time can be analyzed 
with a single parameter that studies its persistence 
(Venugopal et al., 1999). A research conducted in In-
dia proved that regional climatological models were 

not capable of adequately predicting local weather 
since they use average values; therefore, models that 
study the internal structure of the random variable 
are required (Rangajaran and Sant, 2004). The foun-
dation of this statement is that extremely variable 
fields, such as rainfall, involve multiple scales and 
dimensions, being these two characteristics present 
in intense regions (Lovejoy et al., 1987). It has been 
confirmed that rainfall is a part of many factors in-
volved in climate change which are characterized by 
persistence in the long term (Fluegeman and Snow, 
1989). Hydrological data sets, such as rainfall, are 
constituted of complex fractal geometry which is 
complicated to represent using classical stochastic 
methods (Huai-Hsien et al., 2013). However, trying 
to study a single random variable at different scales 
turns out to be very complex, along with the fact that 
autoregressive methods can produce certain errors 
(Svanidze, 1980); hence, a new and revolutionary 
approach has emerged (Sivakumar, 2000) that has 
proven to be much more effective than classical au-
toregressive methods (Caballero et al., 2002; Nunes 
et al., 2011; Akbari and Friedel, 2014).

Mandelbrot (1967) introduced the concept of a 
fractal in terms of self-similar statistic; this concept 
revolves around the idea that the shape of an object 
does not define its size. Mandelbrot defined fractals 
as objects that possess a similar appearance when 
observed at different scales, having details even at 
small arbitrary scales; such fractals are too complex 
to be studied under Euclidian geometry laws. Frac-
tals allow the generation of very complex structures 
through groups which can be applied to virtually any 
research of interest (Lovejoy and Mandelbrot, 1984). 
Fractals are assigned non-integer-value dimensions 
resulting in successful modeling of many natural 
phenomena. One of the most important developed ap-
proaches is the representation of time series as curves 
with dimensions between 1 and 2. Usually, two meth-
ods are used to determine the fractal dimension of 
these phenomena: the rescaled range analysis (R/S) 
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(Mandelbrot, 1972) and the box counting method 
(Falconer, 1990; Breslin and Belward, 1999). Other 
methods such as the wavelet transform method are 
applied as well (Yan-Fang, 2013).

In order to obtain the fractal dimension, the 
rescaled range method divides the range of partial 
sums of deviations from the mean of a time series 
by the standard deviation (Hurst, 1951, 1956). The 
box counting method considers variable fields such 
as rainfall, which involves multiple scales and di-
mensions that characterize intense regions (Lovejoy 
et al., 1987).

Now, it is well known that rainfall events are 
highly important, not only for scientific purposes 
but for all the possible imaginable ramifications. 
However, this research field changed drastically with 
the contributions of Hurst and Mandelbrot, as well 
as many studies performed all over the world, which 
enforced the relation between this variable and a 
fractal behavior (Turcotte, 1994; Peters et al., 2002). 

For this study, we have chosen to work with frac-
tals instead of methods involving probability, given 
that dynamic systems display in nature self-similarity 
and space-time fluctuations on their behavior on 
all scales, indicating correlation on a large range; 
therefore, normal and average distribution, as well 
as standard deviation approaches cannot be used to 
properly describe and quantify fractal sets (Selvam, 
2010). Fractals behave in a different dimension than 
the Euclidian dimension counterparts, known as frac-
tal dimension (Df), which is usually smaller than the 
Euclidian dimensions. The application of fractals to 
hydrology is important since the current models are 
too simple to approach the behavior of rainfall events. 
Decades ago, fractals where considered geometric 
monsters; however, to give an example, it is now 
known that they perfectly describe rainfall and pluvial 
discharge (Schertzer et al., 2010). It is also important 
to mention that the general trend analysis for rainfall 
events is vital for the purpose of identifying changes 
(Selvi and Selvaraj, 2011). Usually, fractal geometry 
studies, applied to rainfall events, are focused on 
estimating the fractal dimension. Several researches 
have been carried out all over the world. In Italy, 
a comparison between the fractal dimensions of 
rainfall events detected through radar/satellite meth-
odologies was conducted (Capecchi et al., 2012), as 
well as an evaluation of rainfall events at different 

climatological stations, finding a relation in specific 
time intervals. It was observed that the fractal dimen-
sion describes the magnitude of rainfall events in a 
more realistic way compared to the traditional meth-
ods, discovering that the more isolated the particles 
of rain are, the lower the fractal dimension obtained 
will be (Mazzarella, 1999).

Furthermore, there are certain methodologies in 
fractal studies, e.g., models can be created so they 
can reproduce certain types of a self-similar behav-
ior observed in rainfall (Troutman and Over, 2001). 
Fractals applied to hydrology have a huge field of 
application. For example, fractal methods have prov-
en to be very useful in the analysis and synthesis of 
rain fields. The fractal model is presented in order to 
simulate rain fields using an additive-iterative process 
in the logarithmic domain, resulting in monofractal 
fields with a spectral density exponent and a fractal 
dimension (Callaghan and Villar, 2007). They also 
allow the comparison between various methods in 
order to verify their efficiency, which is the case of 
a comparison made between two methods in order 
to analyze 27 convective storms in United States, 
showing that both methods were very efficient and 
yielded very consistent structural fields (Tao and 
Barros, 2010).

In the case of fractal studies with rainfall ap-
proaches, it has been found that the Hurst exponent 
value is influenced by the altitude of the studied 
region. A research in Zacatecas, Mexico, showed 
that altitude causes a negative influence on the Hurst 
exponent, i.e., climatological stations located at 
higher altitudes generate an anti-persistent behavior 
(Velásquez et al., 2013). Furthermore, there have 
been many studies involving rainfall and fractals, the 
most noted being an application of the R/S to study 
the fractal properties of rainfall events from 1921-
2010, resulting in time series that showed fractal 
behavior. The fractal dimension was similar to the 
one obtained in previous studies, which suggests 
that the majority of these series showed persistence 
in the long term (Beran, 1994), which proves that 
rainfall is a phenomenon that can be characterized 
through its fractal dimension (Amaro et al., 2004). 
A large scale project in South America and Europe 
was conducted in order to compare fractal dimensions 
between rainfall time series using data from over 30 
yrs in order to calculate their dependence in time. 
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Both places found tendencies at different frequencies, 
achieving very precise results (Kalauzi et al., 2009). 
Other interesting approaches were those conducted in 
China, where flood time series were analyzed using 
fractals; the sequence was reproduced and it helped 
to prevent an extreme event many years later by us-
ing the Hurst exponent (Chang and Wang, 1999); in 
Ecuador, multifractal analysis of climatic variables 
including rainfall events (Millan et al., 2008) and a 
multifractal study regarding meteorological dynam-
ics (Millan et al., 2010) were conducted; in Tokyo, 
Japan, where rainfall events were studied using 
multifractals (Pathirana et al., 2001); and in France, 
where the effect of considering zero values in rainfall 
series was analyzed through fractal geometry (Gires 
et al., 2012), which according to Verrier et al. (2010) 
influences the results. 

Another important application was conducted 
to identify the scalar behavior of time series using 
a method called multifractal detrended fluctuation 
analysis, which helped to understand fractals and 
provided a statistic behavior approach (Ge and 
Yee, 2013); furthermore, multifractal analysis has 
been found to be a useful tool to establish intensity 
fluctuations of atmospheric data (Arizabalo et al., 
2015). A rain field research, using a spectral analysis 
in Iowa, was performed as well (Pavlopuolos and 
Krajewski, 2014). Finally, it is important to mention 
the annual rainfall events in Spain as an important 
breakthrough: in 10 stations which were studied 
from 1901-1989, the fractality of rainfall was proven 
with a fractal dimension of 1.32, a very similar value 
to macrometheorological records (Oñate, 1997). 
It can be said that fractals’ impact on science has 
been possible due to the Hurst theory. Moreover, it 
can be concluded that fractals allow the creation of 
complex structures and, in particular for hydrology, 
the ability to model rainfall events (Lovejoy and 
Mandelbrot, 1984).

2. Data and methods
The area of study is Baja California, Mexico, com-
prised between the coordinates 32.713º N, 114.723º W; 
32.527º N, 117.141º W; 28.095º N, 115.364º W; and 
27.994 N, 112.799º W. This region in the northwest 
of Mexico possesses high climatological and phys-
iographical variability, so we required using maps 

that allowed us to visualize both climatological and 
physiographical characteristics. For the purpose 
of this study, daily rainfall data from 92 climate 
stations were used. A map of climate distribution 
according to the Koppen classification (Köppen, 
1918) was obtained from the Instituto Nacional 
de Estadística y Geografía (National Institute of 
Statistics and Geography, INEGI); furthermore, 
the studied climate stations were georeferenced on 
the map (Fig. 1).

2.1 Spline interpolation method
The maps for average annual rainfall (Fig. 2a), aver-
age daily temperature (Fig. 2b), and altitude above 
sea level (Fig. 2c) were obtained through a spatial 
interpolation using the spline method based on the 
climatological information provided by each sta-
tion. Among several methods that were considered, 
such as the inverse distancing weighing method, 
the kriging method, and the natural neighbor inter-
polation method, the spline interpolation method 
was selected as the best. The result, although not 
shown in this paper, proves that for this case, the 
spline method presents the smallest mean square 
error. The average annual rainfall (Fig. 2a) was 
obtained by calculating the average annual value of 
rainfall for each station, and then proceeding to a 
spatial interpolation. The average daily temperature 
map (Fig. 2b) and the altitude above sea level maps 
(Fig. 2c) were obtained in a similar way by interpo-
lating their respective variables. 

According to Hazenwinkel (2001), spline is a 
form of interpolation where the interpolator is a 
special type of polynomial called spline. This is very 
useful since the interpolation error can be smaller us-
ing this method. Also, this method is based on putting 
a curve through a determined number of points. The 
mathematical approach of this model is based on n + 1 
nodes (xi, yi) i = 0,1,…,n and interpolate between 
pairs of nodes (xi–1, yi–1) and (xi, yi) with polynomials 
y = qi(x), i = 1,2,…,n where the curvature of the curve

Y = f (x) (1)

Is: 

2 3/2

´́
(1 ´ )

yk
y

=
+

 (2)
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Climatological distribution of Baja California, Mexico
116º0'0''W

Köppen climatological distribution
BSks: Cold semiarid Mediterranean climate. Rainfall during winters
BShs: Hot semi-arid climate. Rainfall during winters
BSok(x'): Cold semi-arid. Rainfall all year.
BW(h')(x'): Hot and arid climate, sunny and dry. Rainfall all year.
BWh(x'): Semi-calid and arid climate. Rainfall all year.
BWhs: Hot and arid climate, mild desert. Rainfall during winters.
BWk(x'): Cold and arid desert. Rainfall all year.
BWks: Cold and arid climate. Rainfall during winters.
Cb's: Mediterranean climate with dry summers. Rainfall during winters.
Cs: Mediterranean climate. Rainfall during winters.
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Fig 1. Climatological distribution of Baja California, Mexico, according to the Köppen classification. 
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Climatological and physiographic variables in Baja California, Mexico
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Fig. 2. Climatological and physiographic variables in Baja California. (a) Average annual rainfall (mm/yr). 
(b) Average annual temperature (ºC). (c) Altitude above sea level (m).



205Hurst exponent variability of rainfall series in a semiarid region in Mexico

Therefore, the spline will minimize the bend, so 
y’ as well as y” will be continuous in the nodes:

1´ ( ) ´ ( )i i i iq x q x+=  (3)

1´́ ( ) ´́ ( )i i i iq x q x+=  (4)

for all values of i, 1 ≤ i ≤ n –1.
The next step is the fractal analysis of the data. 

To do so, 92 climatological stations with 30 yrs 
of daily rainfall data records were analyzed. In 
order to obtain the previously mentioned data, the 
Rapid Climatological Information Extractor (ERIC 
III) software and CLImate COMputing project 
(CLICOM), both of which include daily national 
climate data.

For the purpose of this research, the use of three 
different methods for calculating the Hurst expo-
nent of each time series is required in order to get 
an average value that reflects a higher precision and 
reliability in the results. These three methods were 
the rescaled range analysis (R/S), the box counting 
method, and the multifractal detrended fluctuation 
analysis (MF-DFA) algorithm.

A determinant factor when selecting the method 
to apply was the number of available input param-
eters, meaning that the model would be more com-
plex if it had a greater number of parameters. The 
considered methods in the present study are easy to 
apply and have been widely referenced in the recent 
literature (López-Lambraño et al., 2017). Also, the 
methods we applied allow detecting non-periodic 
cycles and long term correlations in random pro-
cesses; furthermore, they are not influenced by the 
occurrence of probable lineal tendencies presented 
in series, and they manage to detect long-range 
correlations in non-stationary time series just as 
the MF-DFA does.

By employing the Benoit software, Hurst expo-
nent values were obtained for both the R/S and the 
box counting methods. The computational algorithm 
for MF-DFA was programmed following the consid-
erations established by Movahed et al. (2006).

2.2 Rescaled range method (R/S)
An alternative approach to the correlation quantifica-
tion in a time series analysis was developed by Hurst 

(1951, 1956), who spent his entire life studying the 
hydrology of the Nile river, particularly on droughts 
and floods. Hurst considered the river’s flow as a 
time series and determined storage limits. Based on 
his studies, he empirically introduced the concept of 
R/S. Considering a time series, the summation of time 
series relative to their average value is:

1 1

( ) ( )
n n

n i i NN
ii

y y y y ny
= =

= − = −∑ ∑  (5)

where the range is defined by

max min( ) ( )N n nR y y= −  (6)

with

N NS = σ  (7)

where y–N and σN are the mean and standard deviations 
of all the N values in the time series yn. From the 
previous equations, a value (RN/SN) is obtained for 
the time series yn. We substitute ᴛ by N in equations 
5 to 7. The Hurst exponent (Hu), is obtained as: 

2

Hu

av

R
S
τ

τ

⎛ ⎞ τ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (8)

The rescaled range R/S (w) is defined as: 

( )/ ( )
( )

R wR S w
S w

=  (9)

where w is the window width and the symbols  
represent the average values of a number of values 
of R(w). The foundation of the method is that, based 
on the self-affinity, it can be expected that

/ ( ) UHR S w w=  (10)

In practice, for a determined value of w, a time 
series is subdivided by a number of intervals of 
width w, then R(w) and S(w) are calculated for each 
one, and R/S(w) as the average ratio R(w)/S(w). This 
procedure is repeated for a determined number of 
window widths, and the logarithms of R/S(w) are 
plotted against the logarithms of w. If the set has 
self-affinity, then the plot will follow a straight line 
whose slope is equal to the Hurst exponent Hu. The 
fractal dimension of the set can be calculated from 
the Hurst exponent-fractal dimension relation:
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2rs uD H= −  (11)

where Drs denotes the fractal dimension calculated 
by the rescaled range method.

2.3 Box counting method
According to Peñate et. al. (2013), the box counting 
method is based on dividing the space of observa-
tion (the time interval T) into n non-overlapping 
segments of characteristic size s, so that s = T/n 
for n = 2,3,4,…, and computing the number N(s) 
of intervals of length s occupied by events. If the 
distribution of events has a fractal structure, then the 
relationship N(s) = CsD prevails. The fractal or box 
counting dimension Df is estimated from the slope 
D of the regression line of log(N(s)) on log(s). This 
parameter Df = |D| describes the strength of the events 
and can measure the phenomenon’s nature, since it 
quantifies the scale-invariant clustering of the time 
series. Clustering increases when D approaches 0. 
Hence, the smallest fractal dimensions correspond 
to clusters formed by events that occur sparsely. If D 
is close to 1, the events are randomly spaced in time. 
To sum up, the box counting method uses boxes to 
cover an object in order to find the fractal dimension. 
The signal is partitioned into boxes of various sizes 
and the amount of non-empty squares is counted. A 
log-log plot of the number of boxes vs. the size of 
the boxes is done. The box dimension is defined by 
the exponent Db in the relation 

1( )
bDN s

s
≡  (12)

where N(s) is the number of boxes with linear size 
s needed to cover the set of points distributed on a 
bidimensional plane. A number of boxes, proportional 
to a 1/s, are needed to cover the set of points on a 
line; proportional to 1/s2, to cover a set of points on 
a plane, etc. 

In theory, for each box size, the grid should be 
configured in such a way that the minimum number 
of boxes is occupied. This can be achieved by rotat-
ing the grid for each box size in 90º and plotting the 
minimum value of N(d).

2.4	Multifractal	detrended	fluctuation	analysis
According to Yuval and Broday (2010), Movahed 
et al. (2006) and Kantelhardt et al. (2002), the 

modified multifractal DFA (MF-DFA) procedure con-
sists of five steps. Suppose that xk is a series of length 
N, and that this series is of compact support, i.e., xk 
= 0, only for an insignificant fraction of the values.

Step 1. Determination of the profile:

1

( ) ,
i

k
k

Y i x x         i=1,...,N.
=

≡ ⎡ − ⎤⎣ ⎦∑  (13)

Subtraction of the mean x  is not compulsory, 
since it would be eliminated by the later detrending 
in the third step. 

Step 2. Division of the profile Y(i) into Ns = int(N/s) 
non-overlapping segments of equal lengths s. Since 
the length N of the series is often not a multiple of 
the considered timescale s, a short part at the end of 
the profile may remain. In order to disregard this part 
of the series, the same procedure is repeated starting 
from the opposite end. Thereby, 2Ns segments are 
obtained altogether.

Step 3. Calculation of the local trend for each of 
the 2Ns segments by a least square fit of the series. 
Then the variance should be determined: 

( ){ }22

1

1( , ) 1 ( )
s

v
i

F s v Y v s i y i
s =

≡ − + −⎡ ⎤⎣ ⎦∑  (14)

for each segment v, v = 1,…, Ns, and:

( ){ }22

1

1 )(),(
s

s v
i

F s v Y N v N s i y i
s =

≡ − − + −⎡ ⎤⎣ ⎦∑  (15)

for v = Ns + 1,…,2Ns. Here yv(i) is the fitting polyno-
mial in segment v. Linear, quadratic, cubic or higher 
order polynomials can be used in the fitting proce-
dure. Since the detrending of the time series is done 
by the subtraction of the polynomial fits from the 
profile, different order DFA differ in their capability 
of eliminating trends in the series.

Step 4. Average over all segments to obtain the 
qth-order fluctuation function, defined as

1//22
2

1

1( ) ( , )
2

S
qqN

q
vS

F s F s v
N =

⎧ ⎫⎪ ⎪⎡ ⎤≡ ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑  (16)

where, in general, the index variable q can take any 
real value except zero. For q = 2, the standard DFA 
procedure is retrieved. Generally, we are interested 
in how the generalized q-dependent fluctuation 
functions Fq(s) depend on timescale s for different 
values of q. Hence, we must repeat steps 2, 3 and 4 
for several timescales s. It is apparent that Fq(s) will 
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increase while s increases. Of course Fq(s) depends 
on the DFA order m. By construction, Fq(s) is only 
defined for s ≥ m + 2.

Step 5. Determination of the scaling behavior of 
the fluctuation functions by analyzing log-log plots 
of Fq(s) versus s for each value of q. If the series xi 
are correlated by the long-range power-law, Fq(s) 
increases, for large values of s, as a power law: 

( )( ) h q
qF s s:  (17)

In general, the exponent h(q) may depend on q. 
The exponent h(2) is identical to the well-known 
Hurst exponent (Hu). 

A decimal fraction—as fractal dimension—allows 
describing fractal geometry as well as the heteroge-
neity of irregular sets, which enables us to record any 
lost data if traditional geometry representations were 
applied. A relationship between the fractal dimension 
and the Hurst coefficient for the used fractal meth-
ods is defined by 2H + 1 = 5 – 2Drs. If we solve the 
equation for Drs we obtain Eq, (11). This idea estab-
lishes a robust analysis, since long-term persistence 
conditions can be assessed, non-periodic cycles can 
be detected, and long-term random processes can be 
established. When we encounter a fractal dimension 
which is close to the unit, we can confirm highly 
persistent series and a limited variation.

2.5 Fractal considerations
In order to estimate the Hurst exponent for the pro-
posed time series, the following considerations and 
time scales were taken into account:

1. Hurst exponent values calculated from the analy-
sis of the complete time series. In order to estimate 
the Hu value for this first consideration, the three 
methods were employed. Then the three obtained 
values were averaged. 

2. Hurst exponent values calculated from the analysis 
of a time series in periods of 25 yrs. In this mat-
ter we followed the same procedure mentioned 
above. However, the time series was partitioned 
into two periods of 25 yrs. 

3. Hurst exponent values calculated from the analysis 
of a time series in periods of 10 yrs.

4. Hurst exponent values calculated from the 
analysis of a time series in periods of 5 yrs. For 

considerations three and four, the procedure was 
done using the approach proposed in point two.

5. After obtaining the Hurst exponents from the 
climate stations, a spline interpolation was 
conducted; additionally, spatial distribution 
maps (presented below) were generated where 
the Hurst exponent values were interpolated 
based on the average results for each climate 
station. The maps for the complete time series 
(Fig. 3a) and for the time scales of 25 (Fig. 3b), 
10 (Fig. 3c), and 5 yrs (Fig. 3d) were generated.

3. Results and discussion
Maps for Koppen’s climatological classification (Fig. 1), 
annual pluvial regime (Fig. 2a), average annual tem-
perature (Fig. 2b) and meters above sea level (Fig. 2c) 
were generated from the data obtained from the 92 
climate stations with more than 30 yrs of daily rainfall 
records (Tables I and II).

Considering the classification of climates in Baja 
California (Fig. 1), it can be seen that the values of 
the Hurst exponent (Hu) may be associated with the 
climatological conditions of the analyzed region, 
meaning that climates with daily rainfall regime 
during winter (BSKS, Cs, BWks and BWhs) obtain 
lower Hu values (between 0.4 and 0.6), correspond-
ing to persistent and anti-persistent behaviors. 
Compared to other studies, our results are similar to 
those obtained by Gutiérrez et al. (2006) in Australia, 
with BWhs climate and Hu values between 0.4 and 
0.56; however, they differ from the results obtained 
by Yuval and Broday (2010) in Israel with BWhs 
and Cs climates, and Hu values of 0.7, as well as 
Zhou et al. (2005) in Botswana with climate BWhs 
and Hu values from 0.55 to 0.92. For climates with 
daily rainfall regime throughout the year–BWk(x’), 
BW(h’)(x’), BWh(x’) and BSok(x’)– the obtained 
values are ranging between 0.57 and 0.86, meaning 
that there is a persistent behavior which is similar to 
the result obtained by Rehman (2009) in Saudi Arabia 
with BWh(x’) climate and Hu values between 0.59 
and 0.71. Since climates with rainfall throughout 
the year are predominant in Baja California, most of 
the registered precipitation events show a persistent 
behavior over time. Climates that have very arid and 
semi-arid conditions with daily rainfall throughout 
the year BWh(x’) and climates with very arid and 
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Table I. Average Hurst exponent results for climatological stations in Baja California sorted by type of climate

No. Climatological station Köppen climate 
classification

Latitude Longitude Average Hurst exponent 
for daily rainfall events 
(complete time series)

2001 Agua Caliente BSks climate: cold
semiarid Mediterranean. 
Rainfall during winters

32.107 –116.454 0.51
2003 Bataquez 32.551 –115.069 0.61
2005 Boquilla de Santa Rosa l 32.022 –116.777 0.54
2008 Colonia Guerrero 30.717 –115.983 0.53
2024 El Testerazo 32.296 –116.534 0.65
2029 La Providencia 30.969 –116.157 0.57
2035 Ojos Negros 31.912 –116.265 0.5
2036 Olivares Mexicanos 32.049 –116.681 0.53
2038 Presa Rodríguez 32.447 –116.908 0.45
2055 San Telmo 30.95 –116.1 0.55
2056 San Vicente 31.329 –116.248 0.48
2060 Santa Cruz 30.879 –115.628 0.52
2064 Santo Domingo 31.633 –116.377 0.58
2068 Tijuana 32.525 –117.042 0.49
2069 Valle de las Palmas 32.37 –116.654 0.48
2071 Colonia valle de la trinidad 31.356 –115.696 0.51
2079 El Alamar 31.836 –116.204 0.54
2089 Ejido Emilio López Zamora 31.104 –116.168 0.68
2091 Ejido Ignacio López Ray 31.288 –116.264 0.55
2092 Ejido San Matías 31.331 –115.544 0.56
2096 La Calentura 31.27 –116.037 0.59
2104 El Ciprés 31.79 –116.588 0.59
2106 Maneadero 31.696 –116.573 0.57
2108 Punta Banda 31.714 –116.666 0.59
2110 Guayaquil 29.967 –115.097 0.65
2118 Valle San Rafael 31.919 –116.234 0.54
2121 El Hongo 32.516 –116.303 0.52
2124 El Carrizo II 32.491 –116.684 0.53
2152 Ejido J. Maria del Pino 32.373 –116.068 0.62
2153 Ejido Uruapan 31.619 –116.455 0.61

2012 Ejido J. María Morelos BWk(x’) climate: cold arid 
desert. Rainfall all year

28.3 –114.026 0.65
2109 Santa Rosalita 28.668 –114.237 0.69

2009 Colonia Juárez BW(h’)(x’) climate: hot
and arid, sunny and dry. 
Rainfall all year

32.299 –115.016 0.61
2011 Delta 32.353 –115.189 0.65
2016 El barril 28.302 –112.878 0.61
2020 El mayor 32.127 –115.278 0.69
2033 Mexicali (dge) 32.663 –115.468 0.57
2034 Mexicali (smn) 32.55 –115.467 0.6
2037 Presa Morelos 32.715 –114.729 0.61
2046 San Felipe 31.028 –114.835 0.66
2107 Percebú 30.886 –114.779 0.78
2139 Colonia Rodríguez 32.419 –115.036 0.73
2140 Colonia Zaragoza 32.61 –115.531 0.86
2141 Compuerta Benassini 32.57 –115.111 0.63
2145 Rancho Williams 32.624 –114.878 0.61
2154 Colonia zacatecas 32.06 –115.059 0.71
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Table I. Average Hurst exponent results for climatological stations in Baja California sorted by type of climate

No. Climatological station Köppen climate 
classification

Latitude Longitude Average Hurst exponent 
for daily rainfall events 
(complete time series)

2002 Bahía de los Ángeles BWh(x’) climate:
semicalid and arid.
Rainfall all year

28.604 –113.556 0.65
2006 Chapala 29.488 –114.364 0.57
2059 Santa Clara 31.081 –115.286 0.58
2061 Santa Gertrudis 28.075 –113.092 0.62
2072 Presa Emilio López Zamora 31.896 –115.597 0.47
2093 Ejido Valle de la Trinidad 32.356 –115.749 0.57
2099 Rancho los Algodones 30.781 –115.175 0.74
2101 El Centinela 32.575 –115.742 0.81
2102 La Ventana 31.44 –115.054 0.71
2137 Colonia Mariana 32.259 –115.322 0.65
2146 Colonia San Pedro Mártir 31.038 –115.204 0.6
2151 Agua de Chale 30.638 –114.75 0.68
2023 El Socorro BWks climate: cold and 

arid. Rainfall during
winters

30.321 –115.821 0.59
2031 La Rumorosa 32.549 –116.046 0.6
2032 Las Escobas 30.579 –115.938 0.51
2043 San Agustín 29.938 –114.967 0.57
2063 Santa María del Mar 30.402 –115.888 0.54
2086 Ejido Jacume 32.591 –116.192 0.58
2111 Ejido Nueva Baja California 30.517 –115.931 0.62

2015 El Arco BWhs climate: hot and arid, 
semicalid. Rainfall during 
winters

28.029 –113.396 0.59
2022 El Rosario 30.059 –115.723 0.59
2027 Isla Cedros 28.135 –115.175 0.71
2039 Punta Prieta 29.158 –114.146 0.57
2040 Rancho Alegre 28.229 –113.755 0.59
2041 Nuevo Rosarito 28.634 –114.017 0.58
2044 San Borja 28.735 –113.753 0.57
2051 San Luis Baja California 29.727 –114.711 0.62
2053 San Miguel 28.583 –113.95 0.62
2058 Santa Catarina Sur 29.722 –115.13 0.54
2084 El Progreso 29.968 –115.191 0.6
2085 San Regis 28.597 –113.755 0.59
2120 Ejido México 31.072 –116.206 0.64
2144 Ensenada Blanca 28.411 –113.864 0.69

2004 Ignacio Zaragoza Cs climate: Mediterranean. 
Rainfall during winters

32.195 –116.486 0.54
2014 El Álamo 31.593 –116.054 0.52
2019 El Compadre 32.338 –116.254 0.58
2021 El Pinal 32.183 –116.292 0.55
2045 San Carlos 31.785 –116.464 0.55
2049 San Juan de Dios del Norte 32.132 –116.165 0.52
2057 Santa Catarina Norte 31.657 –115.824 0.51
2065 Santo Tomás 31.792 –116.406 0.47
2088 Ejido Heroes de la 

Independencia
31.61 –115.938 0.61

2114 Ejido Carmen Serdán 32.244 –116.584 0.62

2050 San Juan de Dios del Sur BSok(x’) climate: cold 
semiarid. Rainfall all year

30.184 –115.137 0.69
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Table II. Averaged Hurst exponent results for climatological stations in Baja California for all time scales for daily 
rainfall events

No. Climatological station Elevation 
(masl)

Average 
annual rainfall

(mm yr–1)

Average annual 
temperature (ºC)

Average Hurst exponent
for the different time scales

Complete 
time series

25
yrs

10
yrs

5
yrs

2001 Agua Caliente 400 272.76 12.68 0.51 0.6 0.66 0.68
2002 Bahía de los Ángeles 4 67.31 21.98 0.65 0.74 0.79 0.81
2003 Bataquez 23 72.49 20.02 0.61 0.74 0.78 0.82
2004 Ignacio Zaragoza 540 297.63 12.21 0.54 0.62 0.69 0.73
2005 Boquilla Santa Rosa de L. 250 264.70 13.22 0.54 0.64 0.64 0.65
2006 Chapala 660 115.16 19.59 0.57 0.7 0.71 0.75
2008 Colonia Guerrero 30 159.04 15.34 0.53 0.61 0.67 0.71
2009 Colonia Juárez 17 59.73 19.01 0.61 0.68 0.78 0.79
2011 Delta 12 46.58 19.76 0.65 0.72 0.77 0.8
2012 Ejido J. María Morelos 20 62.74 15.53 0.65 0.77 0.79 0.85
2014 El Álamo 1115 268.82 13.66 0.52 0.6 0.66 0.72
2015 El Arco 288 102.75 17.62 0.59 0.74 0.78 0.86
2016 El Barril 50 81.31 24.12 0.61 0.76 0.78 0.85
2019 El Compadre 1110 308.55 18.84 0.58 0.68 0.63 0.69
2020 El Mayor 15 56.16 17.74 0.69 0.8 0.83 0.89
2021 El Pinal 1320 453.80 9.22 0.55 0.78 0.64 0.7
2022 El Rosario 40 168.59 16.78 0.59 0.72 0.76 0.81
2023 El Socorro 26 106.09 17.11 0.59 0.79 0.8 0.84
2024 El Testerazo 380 240.58 11.72 0.65 0.72 0.76 0.76
2027 Isla Cedros 3 62.73 19.74 0.71 0.81 0.84 0.87
2029 La Providencia 40 257.25 13.93 0.57 0.72 0.73 0.78
2031 La Rumorosa 1232 135.59 14.7 0.6 0.73 0.73 0.79
2032 Las Escobas 30 134.61 15.03 0.51 0.7 0.75 0.8
2033 Mexicali (DGE) 3 73.93 18.8 0.57 0.76 0.75 0.81
2034 Mexicali (SMN) 3 73.54 20.24 0.6 0.72 0.77 0.88
2035 Ojos Negros 680 226.76 12.73 0.5 0.61 0.66 0.69
2036 Olivares Mexicanos 340 279.97 14.46 0.53 0.68 0.7 0.76
2037 Presa Morelos 40 62.43 17.83 0.61 0.66 0.74 0.82
2038 Presa Rodríguez 120 232.25 14.63 0.45 0.62 0.65 0.7
2039 Punta Prieta 325 89.93 16.47 0.57 0.74 0.76 0.84
2040 Rancho Alegre 120 120.32 15.83 0.59 0.75 0.75 0.82
2041 Nuevo Rosarito 20 110.30 16.84 0.58 0.75 0.74 0.79
2043 San Agustín 552 111.09 17.13 0.57 0.75 0.76 0.81
2044 San Borja 445 104.99 18.03 0.57 0.73 0.76 0.85
2045 San Carlos 164 263.38 15.19 0.55 0.68 0.69 0.75
2046 San Felipe 10 64.96 22.5 0.66 0.84 0.86 0.94
2049 San Juan de Dios del Norte 1280 362.93 12.09 0.52 0.58 0.61 0.65
2050 San Juan de Dios del Sur 600 120.74 16.7 0.69 0.73 0.76 0.8
2051 San Luis Baja California 480 92.75 17.82 0.62 0.81 0.83 0.89
2053 San Miguel 440 124.93 19.44 0.62 0.71 0.7 0.77
2055 San Telmo 60 192.05 13.8 0.55 0.65 0.73 0.76
2056 San Vicente 110 211.76 13.21 0.48 0.65 0.73 0.74
2057 Santa Catarina Norte 1150 248.74 14.53 0.51 0.6 0.62 0.66
2058 Santa Catarina Sur 317 137.61 16.38 0.54 0.71 0.73 0.79
2059 Santa Clara 410 128.24 18.84 0.58 0.69 0.73 0.8
2060 Santa Cruz 980 265.14 15.57 0.52 0.63 0.66 0.71
2061 Santa Gertrudis 400 105.45 18.06 0.62 0.72 0.75 0.84
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Table II. Averaged Hurst exponent results for climatological stations in Baja California for all time scales for daily 
rainfall events

No. Climatological station Elevation 
(masl)

Average 
annual rainfall

(mm yr–1)

Average annual 
temperature (ºC)

Average Hurst exponent
for the different time scales

Complete 
time series

25
yrs

10
yrs

5
yrs

2063 Santa María del Mar 28 160.65 14.95 0.54 0.71 0.73 0.79
2064 Santo Domingo 250 211.54 14.06 0.58 0.72 0.74 0.79
2065 Santo Tomás 180 262.63 16.43 0.47 0.62 0.65 0.67
2068 Tijuana 20 220.40 15.22 0.49 0.62 0.66 0.72
2069 Valle de las Palmas 280 206.94 12.74 0.48 0.63 0.69 0.72
2071 Colonia Valle de la

Trinidad 740 204.73 10.59 0.51 0.59 0.62 0.67
2072 Presa Emilio López

Zamora 43 248.41 14.58 0.47 0.64 0.66 0.69
2079 El Alamar 710 264.09 12.8 0.54 0.63 0.68 0.69
2084 El Progreso 517 135.61 17.64 0.6 0.73 0.76 0.83
2085 San Regis 495 132.94 17.97 0.59 0.73 0.73 0.78
2086 Ejido Jacume 860 214.49 13.24 0.58 0.67 0.72 0.74
2088 Ejido Héroes de la 

Independencia 1000 263.63 14.08 0.61 0.71 0.72 0.75
2089 Ejido Emilio López

Zamora 180 187.23 14 0.68 0.75 0.75 0.78
2091 Ejido Ignacio López Ray 170 269.95 11.88 0.55 0.67 0.69 0.74
2092 Ejido San Matías 968 214.29 15.95 0.56 0.63 0.67 0.73
2093 Ejido Valle de la Trinidad 780 231.19 11.6 0.57 0.71 0.74 0.79
2096 La Calentura 210 209.38 14.27 0.59 0.69 0.72 0.77
2099 Rancho los Algodones 460 72.87 19.22 0.74 0.78 0.8 0.87
2101 El Centinela 50 46.13 20.7 0.81 0.9 0.88 0.93
2102 La Ventana 16 36.33 21.3 0.71 0.88 0.88 0.92
2104 El Ciprés 8 202.84 15.25 0.59 0.7 0.72 0.74
2106 Maneadero 50 202.03 15.28 0.57 0.69 0.73 0.73
2107 Percebú 4 44.09 19.12 0.78 0.87 0.9 0.92
2108 Punta Banda 15 260.61 15.13 0.59 0.7 0.72 0.76
2109 Santa Rosalita 8 136.02 16.64 0.69 0.78 0.82 0.87
2110 Guayaquil 530 123.51 17 0.65 0.8 0.77 0.72
2111 Ejido Nueva Baja California 17 139.68 14.13 0.62 0.72 0.74 0.77
2114 Ejido Carmen Serdán 560 234.56 11.57 0.62 0.72 0.74 0.77
2118 Valle San Rafael 721 218.41 12.45 0.54 0.66 0.69 0.71
2120 Ejido México 75 176.97 13.61 0.64 0.71 0.75 0.78
2121 El Hongo 960 291.13 12.55 0.52 0.61 0.63 0.67
2124 El Carrizo II 300 233.74 13.59 0.53 0.63 0.65 0.68
2137 Colonia Mariana 9 57.61 19.4 0.65 0.78 0.75 0.82
2139 Colonia Rodríguez 17 36.84 18 0.73 0.88 0.82 0.9
2140 Colonia Zaragoza 8 65.17 12.43 0.86 0.82 0.88 0.94
2141 Compuerta Benassini 20 55.11 17.9 0.63 0.8 0.75 0.84
2144 Ensenada Blanca 10 89.08 19.7 0.69 0.75 0.82 0.84
2145 Rancho Williams 29 63.06 20.57 0.61 0.77 0.73 0.83
2146 Colonia San Pedro Mártir 416 106.32 16.19 0.6 0.75 0.74 0.81
2151 Agua de Chale 5 53.13 22.59 0.68 0.83 0.82 0.88
2152 Ejido J. María del Pino 1380 273.63 8.7 0.62 0.74 0.72 0.75
2153 Ejido Uruapan 195 288.55 13.9 0.61 0.7 0.72 0.75
2154 Colonia Zacatecas 12 53.55 18.46 0.71 0.81 0.8 0.87
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warm conditions with the same rainfall regime 
BW(h’)(x’) cover the state of Baja California from 
north to south, exhibiting a high variability in the Hu 
value. The region comprising BWh(x’) and BW(h’)
(x’) climates is delimited by the geographical coordi-
nates 32.716º N, 114.719º W, and 29.943º N, 114.98º 
W, where the obtained Hu values vary from 0.62 to 
0.88, meaning there is a persistent behavior. Whereas, 
in the region limited by 29.943º N, 114.963º W, and 
28.743º N, 113.745º W, Hu values for the climates in 
consideration vary from 0.5 to 0.58, which indicates 
a tendency to random behavior. An anti-persistent 
behavior in the rainfall series can hinder the predic-
tion of a new rainfall event. The time of the year that 
does not present meaningful rainfall events can be 
the responsible for the anti-persistent behavior in the 
series (Velásquez et al., 2013).

From Table II and Figure 2c, which shows the 
variation of altitudes in Baja California, it can be 
observed that the highest altitudes, corresponding 
to the Sierra Juárez and Sierra San Pedro Mártir, are 
located in the central area. Moreover, comparing this 
map with the maps for annual precipitation (Fig. 2a) 
and average daily temperature (Fig. 2b), it is evident 
that regions in the studied area with higher altitudes 
have lower values for average daily temperatures, 
as well as greater values for average annual rainfall, 
in contrast with areas with altitudes close to the sea 
level. According to Table II, two climatological sta-
tions, Delta and San Vicente, are considered in order 
to illustrate the previously mentioned behavior. The 
Delta station is located at 12 masl, while the San 
Vicente station is located at 1150 masl. In Figure 2 it 
may be seen that the average annual rainfall regime 
is very low in Delta (46.65 mm yr–1) compared to 
San Vicente (248.7 mm yr–1). Regarding average 
daily temperature, the stations Delta and San Vicente 
reported 19.76 and 13.21 ºC, respectively. 

It can be established that in Baja California, the 
average annual rainfall has a direct relation with the 
physiographic and altitude variables. The average 
annual temperature has a proportional inverse cor-
relation with the magnitude of the average annual 
rainfall. 

Given the importance of assessing the fractal 
behavior of the daily rainfall series and analyzing 
the variability of the Hu at different time scales, an 
analysis was carried out considering the previously 

mentioned time scales, which correspond to Hu values 
resulting from the analysis of the complete time series 
for rainfall daily events, as well as for the different 
time scales (25, 10, and 5 yrs). 

Table II depicts the behavior of Hurst values for 
daily rainfall events at different time scales where 
reported. From the data analysis two main behavior 
patterns can be noticed for each of the time series 
regarding the analyzed variable: anti-persistent and 
persistent. Both of these behavior patterns will be 
discussed below. 

According to Table II, the stations Presa Rodrí-
guez, San Vicente, Tijuana, Valle de las Palmas, Presa 
Emilio López Zamora, and Santo Tomás, which are 
located in the northeast region of Baja California, 
presented the following Hu values: 0.45, 0.48, 0.49, 
0.48. 0.47 and 0.47, respectively, i.e., they are an-
ti-persistent in time. This means that rainfall events 
that take place in this region have a high probability 
of showing a positive increasing behavior, followed 
by a decreasing behavior in its record values and vice 
versa. According to Malamud and Turcotte (1999), 
an anti-persistent time series will have a stationary 
behavior in time; due to the increases and decreases 
that compensate each other, statistical moments are 
independent from the time series. Rehman (2009) es-
tablishes that, in the case of rainfall, an anti-persistent 
behavior indicates a lesser dependency in accordance 
with previously stated values. 

Nevertheless, when the rainfall series in the pre-
viously mentioned stations were analyzed in 25-yrs 
scales, the Hurst values were reported as follows: 
0.62, 0.65, 0.62, 0.63, 0.64 and 0.62, respectively. 
These values indicate a persistent behavior in time, 
which means that if the rainfall series registers a 
positive increase, it is more likely that a positive 
increase will follow. This implies that each rainfall 
event has a degree of occurrence over future events 
or in its long-term behavioral memory.

From the analysis of the previously mentioned 
stations for 10- and 5-yr increases in the Hurst values, 
considering this are noticeable and show a persistent 
behavior through time, it can be found that the Hu 
increases while establishing shorter time scales.

Anti-persistent series kept a positive increase 
tendency with minor negative increases; thus, while 
considering shorter periods of time (25, 10, 5 yrs), 
it is reasonable that series start to behave in a more 
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persistent manner. This is due to the fact that the 
shorter the considered time scale, the greater the 
possibility to analyze a time period with a predom-
inant behavior (which in in this case is persistent); 
this could explain the increase in the Hurst values in 
the analyzed rainfall series.

Continuing with the analysis of the remaining 86 
stations, and considering the established time scales, 
increases in the Hurst values are noticeable with val-
ues greater than 0.5, indicating they keep a persistent 
behavior tendency. This means that rainfall series are 
not stationary and moments are dependent on the time 
scale. Persistency is an indicator that present events 
not only influence the near future but they will also 
have an impact in the long term.

A geospatialization of the Hu values obtained at 
different time scales and reported on Table III, was 
carried out to allow the study of the spatial and tem-
poral variability in Baja California (Fig. 3). 

Three areas with different behavior regarding the 
Hu can be noticed in Figure 3a: an anti-persistent area, 
a random area, and a persistent area. However, when 
a 25-yrs time scale is considered, the anti-persistent 
and indefinite areas start to decrease, as shown in 
Fig. 3b. Considering the 10- and 5-yrs time scales, 
a persistent behavior is noticeable throughout Baja 
California, as shown in Figure 3c, d. 

Figure 3 shows a persistent tendency in the time 
series of the analyzed periods; however, we were able 
to identify a gradual increase in the Hu when time 
series were segmented in periods. A possible expla-
nation for this behavior is that non-segmented time 
series take into consideration all sudden changes ex-
pressed in terms of variable increase/decrease, which 
can influence the possible presence of anti-persistent 
behavior patterns. Nonetheless, when an analysis is 
carried out in segmented time series, there is a possi-
bility that sudden changes cannot be noticed, which 
directly affects the persistence strength of the time 
series and causes a gradual increase in the Hu values; 
however, fractality prevails in the series.

Temporal behavior of rainfall time series may be 
regionalized in space in order to study its relationship 
with geographical and physiographical variables. 
Figure 4a shows that the relationship between annual 
rainfall and the Hu is fairly convincing (r = 0.63); 
also, according to the slope of the fitting line, this has 
an inverse relationship, and in Figure 4b, the Hu of 

the time series is also moderately influenced by the 
annual temperature (r = 0.43). The altitude effect on 
the Hu is weak (r = 0.31), which is shown in Figure 4c. 
It might be expected that the altitude effect on the 

Ta
bl

e 
II

I. 
C

or
re

la
tio

n 
m

at
rix

 a
m

on
g 

ge
og

ra
ph

ic
 c

oo
rd

in
at

es
 a

nd
 fr

ac
ta

l s
ta

tis
tic

s.

Lo
ng

itu
de

La
tit

ud
e

A
lti

tu
de

D
rs

H
u

Av
er

ag
e 

an
nu

al
 

ra
in

fa
ll 

(m
m

 y
r–1

)
M

ed
ia

n
SD

Te
m

pe
ra

tu
re

Lo
ng

itu
de

1
–0

.7
6

–0
.2

0
–0

.4
0

0.
40

–0
.6

8
–0

.6
8

–0
.5

9
0.

66
La

tit
ud

e
1

0.
15

0.
11

–0
.1

1
0.

32
0.

34
0.

21
–0

.3
5

A
lti

tu
de

1
0.

31
–0

.3
1

0.
60

0.
59

0.
55

–0
.4

7
D

rs
1

–1
.0

0
0.

62
0.

66
0.

46
–0

.4
3

H
u

1
–0

.6
3

–0
.6

6
–0

.4
6

0.
43

Av
er

ag
e 

an
nu

al
 ra

in
fa

ll 
(m

m
 y

r–1
)

1
0.

99
0.

92
–0

.7
7

M
ed

ia
n

1
0.

87
–0

.7
6

SD
1.

0
–0

.7
5

Te
m

pe
ra

tu
re

1
D

rs
: f

ra
ct

al
 d

im
en

si
on

; H
u: 

H
ur

st
 e

xp
on

en
t; 

SD
: s

ta
nd

ar
d 

de
vi

at
io

n.



215Hurst exponent variability of rainfall series in a semiarid region in Mexico

dynamics of rainfall and temperature series would be 
especially strong. Actually, in Figure 4d the results 
show that there is a moderate relationship between 
temperature and altitude (r = –0.47) and in Figure 4e 
the annual rainfall also seems to be associated with 
altitude (r = 0.60). Another important parameter 
that determines the structural pattern in rainfall time 
series is the number of rainy days. In this research, 

we found a strong correlation (r = 0.81) between 
the number of rainy days and the Hu (Fig. 4f); these 
results are similar to those found by Velásquez et al. 
(2013). 

It should be noted that for the semiarid to arid 
conditions of Baja California, we established a cor-
relation matrix among geographic coordinates and 
fractal statistics, which is shown in Table III. High 

Fig. 4. Correlation analysis between the following variables: (a) Hu (complete time series) and aver-
age annual rainfall; (b) Hu (complete time series) and average annual temperature; (c) Hu (complete 
time series) and altitude (Z); (d) altitude (Z) and average annual temperature; (e) Elevation (Z) and 
average annual rainfall; (f) Hu and days of precipitation. 

1.00
R= –0.63

a)

0.90

0.80

0.70

0.60

0.50

0.40
0.00 100.00

H
ur

st

200.00 300.00 400.00 500.00

Annual rainfall (mm/year)

1.00
R= 0.43

b)

0.90

0.80

0.70

0.60

0.50

0.40
0.00 10.00

H
ur

st

15.00 20.00 25.00

temperature (ºC)

1600
R= –0.47

d)

1400

1200

1000

800

600

400

0.200

0
0.00 10.00

A
lti

tu
de

 (m
)

15.00 20.00 25.00

temperature (ºC)

1.00
R= –0.31

c)

0.90

0.80

0.70

0.60

0.50

0.40
0 500

H
ur

st

1000 1500

Altitude (m)

Annual rainfall (mm/year)

1600
R= 0.57

e)

1400

1000

1200

800

600

200

400

0.40
0

A
lti

tu
de

 (m
)

400300200100 500

Number of rainy days

1.00
R= -0.81

f)

0.90

0.60

0.80
0.70

0.50
0.40

0.10
0.20
0.30

0.00
0

A
lti

tu
de

 (m
)

2500 300020001000 1500500 3500



216 A. A. López-Lambraño et. al.

correlations between fractal statistics mean a great in-
terdependence, whereas these significant correlations 
between geographical coordinates and descriptive 
statistics suggest the strong influence of orography 
on rainfall (Magallanes et al. 2015), which is shown 
in Table III, where the relationship between Hu values 
and longitude is a significant positive correlation (r = 
0.40) and a significant negative correlation (r = –0.40) 
between the fractal dimension and longitude. The 
present findings strongly suggest that the Drs values 
of precipitation decrease as longitude increases, and 
Hu increases as longitude does. The output tells us 
that a very weak relationship between Hurst exponent 
values and latitude is –0.11 for this data set. The re-
lationship is negative. As latitude increases, the Hu 
value rate decreases.

4. Conclusions
Even though three methods (MDFA, box counting, 
and R/S) were utilized to calculate the Hu for each 
analyzed scale time, it is difficult to determine which 
of these methods is the most efficient; however, the 
R/S method has been reported as the most used one. 

Registered daily rainfall series throughout Baja 
California can be characterized by using the Hu, 
having as a result a tendency to present a persistent 
behavior. Thus, when a positive increase is registered, 
it is more likely that the following increase will be 
positive as well. 

The Hurst exponents obtained from the rainfall 
time series are a measure to show a degree of depen-
dency to the series, and can also explain the spatial and 
temporal behavior of rainfall in Baja California. This 
study suggests that rainfall series which took place 
in climates such as BWk(x’), BW(h’)(x’), BWh(x’), 
and BSok(x’), presented a persistent behavior in time, 
which is due to Hu values fluctuating between 0.57 
and 0.86. On the other hand, rainfall series which took 
place in climates such as BSks, Cs, BWks, and BWhs, 
showed a persistent and anti-persistent behavior, which 
is due to Hu values ranging from 0.4 to 0.6.

The existence of a dependency between rainfall 
and temperature as climate variables in relation to al-
titude can be noticed. Regions with altitudes close to 
the sea level tend to register the highest temperature 
values, as well as the lowest average annual rainfall. 
It can be established that a proportional inverse 

relation between altitude and temperature exists, as 
well as a proportional direct relation between altitude 
and rainfall. 

Taking into account the Hu used in this research, a 
proportional inverse relation with altitude and rainfall 
can be noticed; in regions that are close to the sea 
level, high values can be reported; on the other hand, 
in regions where the average annual rainfall is high 
the analysis showed low values for the Hu. It can be 
confirmed that the Hu depends on the climatological 
conditions and physiographic characteristics of a 
specific region. 

It can be found that the series persistency is 
stronger when shorter time scales (25, 10, 5 yrs in 
this research) are considered. The greater the num-
ber of time scales considered for analyzing rainfall 
series, the greater the possibility of understanding its 
behavior and tendencies. 

By geospatializing the Hu of the rainfall series, 
its variability regarding different climates in Baja 
California was traced and made visible. Besides, it 
provided data for the rainfall spatial-temporal behav-
ior on this region. 

Finally, it can be confirmed that fractal theory pro-
vides information that allows analyzing the occurrence 
of a climatological variable, such as rainfall (in the 
case of this research). This provides a useful tool to 
study and mitigate climate change in a given region. 

It is recommended to use the multifractal theory 
in future researches, having as main purpose the 
opportunity to study the scale invariability from a 
mathematical perspective and to describe the cli-
matic variable behavior with potential laws which 
are characterized by its exponents. 

Multifractal theory allows describing precipitation 
behavior through potential laws that are characterized 
by their own exponents. It also constitutes a valid tool 
for the conceptualization of possible precipitation 
changes over time.
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