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RESUMEN

A finales de la década de 1980, las partículas y el bióxido de azufre (SO2) fueron los principales contaminantes 
atmosféricos en la Zona Metropolitana de la Ciudad de México (ZMCM). Para reducir esta problemática, 
el combustóleo fue sustituido por gas natural en las centrales termoeléctricas localizadas dentro de la Ciu-
dad de México. Actualmente, los niveles de SO2 no exceden la norma de calidad del aire para este gas; sin 
embargo, se presenta lluvia ácida con una alta contribución de sulfatos (SO4

2–). En este estudio, se analizó 
la variación espacial y temporal de la composición química de la lluvia en la Ciudad de México de 2003 a 
2014. Se colectaron muestras semanales en las que se analizaron los iones principales (Na+, NH4

+, K+, Mg2+, 
Ca2+, SO4

2–, NO3
– y Cl–), pH y conductividad eléctrica (CE) en 16 estaciones de muestreo ubicadas en la 

ZMCM. El pH disminuyó de norte a sur, con el valor anual más bajo del promedio ponderado por volumen 
(PPV) de 4.16 en 2006. Las concentraciones ponderadas anuales de los iones fueron, en orden decreciente: 
NH4

+, SO4
2–, NO3

– y Ca2+ durante todo el periodo de estudio en casi todos los sitios de muestreo. Los valores 
máximos de depósito atmosférico húmedo (kg/ha) se encontraron en el área oeste de la zona de estudio, siendo 
los más altos los registrados en 2007. Los mayores niveles de depósito húmedo encontrados fueron de 24 y 
20 kg ha–1 para SO4

2– y NO3
–, respectivamente, y fueron similares a los niveles registrados en EUA en 2013 

y 2014. Considerando que las fuentes de emisión externas juegan un papel decisivo en la lluvia ácida dentro 
de la Ciudad de México, es necesario establecer estrategias para la reducción de emisiones de precursores 
de lluvia ácida en las fuentes localizadas viento arriba.

ABSTRACT

At the end of the 1980´s particulates and sulfur dioxide (SO2) were the main atmospheric pollutants in the 
Mexico City Metropolitan Zone (MCMZ). To reduce emissions, fuel oil was replaced by natural gas at power 
plants located inside Mexico City. Currently, SO2 levels do not exceed its air quality standard; however, acid 
rain is present with a high contribution of sulfate (SO4

2–). In this study, spatial and temporal variations in 
the chemical composition of rain in Mexico City between 2003 and 2014 were analyzed. Major ions (Na+, 
NH4

+, K+, Mg2+, Ca2+, SO4
2–, NO3

– and Cl–), pH, and electrical conductivity (EC) were analyzed weekly 
at 16 sampling stations located in the MCMZ. The pH decreased from north to south, with the lowest an-
nual volume weighted mean (VWM) of 4.16 in 2006. Annual ion concentrations were, in decreasing order: 
NH4

+, SO4
2 –, NO3

– and Ca2+ for the entire study period at most of the sampling sites. The highest values 
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for wet atmospheric deposition (kg/ha) were found in the Western area and were the maximum in 2007. Wet 
deposition had major levels for SO4

2– and NO3
– of 24 and 20 kg/ha, respectively, and were similar to the 

levels registered in the USA in 2013 and 2014. Considering that external emission sources play a decisive 
role in acid rain within the City, it is necessary to establish strategies for the emission reductions of acid rain 
precursors from upwind sources.

Keywords: Mexico City Metropolitan Zone, wet deposition, acid rain, rain chemical composition, acid rain 
precursors.

1.	 Introduction
The Mexico City Metropolitan Zone (MCMZ) is 
generally accepted as having critical levels of air 
pollution. In the 1980s, particulates and sulfur dioxide 
(SO2) were identified as the main atmospheric pol-
lutants, and an effort to reduce emissions was made 
by changing from fuel oil to natural gas at power 
plants. This resulted in a reduction in the levels of 
both target pollutants; however, it was accompanied 
by an increase in nitrogen oxides (NOx) due to lack 
of control equipment (Aldana et al., 1999; Bravo et 
al., 2012).

The air quality monitoring network of the city 
(which measures particulates, NOx, SO2, CO, and 
O3) consists of 42 stations and has been operational 
since 1988. In the case of SO2, this network has 
been useful in evaluating the effectiveness of the 
switch from fuel oil to natural gas. Although the 
concentration of acid rain precursors (SO2 and NOx) 
has declined in recent decades (Fig. 1) (SIMAT, 
2015), acid rain is an outgoing problem in the area 
(Alarcón et al., 2011).

This paper analyzes the temporal and spatial 
variation of the chemical composition (i.e., pH, 
electrical conductivity, sodium [Na+], ammoni-
um [NH4

+], potassium [K+], magnesium [Mg2+], 
calcium [Ca2+], sulfate [SO4

2–], nitrate [NO3
–] 

and chloride [Cl–]) of wet atmospheric deposition 
during the period 2003-2014. The objective was 
to identify areas of greater importance, as well as 
the trends and behaviors of critical parameters to 
recommend prevention, minimization, and control 
strategies.

The Environmental Pollution Section of the Cen-
ter for Atmospheric Sciences at the National Auton-
omous University of Mexico (SCA-CCA-UNAM, 
Spanish acronym) has maintained a program for 
sampling and analysis of atmospheric deposition in 
several regions of Mexico (Heckel, 2007; Sosa et al., 

2017). Since 2002, the SCA-CCA-UNAM, together 
with the Atmospheric Monitoring System (SIMAT, 
Spanish acronym) of Mexico City, has continuously 
monitored wet deposition in this area.

2.	 Methodology
2.1 Description of the study area
The MCMZ is located in the southwestern corner of 
the Mexico basin at an altitude of 2240 masl. The 
basin’s topographical situation does not allow 
the free circulation of winds and good ventilation, 
and it presents diurnal patterns of wind blowing 
from the northwest and the northeast. The industrial 
area of the MCMZ comprises more than 30% of the 
national industry and is located in the northern sector 
of the study area.

There are important sources of acid rain precursors 
outside of the MCMZ: (1) the Popocatépetl, an active 
volcano (Delgado et al., 2001; Grutter et al., 2008) 
located 80.7 km to the east of the city, and (2) the 
Tula-Vito-Apasco industrial corridor, a critical zone 
containing power plants, refineries, and petrochemical 
and Portland cement industries, among others, located 
to the north of the study area. For example, the power 
plant in the industrial corridor utilized fuel oil until 
2014, with a sulfur content of 4%, and estimated SO2 
emissions of 113 000 t per year. Several options for 
controlling SO2 emissions have been recommended 
to the Mexican electric sector, such as scrubbing 
technologies, fuel oil hydro treating, desulphurization, 
and alternate fuel sources (Islas and Grande, 2007).

2.2 Location of atmospheric deposition sampling 
stations
The atmospheric deposition network in Mexico City 
consists of 16 sampling stations that are spatially 
distributed as shown in Fig. 2. These sites comply 
with the USEPA criteria (US-EPA, 1994).
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2.3 Sampling and analysis
The sampling and analysis program implemented by 
the SCA-CCA-UNAM consists of quality assurance 
and a quality control plans that yield reliable data 
complying with recommendations from the US-
EPA (1994), the National Atmospheric Deposition 
Program (NADP, 2014), and the Global Atmosphere 
Watch Precipitation Chemistry Program of the World 
Meteorological Organization (WMO, 2004). The 
sampling and analysis program was adopted based 

on the SCA-CCA-UNAM experience (Bravo et al., 
1991, 2003, 2006) and recommendations from in-
stitutions, as well as recognized researchers (Krupa, 
2002; US-EPA, 1991).

Wet deposition samples were collected weekly 
using automatic wet/dry deposition collectors (En-
vironmental Tisch Model TE-78-100 and Graseby 
T-100) during the rainy season in Mexico City (May 
to November). Each sample was collected into a stan-
dard high-density polyethylene bucket, transferred to a 
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Fig. 1. Annual concentration boxplots of SO2 and NOx from 1988 to 2014 based on hourly 
concentrations from monitoring stations. The average, minimum, and maximum values are 
presented for each year, as well as the 10th and 90th percentiles (SIMAT, 2015).
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polypropylene bottle (Nalgene®), and refrigerated at 
4 ºC for preservation (NADP, 2017). Samples were 
sent to the SCA-CCA-UNAM laboratory for chemical 
analysis.

Samples greater than 1.0 mm were analyzed. 
Rain samples were filtered through a 0.22 µm 
Millipore membrane, and all materials were washed 
with deionized water before chemical analysis. The 
pH was measured within 24 h of the arrival to the 
laboratory using a pH meter (Corning 315, Methrom 
827, and Orion 960). SO4

2–, NO3
–, Cl–, Ca2+, Mg2+, 

K+, NH4
+, and Na+ were analyzed by high perfor-

mance liquid chromatography (HPLC); anions were 
analyzed with a Perkin Elmer equipped with an 
isocratic LC pump 250 and conductivity detector 
and a Hamilton PRPX-100 analytical anion column; 
and cations were analyzed with a Waters liquid 
chromatograph equipped with an isocratic Waters 
510 pump and a conductivity detector (Waters 432) 
using a Waters analytical cationic column. High-pu-
rity ion standards were used for calibration. This 
identification and quantification of ions was based 
on the US-EPA Method 300.1 (Hautman et al., 1997).

Alkalinity (HCO3
−) was determined using the 

Gran titration method with pH meters (Stumm and 

Morgan, 1970). EC was determined with YSI 32 and 
HORIBA D-424 conductivity instruments.

The detection limits in µeq L–1 were: 2.29, 
1.77, 2.26, 2.50, 3.29, 1.79, 2.22, and 1.74 for 
SO4

2–, NO3
–, Cl–, Ca2+, Mg2+, K+, NH4

+, and Na+, 
respectively.

The quality of analysis of each sample was 
checked for ion balance and specific conductance 
calculations. Additionally, field blanks were analyzed 
to guarantee the cleanness of the sampling material, 
and replicates were analyzed routinely to assure 
appropriate precision and accuracy.

3.	 Results and discussion
The analysis of wet deposition in Mexico City for 12 
consecutive years (2003-2014) at 16 stations resulted 
in 3867 total samples.

3.1 Spatial distribution of pH, SO4
2– and NO3

–

Box plots showing volume weighted means (VWMs) 
of the annual pH for different areas of the MCMZ 
(northeast [NE], northwest [NW], downtown [DT], 
southeast [SE], and southwest [SW]) are presented 
in Figure 3.
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Fig. 2. Spatial distribution of the atmospheric deposition network in the MCMZ.
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The pH values of collected samples at stations in 
the south were more acidic than samples collected 
in the north. This result is in line with meteorologi-
cal conditions (i.e., prevailing winds blowing from 
the north to the south), as well as emission sources 
located in the north sector.

Box plots showing VWMs of the annual SO4
2– 

and NO3
– concentrations are presented in Figure 4.

SO4
2– wet deposition was higher in the south-

west, which was likely due to high precipitation 
in this area. This region also had more acidic pH 
values.
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Fig. 4. Box plots showing the wet deposition of SO4
2– and NO3

– (kg ha–1) for 16 stations in the MCMZ.
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To visualize the spatial distribution of pH, SO4
2–, 

and NO3
– levels, maps were made using interpolation 

of data from each of the 16 sampling stations showing 
the VWMs of pH, SO4

2–, and NO3
– depositions (Figs. 5, 

6 and 7, respectively). To observe the temporal vari-
ation of the parameters, maps are presented for the 
study period 2003-2014.

SO4
2– and NO3

– wet deposition in Mexico City 
ranged from 5-40 kg ha–1 during the study period, 
with the highest level occurring in 2007. For the 
last two years (2013 and 2014) the values were 30 
and 27 kg ha–1 for SO4

2–, respectively, which are 
similar to the level registered in the USA (24 kg 
ha–1); for NO3

–, the values were 22 and 25 kg/ha, 

Fig. 5. Spatial and temporal variation of pH in the MCMZ from 2003 to 2014.
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comparable to levels in the USA (20 kg ha–1) (NADP, 
2018).

The SO4
2–/NO3

– ratio has been used as an indica-
tor of the effectiveness of emission reductions on acid 
rain precursors in the USA (Lehmann et al., 2015); for 
this reason, the ratio was applied for Mexico City, re-
sulting in an average of 1.5. This result indicates there 
is a major contribution of SO4

2– to rain acidification.

3.2 Temporal variation of pH at four representative 
sampling stations.
To observe the trends of pH from 2003 to 2014 in the 
MCMZ, four representative stations were selected 
for further evaluation: Ajusco (AJU), located in the 
southern area with conservation soil; Montecillos 
(MON), located in the northeast in a rural area 
with agricultural activity and high vehicular flow; 
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Fig. 6. Spatial and temporal variation of SO4
2– deposition in the MCMZ from 2003 to 2014.



64 R. Sosa-Echeverría et al.

Xalostoc (XAL), located to the north in an indus-
trial area with high vehicular influence, and Lomas 
(LOM), located in the southwest in a urban area (i.e., 
residential and commercial) with high vehicular flow 
(Fig. 8).

At the XAL station, the VWM of pH decreased 
from 2003 until 2007. Values rise slightly in 2008, 

2011, and 2014, and decreased again in 2012 and 
2013. At the MON station, pH declined every year 
from 2003 to 2014 except in 2010; values became 
acidic in 2011. Values at the LOM station were 
acidic except during 2003 and 2008; there was a 
critical VWM value of 4.16 at this station in 2006. 
At the AJU station, the pH was acidic for all years 
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Fig. 7. Spatial and temporal variation of NO3
– deposition in the MCMZ from 2003 to 2014.
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Fig. 8. pH values and volume weighted mean annual pH at four representative 
stations located in the MCMZ.
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except 2003, when the average pH was 5.66. The 
stations located in the south (AJU and LOM) had 
more acidic pH values, which was likely due to the 
meteorological conditions in the region (i.e., north 
winds).

For these samples sites, accumulated rainfall 
is presented in Figure 9. LOM and AJU presented 
higher rainfall levels. The LOM sampling site, 
located in the west of the city, showed the highest 
level in 2014.

3.3 Ionic composition
Figure 10 shows the relative abundance of major ions 
determined at the four selected stations.

Figure 10 shows that NH4
+ is the major cation in 

all sampling sites, hence the importance of paying 

attention to NH3 in vehicular emissions all over the 
city. The proportion of NH4

+ was higher in the MON 
station, likely due to agricultural activity in the area, 
as well as chemical reactions of NH3 emitted by 
mobile sources. NH3 emissions have been associated 
with traffic in different European cities (Elser et al., 
2018) and can emanate from vehicles running under 
rich air to fuel conditions, with three-way catalytic 
converters designed to reduce NOx (Fraser and Cass, 
1998).

A low contribution of NH4
+ was observed in 

samples collected in 2006 and 2013 from the LOM 
and AJU stations, which is consistent with a high 
percentage of H+ during those years at both stations. 
The proportions of H+ and Cl– are greater at AJU 
compared to other stations.



66 R. Sosa-Echeverría et al.

3.4 Ionic associations
To identify associations between ion concentrations 
in all the wet deposition samples collected at each 
station, a linear Spearman correlation was applied to 
the four chosen stations. Results for the MON station 
are presented as a representative sample (Table I). 
Group solutes associated with potential sources 
are: (1) the acidic group, which is a combination 
of H+, SO4

2–, and NO3
– primarily resulting from 

the combustion of fossil fuels; (2) the salt group, 
which is mainly an association of Na+ and Cl– from 
sea salt and/or road salt, and (3) the agriculture and 
soil group, which is a combination of base cations 
(i.e., Ca2+, Mg2+, and K+) and nitrogenous solutes 
(i.e., NO3

– and NH4
+) from fertilizers, feed lots, 

and dust particles (Loÿe-Pilot and Morelli, 1988; 
Loÿe-Pilot and Martin, 1996; Herut et al., 2000; 
Praveen et al., 2007).

Based on the four representative stations, NH4
+ 

correlates with Cl–, NO3
–, and SO4

2–, with the 
predominant salts being (NH4)2 SO4 and NH4 NO3. 
The AJU station had a higher correlation between 
H+ and Cl–, The MON station had the highest 
correlation between H+ and SO4

2–, while H+ and 
NO3

– had the highest correlation at the AJU and 
LOM stations.

3.5 pH, SO4
2– and NO3

– trends
We used a non-linear technique of an additive 
model to determine temporal variations of the most 

important parameters for acid rain (i.e., pH, SO4
2–, 

and NO3
–). A trend analysis for the selected stations 

(XAL, MON, LOM, and AJU) was used from 2003 
to 2014 (Fig. 11). The generalized additive model 
(GAM) allows smooth trends to be estimated from 
data using penalized regression splines (Wood, 2006).

The following additive model was fitted to each 
series:

yi = β0 + f1 (timei) + f2 (juliani) + εi

where yi is the observed deposition; β0 is the intercept 
or constant term; f1 (timei) is the smooth function of 
time, which represents the trend in the response and 
describes the variation through time of level of the 
response; f2 (juliani) represents the seasonal varia-
tion of deposition within a year, and εi is the area of 
model residuals, which are assumed to be zero mean 
for Gaussian random variables with variance of σ2.

Models were fitted in a GAM framework using 
the Mixed GAM Computation Vehicle (MGCV) with 
automatic smoothness estimation v. 1.8-4 (Wood, 
2014) for the R statistical software package v. 2.15.2 
(R Development Core Team, 2011). A log transfor-
mation was applied to deposition variables SO4

2– and 
NO3

–
 to achieve constant variance.

The pH decreased at all stations, although for 
the LOM station the decrease was very light. The 
other three stations showed significant decreases 
throughout the study period; pH was lowest at the 
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67Spatial and temporal variation of acid rain in the MCMZ

LOM

100

XAL

MON

H+

K+

Na+

Ca2+

Mg2+

NH4
+

H+

K+

Na+

Ca2+

Mg2+

NH4
+

SO4
2–

NO3
–

Cl–

80

60

40

Year Year

20

0

%

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

100

80

60

40

Year

20

0

%

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

H+

K+

Na+

Ca2+

Mg2+

NH4
+

100

80

60

40

Year

20

0

%

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

H+

K+

Na+

Ca2+

Mg2+

NH4
+

100

80

60

40

Year

20

0

%

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

100

80

60

40

20

0

%
%

%
%

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

SO4
2–

NO3
–

Cl–

Year

100

80

60

40

20

0
20

03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

SO4
2–

NO3
–

Cl–

Year

100

80

60

40

20

0

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

SO4
2–

NO3
–

Cl–

Year

100

80

60

40

20

0

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

AJU

Fig. 10. Annual ion composition (%) for the XAL, MON, LOM, and AJU stations. The major ions from 2003 to 
2014 were SO4

2– (50% of anions), NO3
– (40% of anions), NH4

+ (60% of cations), and Ca2+ (30% of cations). The 
XAL and MON stations had the highest SO4

2– contribution (%); both stations are located in the northern section of 
the study area downwind from the critical zone Tula-Vito-Apasco.
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Fig. 11. pH, SO4
2– and NO3

– trends for stations XAL, MON, LOM and AJU.
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Table I. Spearman correlation for ion concentrations at the MON station.

H+  EC Na+ NH4
+ K+ Mg2+ Ca2+ Cl– NO3

– SO4
2–

H+ 1.000 –0.017 –0.098 –0.159* –0.008 –0.047 –0.267** 0.098 0.059 0.191**
EC 1.000 0.195** 0.732** 0.392** 0.380** 0.702** 0.487** 0.768** 0.770**
Na+ 1.000 0.100 0.333** 0.466** 0.292** 0.179* 0.259** 0.192**
NH4

+ 1.000 0.322** 0.152** 0.540** 0.498** 0.661** 0.648**
K+ 1.000 0.511** 0.285** 0.285** 0.393** 0.402**
Mg2+ 1.000 0.338** 0.175* 0.402** 0.303**
Ca2+ 1.000 0.341** 0.531** 0.484**
Cl– 1.000 0.442** 0.497**
NO3

– 1.000 0.755**
SO4

2– 1.000

*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).
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XAL, MON, and AJU stations in 2007, and SO4
2– 

and NO3
– concentrations were highest during this 

year. In the above mentioned stations, the maximum 
pH occurred in 2010 and corresponded to minimum 
levels of SO4

2– and NO3
–.

Higher deposition values for SO4
2– and NO3

– were 
observed in 2007 according to the maps in Figures 6 
and 7, respectively, as well as in trends analysis, where 
the same behavior was also observed. When reviewing 
possible reasons for this situation, it was interesting 
to find that emissions from the Popocatépetl volcano 
presented an increase during 2007 (Carn et al., 2017).

LOM is located in the western part of Mexico City. 
This station showed a pH pattern similar to the other 
stations up to 2008; thereafter, the level was constant 
until the last year of the study when a small increase 
was recorded. However, there is a slight decrease 
with respect to the initial year (2003). NO3

– and 
SO4

2– increased from 2005 to a peak concentration 
in 2007, followed by a decline until 2011 and a slight 
increase in subsequent years. In the last year, levels 
at three stations (XAL, MON, and LOM) declined, 
while the AJU station, located in the south of the city, 
remained constant.

4.	 Conclusions and recommendations
The spatial distribution of VWM pH shows its de-
crease throughout the study from north to south in 
Mexico City, influenced by meteorological condi-
tions. In most of the study sites, VWM pH decreased 
from 2003 to 2014. For example, at the MON station, 
values decreased from 7.48 in 2003 to 5.03 in 2014.

In the stations located in a rural area (MON and 
AJU), a strong correlation was found between NH4

+ 
and SO4

2–, NO3
–, and Cl–; this is likely due to their 

origin in soil (i.e., fertilizer use).
It is recommended to analyze the source of NH4

+ 
in the study area because this is the most abundant 
cation. It is necessary to consider the chemical reac-
tion of NH3 emitted by mobile sources.

The same concentration trend was observed for 
SO4

2– and NO3
– in the Mexico City stations, which 

indicates that the sources of acid rain precursors are 
upwind (i.e., to the north) of the study area.

The high wet deposition levels for SO4
2– and 

NO3
– in the MCMZ were similar to levels in the USA 

(24 and 20 kg ha–1 in 2013 and 2014, respectively).

In all wet deposition samples, SO4
2– comprised a 

higher percentage (60%) than NO3
– and Cl–, indicat-

ing that the main precursor of acid rain is SO4
2–. The 

SO4
2–/NO3

– observed ratio was of 1.5, confirming 
SO4

2– as the principal anion of wet atmospheric depo-
sition and SO2 as the principal acid rain precursor.

It is important to establish strategies for emis-
sion reduction of acid rain precursors from external 
sources north of Mexico City, such as the use of 
fuels with low-sulfur and substitution of fuel oil by 
natural gas, which could eliminate more than 99% 
of SO2 emissions.

When shifting from fuel oil to natural gas, it is im-
portant to use the best available control technology for 
NOx, including low NOx burners, due to some negative 
impacts. These include acid rain and the formation 
of ozone, which is a severe problem in Mexico City.
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