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RESUMEN

Este trabajo propone un método para promediar escenarios de cambio climático a partir de varios modelos 
globales mediante un análisis estadístico multivariado. El método propuesto confiere mayor peso a las varia-
bles más relevantes en un sistema específico, lo cual está vinculado con la disponibilidad de recursos hídricos. 
La propuesta considera un clima base (precipitación, temperatura, humedad relativa, velocidad del viento, 
luz solar) registrado en estaciones cercanas a la municipalidad de Nilo, Colombia (presentada como caso de 
estudio), y escenarios de clima futuro derivados de 11 modelos y cuatro escenarios de emisiones de gases 
de efecto invernadero (vías de concentración representativas). Adicionalmente, se tomaron en consideración 
otras variables derivadas de balances hídricos presentes y futuros: déficit, evapotranspiración potencial, eva-
potranspiración real, exceso y otros índices que determinan la aridez de una región como el de Lang y el de 
disponibilidad de agua. Los resultados sugieren que para 2070 el promedio aritmético de la precipitación po-
dría disminuir en 14% y el promedio ponderado en 25.3% respecto a las condiciones actuales (1299 mm yr–1), 
llegando a 1111.5 y 964.8 mm yr–1, respectivamente. Adicionalmente, el promedio aritmético proyecta 
un incremento de 2.3 ºC en la temperatura promedio, en tanto que el promedio ponderado contempla un 
incremento de 2.7 ºC. Esta metodología es una herramienta útil para analizar múltiples escenarios de 
cambio climático.

ABSTRACT

This study proposes a method for averaging future climate scenarios from multiple global models through 
a multivariate statistical analysis. The method gives more weight to the most relevant variables in a specific 
system, which is associated with the availability of water resources. The proposal considered a climate baseline 
(precipitation, temperature, relative humidity, wind speed, sunlight) registered in stations near the municipal-
ity of Nilo, Colombia (illustrated as a case study), and the future climate scenarios derived from 11 models 
and 4 scenarios of greenhouse gas emissions (representative concentration pathways, RCPs). Additionally, 
other variables derived from the current and future water balances (WB) were taken into consideration, such 
as: deficit (Def), potential evapotranspiration (ETo), real evapotranspiration (ETR), excess (Exc), and other 
indexes which determine the aridity of a region such as the Lang’s index (IL) and the hydric availability 
index (HAI). Results suggest that by 2070, precipitation may decrease by 14.0% in the arithmetic average 
and 25.3% in the weighted average with respect to the current condition (1292 mm yr–1), decreasing to 
1111.5 and 964.8 mm, respectively. Additionally, the arithmetic average projects an increase of 2.3 ºC in the 
average temperature, while the weighted average projects an increase of 2.7 ºC. The proposed methodology 
is a useful tool to analyze multiple climate change scenarios.

Keywords: climate scenarios, multivariate analysis, water resources, weighted average.
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1.	 Introduction
Over the last few decades, it has been observed 
that the Earth is experiencing a global warming, 
associated with the increase of extreme drought 
conditions, intense heat waves, floods, and chang-
es in wind speed (Stott et al., 2004; Arango et al., 
2012). In addition, it is expected that the average 
temperature will increase between 0.3 and 4.8 ºC 
worldwide (IPCC, 2014; Olaguer, 2016). The pro-
jections made for the 21st century indicate there will 
be a significant reduction of renewable surface and 
groundwater resources in most of the tropical dry re-
gions, increasing competition between the different 
sectors that depend on water resources: agriculture, 
ecosystems, human settlements, energy industry and 
production (Karmalkar et al., 2011; Ospina et al., 
2009a, b; Gay, 2000). According to Burger et al. 
(2016) and the IPCC (2014), the increases in terms 
of projected temperature will modify all aspects 
of food security, including the use and access to 
food and prices stability. These changes will be 
evident in all geographic scales (e.g., regional and 
local, high and low latitudes), being higher in low 
latitudes (IPCC, 2014). Climate models generate 
these climate projections based on greenhouse gas 
emissions (GHG).

The models included in the IPCC’s Fifth As-
sessment Report (AR5) (IPCC, 2014) consider four 
different Representative Concentration Pathways 
(RCPs), which are associated to GHG expressed in 
terms of CO2 equivalent (CO2 eq) for the year 2100. 
The RCP’s 6.0 and 8.5 indicate higher GHG (850 
and 1370 ppm of CO2 eq, respectively) that could 
have disastrous impacts on the planet. While the 
scenarios with lower emissions, RCPs 2.6 and 4.5 
(490 and 650 ppm CO2 eq., respectively) may cause 
fewer effects  (IPCC, 2014). In the same way, RCPs 
project the following global temperature increases 
at the end of the 21st century: 0.3-1.7 ºC (RCP 2.6), 
1.1-2.6 ºC (RCP 4.5), 1.4-3.1 ºC (RCP 6.0), and 2.6-
4.8 ºC (RCP 8.5).

Global and regional climate models are the stan-
dard for producing climate change scenarios today 
(Bae et al., 2011; Jackson et al., 2011; Olsson et al., 
2011; Kling et al., 2012; Gosling and Arnell, 2016). 
The last IPCC report considers the simulations from 
the climatic models from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5). This project 

includes long-term simulations for a wide variety of 
variables such as rainfall and temperature that were 
projected by different research centers. Each climatic 
model run is based on the description of RCPs; how-
ever, the projections for the proposed scenarios differ 
significantly between models (Arango et al., 2012). 
Some studies make ensembles, based on assumptions 
about the relative weight given to each scenario 
(Manning et al., 2009; Christierson et al., 2012; Liu 
et al., 2013). In this way, an ensemble mean simplifies 
the information given by climate models, producing 
a single future scenario, and enables assessment of 
the impacts of climate change on a system of interest 
such as water resources.

Most of the water resources assessments have 
used hydrological models applying the delta change 
factor methodology or the change factor methodology 
(Anandhi et al., 2011). This method creates different 
scenarios, applying the climate changes projected by 
a climatic model to an observed baseline climate. 
Several approaches have been developed for the con-
struction of scenarios at basin or local scale (Fowler 
et al., 2007). This includes the scale reduction tech-
niques using regional climate models and a variety 
of statistical approaches (Fu et al., 2013).

Systematic assessments of different methods 
have demonstrated that the estimated impacts could 
depend on the approach employed to reduce the 
scale of the climate model data. Additionally, the 
uncertainty range between the approaches of scale 
reduction can be as wide as the range between 
different climatic models (Quintana et al., 2010; 
Chen et al., 2011). Another approach for the impact 
assessment is an inverse technique (Cunderlik and 
Simonovic, 2007), which begins identifying the 
hydrological changes that would be critical for a 
system. Then, it uses a hydrological model to de-
termine which meteorological conditions cause the 
changes (Jiménez et al., 2014).

Sometimes the ensemble mean is used in impact 
assessments. This can be considered as a simplified 
scenario. However, this technique does not allow 
detecting each scenario effect, entailing additional 
uncertainty. This is particularly the case of the Re-
liability Ensemble Averaging (REA), a multi-model 
and multi-scenario ensemble, which is currently 
widely used by institutes and research centers. 
REA was presented by the Instituto de Hidrología, 
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Meteorología y Estudios Ambientales (Institute 
of Hydrology, Meteorology and Environmental 
Studies, IDEAM) of Colombia during the United 
Nations Framework Convention on Climate Change. 
Projections using this aproach suggest that by the 
end of this century, the annual average temperature 
could increase by 2.14 ºC and the annual average 
precipitation could decrease between 10 and 30 
% in many regions in Colombia (IDEAM, 2015). 
These climatic changes will modify the hydrolog-
ical cycle on a large scale and will significantly 
affect the most vulnerable systems that depend on 
hydric resources, including agricultural systems, 
since water availability and sources, aquifers, and 
precipitations will be limiting factors (FAO, 2008). 
One of the limitations in this kind of ensemble is 
that the results are spatially coarse, thus it is not 
possible to propose or design precise local and/or 
regional adaptation strategies.

In this study, the effects of all scenarios are 
evaluated in an issue of interest: the availability of 
water for agricultural purposes. Thus, the aim of this 
study was to generate an ensemble mean of climate 
scenarios that take into account weighting factors 
obtained through a multivariate statistical analysis. 
The weighting factors consider the most negative 
effects on the availability of water resources projected 
by different climate change scenarios. This method 
generates a single weighted average scenario which 
provides information on the most adverse effects. 
Additionally, this ensemble mean could help pol-
icymakers and regional and local stakeholders to 
implement better adaptation measures and to use 
more efficiently the local natural, economic, and 
human resources.

2.	 Methodology
2.1. Selection of the study area and collection of in-
formation
The study area is the municipality of Nilo (Cundi-
namarca) due to its relevance to the project Mejo-
ramiento de la Tecnología de Producción de Cacao 
en las Provincias de Rionegro y Alto Magdalena 
(improvement of the cocoa production technology in 
the Rionegro and Alto Magdalena provinces), Cun-
dinamarca, conducted by the Universidad Nacional 
de Colombia.

2.1.1 Study area
In order to describe the climate conditions in the 
study area, a baseline was established, and certain 
information was collected from the IDEAM’s net-
work of weather stations. The precipitation (PCP) 
baseline was established using information of the 
pluviometric weather station in Nilo,  Cundinamarca 
(4º 18’ 21.2” N, 74º 38’ 55.2” W) for the years 1976-
2005. Since the municipality has no weather stations, 
it was necessary to have at least an approximation of 
its climatic conditions using information from other 
stations close to the municipality. For other variables 
(relative humidity [Rh], evaporation [Ev], sunlight 
[SL], temperatures [T]), historical data was collected 
from the weather station of Melgar, Tolima (4º 12’ 
44” N, 74º 38’ 12.6” W) for the years 1976-2005. It 
is worth noting that the data records of Melgar were 
used because it is the weather station with meteo-
rological information closest to the area of study. 
Additionally, both weather stations have similar 
climatic characteristics in terms of temperature and 
precipitation.

2.1.2. Calculation of the potential evapotranspira-
tion and analysis of the current water balance
To calculate variables related to the analysis of wa-
ter availability for agricultural purposes, potential 
evapotranspiration (ETo) was evaluated (Appendix 
A.1). ETo was calculated using the established base-
line and the Penman-Monteith method (Allen et al., 
2006) recommended to determine the ETo from other 
climatic parameters (Eq. 1).

ETo =
0.408∆(Rn – G) + γ

∆+γ(1+0.34U2)

U2(es – ea)900
T+273 	 (1)

where ETo is the potential evapotranspiration (mm 
day–1), Δ is the slope of the saturated vapor pressure 
curve, Rn is the net radiation at the crop surface (MJ 
m–2 day–1), G is the soil heat flux (MJ m–2 day–1), 
γ is the psychometric constant (KPa × ºC–1), T is 
the average temperature (ºC), U2 is the wind speed 
(m s–1), and es – ea represents the vapor pressure 
deficit (KPa).

Then water balance was estimated taking into 
account the precipitation and potential evapotrans-
piration to determine deficits (Def), excess (Exc), 
real evapotranspiration (ETR), soil water storage, 
and change in soil water storage for the current 
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conditions. Detailed information about the meth-
odologies used is available in Ospina et al. (2017).

Similarly, the phytoclimatic indexes of aridity 
were obtained: Lang’s index (precipitation/Taverage) 
and hydric availability index (Eq.2).

HAI = ((ETR + (Exc⁄4))/ETo)*100	 (2)

where ETR is the real evapotranspiration, Exc is the 
excess, and ETo is the potential evapotranspiration.

2.2 Generation of future scenarios
2.2.1 Model scenarios
In order to generate future scenarios, the anomalies 
projected for precipitation and the minimum and 
maximum temperatures were obtained from 11 gen-
eral circulation models (Table I).

Additionally, four scenarios of GHG were consid-
ered: RCPs 2.6, 4.5, 6.0 and 8.5. Climate projections 
have a resolution of 5 min for the future period 2070, 
which are available at: http://www.worldclim.org/
cmip5_5m. A geostatistical software (ArcMap) was 
used to display the climate variables of the study area.

2.2.2 Projection
The projected anomalies were added to the base-
line climatology, resulting in 44 future climate 
scenarios (11 models 4RCPs) for each climatic 
variable (precipitation, Tmax and Tmin). This 
projects were used to calculate the indices de-
scribed in sectrion 2.1.2 (see Appendix A.2).

2.3. Multivariate analysis
The results of the annual climatic variables obtained 
in the previous phase were subjected to principal 

component analysis (PCA) of standardized variables 
and cluster analysis (CA) using the Ward’s method 
and Euclidean distance. The Ward’s method is a hi-
erarchical procedure where two clusters are joined 
at each step, obtaining the smallest increase of the 
sum of squares. This generates groups, which min-
imizes intra-group dispersion in each binary fusion 
(Murtagh and Legendre, 2014). Additionally, Unal 
et al. (2003) considered this method to be the most 
appropriate one to produce acceptable results in the 
case of the climatic zoning of Turkey. Further, they 
argued that similar results are often found in clima-
tological studies. Therefore, Ward’s method is used 
for the methodology proposed in this study.

PCA allows selecting representative linear com-
binations from the original variables and shows the 
most relevant variables in each component related to 
hydrological resources and their direct or opposite 
relationship. CA allows differentiating groups with 
different climatic conditions. The analysis was per-
formed using the software Statgraphics Centurion 
XV.II.

Multivariate analysis allowed clustering the 
scenarios that present differences regarding their 
climatic projections, as mentioned above, which also 
enabled to propose weighting factors for each group 
according to the prevention and/or mitigation criteria 
established by the system in question (in this case, 
hydric resources).

2.4. Proposal of management and ensemble of sce-
narios

A weighted average scenario was computed, since 
the water resource is a limiting factor for cultivation 
in the area of study (classified as a semi-arid zone and 
located in the appropriate lower limit in the hydric 
availability index); also, to have a scenario with a 
certain degree of certainty (where adaptation strat-
egies can be proposed and designed). This average 
was proposed for the main climatic variables (PCP, 
Tmax, Tmin and Tavg), where the greatest weight 
will be given to future scenarios that project a higher 
decrease in precipitation and a higher increase in 
temperature. This will be evaluated because these 
two variables significantly affect the aridity and the 
parameters involved in the water balance of a region 
and, according to the PCA, they were the most rel-
evant variables.

Table I. Models used for the climatic projections in this 
study.

Model Code Model Code

BCCCM1-1 BC ROC-ESM-CHEM MI
CCSM4 CC MIROC-ESM MR
GISS-E2-R GS MIROC5 MC
HadGEM2-AO HD MRI-CGCM3 MG
HadGEM2-ES HE NorESM1-M NO
IPSL-CM5A-LR IP
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The weight of the elements of each cluster was 
determined by finding the average range of the vari-
able of interest in each cluster, obtained similarly as in 
several non-parametric statistical methods (Conover, 
1999). The proposed ensemble takes into consider-
ation the weight of the variables, so the most negative 
impacts on the system can be specified according to 
the projections for all future scenarios.

3.	 Results and discussion
According to the baseline obtained from the historical 
data of the meteorological stations mentioned above 
(Table II), it was found that the study area had an 
annual average temperature of 26.5 ºC, a minimum 
temperature of 21.4 ºC, a maximum temperature of 
31.6 ºC, and an annual precipitation of 1292.0 mm. 

According to Lang’s index (IL = 48.1) and the hydric 
availability index, it is a humid zone with vast grass-
lands, appropriate for agricultural crops to a limited 
extent (HAI = 90.7).

Figure 1 illustrates the behavior of the main vari-
ables. Figure 1a shows the temperatures of the study 
area, which are higher in July, August, and September 
in comparison to other months. As shown in figure 1b, 
the PCP vs. Ev ratio suggests the condition of the 
water resource is practically deficient throughout 
the year, and water availability is scarce. This was 
confirmed by estimating the water balance.

Considering the values reported in Table II, the 
water balance was estimated for the current condi-
tions, determining ETR, Exc, Def, storage and change 
of soil water, replacement and usage of the water 
stored in the soil (see Table III).

Table II. Baseline climatic variables in the study area.

Var/month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum/
avg

PCP (mm) 64.9 102.5 124.4 136.8 163.7 78.4 33.2 24.5 101.0 190.8 153.4 118.6 1292.0
Tmax (ºC) 32.1 32.1 32.2 31.9 31.7 31.7 31.6 31.9 31.8 31.0 30.8 31.0 31.6
Tmin (ºC) 21.2 21.3 21.4 21.1 20.9 20.9 21.8 22.1 22.0 21.2 21.1 21.2 21.4
Tavg (ºC) 26.7 26.7 26.8 26.5 26.3 26.3 26.7 27.0 26.9 26.1 26.0 26.1 26.5
SL (h day–1) 6.7 6.1 5.4 5.4 5.7 6.0 6.4 6.4 6.2 6.1 6.1 6.4 6.1
RH (%) 66 64 66 69 71 71 66 62 63 66 68 65 66.4
Ev (mm) 165 159 164 140 139 151 195 227 190 158 131 141 163.4
U2 (m s–1) 0.20 0.33 0.40 0.39 0.28 0.46 0.59 0.43 0.19 0.21 0.16 0.06 0.3

PCP: precipitation; Tmax: maximum temperature; Tmin: minimum temperature; Tavg: average temperature; SL: 
sunlight; RH: relative humidity; Ev: evaporation; U2: wind speed 
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Fig. 1. Annual behavior of variables. (a) Maximum temperature (Tmax), minimum temperature 
(Tmin) and average temperature (Tavg) for Nilo, Cundinamarca. (b) Precipitation (PCP) vs. evap-
oration (Ev) in Nilo.
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4.	 Future scenarios and multivariate analysis
After obtaining the anomalies of the most relevant 
variables (i.e., precipitation and temperature), by 
using the scenarios studied and elaborating future 
scenarios from the baseline, the water balance and the 
other indexes and parameters related were estimated 
based on future climate change scenarios. Appendix 
A.2 shows the annual values of the variables and 
parameters calculated for the scenarios projected to 
2070, which are the input values or database in the 
multivariate analysis.

Some scenarios only project an increase of ap-
proximately 1 ºC and others an increase of approxi-
mately 5 ºC (see Appendix A.2). Also, some scenarios 
estimate an increase in precipitation of about 14%, 
while other projects a decrease of approximately 
37%. This behavior is also the similar to the rest of the 
variables analyzed, which means that there is a high 
level of uncertainty when trying to identify the most 
likely future scenario to design and manage a system. 
This suggests that it could be useful to manage and 
generate ensemble scenarios upon which adaptation 
strategies can be proposed and designed for the sys-
tem being studied.

The principal components analysis suggested the 
selection of two components with eigenvalues equal 
to or greater than 1.0, which explain 86.7% of the 
variability in the original data (see Fig. 2).

Table IV shows the weight of the variables in 
each component. It is observed that precipitation 
and indexes related with this variable (IL, Def, HAI) 

hold greatest weights in the first component, while 
temperature and parameters related thereto, such as 
RH and ETo, have greatest weights in the second 
component. This suggests that the weighting should 
be conducted on these input variables during the 
water resource availability analyses. Moreover, four 
clusters were created from 44 scenarios in the cluster 
analysis (see Fig. 3). The clusters are groups with 
similar characteristics or climate conditions.

Table V shows the number of members (scenar-
ios) in each group and the centroids or averages of 
the variables in each group. For example, cluster 
3 projects the largest decrease in precipitation 
(874.743 mm) and contains seven scenarios. In con-
sequence, this variable will have the greatest weight 
in these scenarios, distributed among its members. 

Table III. Current water balance in Nilo, Cundinamarca. 

Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum/
avg

PCP 64.9 102.5 124.4 136.8 163.7 78.4 33.2 24.5 101.0 190.8 153.4 118.6 1292.0
ETo 112.9 106.0 117.2 111.7 111.1 107.4 117.1 121.3 115.8 115.3 104.4 104.6 1345.0
∆ –48.0 –3.5 7.1 25.1 52.6 –29.0 –83.9 –96.8 –14.8 75.5 48.9 14.0
S 52.0 48.5 55.6 80.7 100.0 71.0 0.0 0.0 0.0 75.5 100.0 100.0  
Def 0.0 0.0 0.0 0.0 0.0 0.0 12.9 96.8 14.8 0.0 0.0 0.0 124.5
Exc 0.0 0.0 0.0 0.0 33.2 0.0 0.0 0.0 0.0 0.0 24.4 14.0 71.6
∆S –48.0 –3.5 7.1 25.1 19.3 –29.0 –71.0 0.0 0.0 75.5 24.5 0.0  
ETR 112.9 106.0 117.2 111.7 111.1 107.4 104.2 24.5 101.0 115.3 104.4 104.6 1220.4
Condition U U R R R U U – – R R –  

PCP: precipitation; ETo: evapotranspiration, ∆: difference between P and ETo; S: storage; Def: deficit; Exc: excess; 
∆S: change in the storage; ETR: real evapotranspiration; U: use of soil water; R: replenishment of water in the soil.
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Meanwhile, cluster four projects an increase in pre-
cipitation (1314.08 mm), thus having a lower weight 
distributed among its eight members. Decrease and 
increase precipitation are analyzed based on current 
precipitation (1292.0 mm, see Table II).

Similarly, temperatures were also weighted, giving 
greater weight to thosse variables in the clusters that 
project higher temperatures (cluster 2) and vice versa.

To determine the weight of the elements in each 
cluster, first the average range of the variable of inter-
est, which indicates the difference (or no difference) 
between the medians of the groups, was determined. 
For purposes of illustration, PCP was selected as 
variable of interest, and it was obtained similarly as 

the ranges allocated in some parametric tests based 
on ranges. As shown in table VI, column 3, cluster 3 
obtained the lowest average range, which should hold 
a greater weight because it contains the scenarios that 
project lower precipitation and consequently it is the 
group with the major negative impact on the system 
being studied (water availability). In this case, the 
inverse of the percentage relative average range was 
used (the inverse range of a group of interest with re-
spect to the sum of the inverse of the total ranges; col-
umn 5), giving a greater weight to cluster 3 (69.1 %), 
followed by clusters 1, 2 and 4 in accordance to the 
logic of the criterion established in the methodology 
(section 4).

Table IV. Weights of hydrological variables for each component.

Component Def ETo ETR Exc RH HAI IL PCP Tmax Tavg Tmin

1 –0.419 –0.009 0.421 0.29 –0.063 0.429 0.43 0.435 0.021 0.015 0.019
2 –0.063 –0.411 –0.015 –0.03 0.433 0.04 0.07 –0.023 –0.448 –0.475 –0.454

Def: deficit; ETo: evapotranspiration; ETR: real evapotranspiration; Exc: excess; RH: relative humidity; 
HAI: hydric availability index; IL: Lang’s index; PCP: precipitation; Tmax: maximum temperature; Tavg: average 
temperature; Tmin: minimum temperature. 
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In this case, the greatest negative impact is as-
sociated with low precipitation, given that the study 
region is characterized by being a zone tending to 
aridity. Agricultural production systems have high 
water resource requirements; however, if a region has 
climatic and hydrological characteristics that conduce 
to wet zones with excess of water, the greatest negative 
impact would be given by scenarios that project an in-
crease in precipitation. Thus, an advantage of this study 
is that it weighs scenarios according to the climatic 
characteristics of each zone and productive system 
expected to be evaluated. In terms of temperatures, a 
direct average range (percentage) was implemented, 
because a wider average range contains the scenarios 
that project a higher increase in temperatures, thus 
having a negative impact on water availability.

Finally, according to the percentage average rang-
es (or their respective inverses), the cluster weights 
are distributed according to the percentage of the 
elements in each group (column 6) to obtain the final 
weighting factor (column 7).

Following the proposed methodology, the weight-
ing factors for the temperatures ensemble were iden-
tified, which are summarized in Table VII.

Going back to the precipitation example, Table VIII 
shows the monthly baseline (BL), the arithmetic 
average (AA) and the weighted average (WA) of the 
precipitation projected by future scenarios. Figure 4a 
illustrates the monthly behavior of all scenarios, 
while figure 4b illustrates the BL, AA and WA.

In Table VIII and figure 4b, the WA projects a 
larger decrease (–25.3%) in precipitation than in the 
AA (–14.0%), decreasing from the current precipi-
tation of 1292.0 mm yr–1 to 936.5 mm and 1111.5 
mm, respectively. This is consistent with our interest 
of finding a future scenario that considers all the 
scenarios and the logic of preventing the most neg-
ative impacts. This allows to propose and/or design 
adaptation strategies with a good level of certainty to 
prevent the most negative effects on water availabili-
ty, which will also influence the hydric requirements 
of agricultural systems.

According to IDEAM (2015), precipitation will 
change by approximately –10 % and 10% in several 
municipalities of the Cundinamarca department. The 
study area, Nilo, will be within this range of change. 
In this case, the differences shown resulted from the 
methodology proposed in this research, including Ta
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the analysis at a local scale and a weighted ensemble 
according to the most important unfavorable effects. 
On the other hand, the REA ensemble presented by 
IDEAM contemplates a regional geographic scale. 
Additionally, this ensemble is not based on the neg-
ative effects that each of the climatic scenarios could 
have on the studied system.

According to Räisänen (2007), normally projec-
tions have better performance if they are analyzed at 
larger scales. Mahlstein and Knutti (2010) argue that 
when a region is too small, the models may not agree 
with their projections. However, they claim that if 
the region is too large, the changes will be diffused 
and the information will be lost because different 
climate regimes are being averaged together. For 
example, averaging positive and negative changes in 
precipitation will result in a small net change. These 
authors recommend not to analyze too extensive re-
gions because the information provided is not useful 
for evaluating local impacts, since it is unlikely that 
the regional average represents local changes. This is 
the case of changes in precipitation between –10 and 
10% projected by the REA ensemble for the study 
area according to IDEAM, while the ensemble pro-
posed in this study is useful to evaluate the impacts 

of climate change in a system at the local level.
Figure 5a, b, c illustrates the monthly behavior of 

temperatures and ensembles obtained.
Table IX summarizes expected changes according 

to the AA and the WA in relation to the baseline or 
current condition of Tmax, Tavg and Tmin. Similarly 
to PCP, it can be observed that temperatures obtained 
with the WA have a higher increase than tempera-
tures estimated with the AA. For example, the AA 
projects a change of 2.6 ºC Tmax with respect to 
the current temperature (Table IX, column 3), while the 
WA projects a change of 2.9 ºC (i.e., 0.3 ºC more). 
Therefore, a future scenario of temperature emerg-
es again, enabling to conduct a water availability 
analysis based on the logic of preventing the most 
negative impacts as mentioned above. In this re-
gard, by the end of the century, temperatures in the 
Cundinamarca department will increase by 2.3 ºC 
with respect to current temperatures. Temperature 
changes will particularly occur in the province of Alto 
Magdalena, where the current study was conducted 
(IDEAM, 2015).

Finally, IDEAM (2015) states that the main effects 
for the Cundinamarca department can occur in the 
agricultural sector due to the accentuated changes in 

Table VI. Weighting factors to obtain the PCP ensemble. 

Cluster Cluster
elements

Average
range

Inv_average
range

Inv_relative
average range (%)

% cluster
elements 

Weighting
factor

1 22 21.2 0.047 13.0 50.0 0.26
2 7 25.4 0.039 10.9 15.9 0.68
3 7 4.0 0.250 69.1 15.9 4.34
4 8 39.6 0.025 7.0 18.2 0.38

Sum 44 0.362 100.0 100.0

Column 4 = 1/cluster value column (3); column 5 = [cluster value column (4)*100]/∑(4); column 7 = cluster value 
column (5)/cluster value column (6).

Table VII. Weighting factors for the ensemble of Tmax, Tavg and Tmin.

Cluster Element Weighted_Tmax Weighted_Tavg Weighted_Tmin

1 22 0.36 0.34 0.34
2 7 2.46 2.45 2.44
3 7 1.35 1.38 1.39
4 8 1.17 1.22 1.23

44
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temperature, as well as the persistence of pests asso-
ciated with increased precipitation in the evaluated 
areas. Thus, the weighted average scenarios for PCP 
and temperature could be used as input variables to 
conduct different studies and analyses related to fu-
ture climatic conditions in a region. These analyses 
could be water balance and the hydric requirements 
of agricultural systems within the study area, which 
are beyond the scope of this proposal and, therefore, 
will be presented in a further study.

5.	 Conclusions
The proposed methodology is easy to adopt, enabling 
the removal of subjectivity and uncertainty in these 
types of analyses to a certain extent. Additionally, it 
is a contribution to the development of future change 
scenarios.

As expected, the PCA suggests that the input 
variables for PCP, Tmax, Tavg, and Tmin are enough 
to elaborate an ensemble of future scenarios, upon 
which it is possible to conduct the required supple-
mentary analyses. In this case, with respect to the 
water availability for agricultural purposes, which 
simplifies the calculations by reducing the dimen-
sionality of the original dataset.

It is recommended that the weighted average is 
used to analyze the effects of climate change on the 
availability of water resources, in order to address 
the most negative effects. Therefore, each and every 
one of the projections for the study area is taken 
into account. However, this does not mean that any 
methodology that exhibits excessively extreme pro-
jections can be useful. Only those methodologies 
whose results are within the range exposed in the 
scenarios evaluated would be considered.

The proposed methodology not only applies to the 
assessment of climate change and how it affects water 
availability, but it also applies to many other systems, 
activities, or elements of interest. This method con-
siders the most adverse or most beneficial effects 
according to the characteristics and particularities of 
the regions and/or systems evaluated.

Additionally, the use of the weighted average 
allows designing and proposing appropriate adapta-
tion and/or mitigation strategies with a certain level 
of certainty, making the use of economic and human 
resources more efficient and effective.Ta
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Fig. 4. (a) Future scenarios of precipitation for all the models by 2070. (b) Behavior of precipitation baseline 
(BL), arithmetic average (AA) and weighted average (WA) by 2070.

Fig. 5. Baseline, arithmetic average and 
weighted average. (a) Tmax, (b) Tavg, 
and (c) Tmin.
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Table IX. Expected changes of temperature for the year 2070 according to the  proposed 
ensembles.

Tmax Change (Tmax) Tavg Change (Tavg) Tmin Change (Tmin)

WA 34.6 2.9 29.2 2.7 23.8 2.5
AA 34.2 2.6 28.8 2.3 22.9 1.6
BL 31.6 – 26.5 – 21.4 –
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Methodological flowchart 

Data observed: Tmax, Tavg,
Tmin, RH, PCP, SL, Ev, U2 

Projected anomalies (Tmax, Tmin,
PCP), period 2050, 11 models, 4

RCPs (2.6, 4.5, 6.0, 8.5)
(https://www.worldclim.org/version1) 

Future scenarios (44) for Tmax,
Tmin, PCP PCA, main components

and the most relevant
variables within the

components selected 

Cluster analysis, taking
into account the selection
of relevant variables and

weighting factors 

CA, groups with similar
climate characteristics

identified 

Future weighted average (for
main variables: Tmax,

Tmin, PCP) 

Comparative analysis
between averages (for
main variables: Tmax,

Tmin, PCP) 

Future arithmetic average
baseline (for each climatic

variable) 

Current arithmetic average
baseline (for each climatic

variable) 

Future variables
calculated: WB (exc,
def), IL and HAI, Eto,

ETR 

Current estimated
variables: WB (exc, def),

IL and HAI, Eto, ETR 

Baseline, 19762005
(http://www.ideam.gov.co/web/tiem-

po-y-clima/clima)

Tmax: maximum temperature; Tavg: average temperature; Tmin: minimum temperature; RH: 
relative humidity; PCP: precipitation; SL: sunlight; Ev: evaporation; U2:wind speed; RCPs: 
representative concentration pathways; PCA: principal component analysis; WB: water bal-
ance; exc: excess; def: deficit; IL: Lang’s index; HAI: hydric availability index; ETo: potential 
evapotranspiration; ETR: real evapotranspiration; CA: cluster analysis

Appendix A.1
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Annual values of the variables and parameters calculated for the scenarios projected to 2070

Scenario Tmin 
(ºC)

Tmax
(ºC)

Tavg 
(ºC)

PCP 
(mm)

ETo
(mm)

RH
(%)

Def 
(mm)

ETR Exc 
(mm)

HAI Descript.
HAI

IL

bc2670 22.7 33.5 28.1 1080.9 1386.2 65.8 305.3 1080.9 0.0 78.0 Semi-arid 38.4
bc4570 23.5 34.0 28.8 1183.2 1400.5 63.5 217.3 1183.2 0.0 84.5 Semi-arid 41.1
bc6070 23.7 34.1 28.9 1145.6 1402.7 63.1 257.1 1145.6 0.0 81.7 Semi-arid 39.7
bc8570 24.9 35.1 30.0 1264.2 1426.7 59.3 173.1 1253.6 10.5 88.1 Semi-arid 42.1
cc2670 22.3 33.5 27.9 1128.6 1382.2 65.8 253.6 1128.6 0.0 81.7 Semi-arid 40.5
cc4570 22.9 34.3 28.6 1133.4 1400.5 63.5 267.1 1133.4 0.0 80.9 Semi-arid 39.6
cc6070 23.0 34.5 28.8 1158.1 1404.7 63.1 246.7 1158.1 0.0 82.4 Semi-arid 40.2
cc8570 24.0 35.8 29.9 1222.2 1430.8 59.3 208.6 1222.2 0.0 85.4 Semi-arid 40.9
gs2670 22.2 33.3 27.8 969.8 1379.7 65.8 410.0 969.8 0.0 70.3 Semi-arid 34.9
gs4570 23.3 34.1 28.7 917.2 1401.0 63.5 483.8 917.2 0.0 65.5 Semi-arid 32.0
gs6070 23.2 34.3 28.8 916.7 1403.3 63.1 486.6 916.7 0.0 65.3 Semi-arid 31.9
gs8570 23.8 35.2 29.5 819.9 1421.1 59.3 601.2 819.9 0.0 57.7 Arid 27.8
hd2670 22.4 33.3 27.8 1159.7 1380.3 65.8 220.6 1159.7 0.0 84.0 Semi-arid 41.7
hd4570 23.7 34.5 29.1 1085.7 1409.3 63.5 323.7 1085.7 0.0 77.0 Semi-arid 37.3
hd6070 23.3 34.2 28.8 1163.6 1310.1 63.1 192.8 1117.4 46.2 86.2 Semi-arid 40.4
hd8570 24.5 35.5 30.0 1100.1 1430.4 59.3 330.3 1100.1 0.0 76.9 Semi-arid 36.7
he2670 22.8 33.7 28.3 1064.8 1390.9 65.8 326.1 1064.8 0.0 76.6 Semi-arid 37.7
he4570 23.9 34.5 29.2 1106.0 1410.8 63.5 304.8 1106.0 0.0 78.4 Semi-arid 37.9
he6070 23.8 34.7 29.2 1101.7 1412.6 63.1 310.9 1101.7 0.0 78.0 Semi-arid 37.7
he8570 25.0 35.9 30.5 1081.7 1439.4 59.3 357.8 1081.7 0.0 75.1 Semi-arid 35.5
ip2670 23.0 33.9 28.5 997.6 1394.8 65.8 397.2 997.6 0.0 71.5 Semi-arid 35.1
ip4570 24.0 34.9 29.4 1019.1 1417.1 63.5 398.0 1019.1 0.0 71.9 Semi-arid 34.6
ip6070 23.9 35.0 29.5 1017.6 1418.0 63.1 400.4 1017.6 0.0 71.8 Semi-arid 34.5
ip8570 25.8 36.4 31.1 1042.6 1451.3 59.3 408.7 1042.6 0.0 71.8 Semi-arid 33.6
mc2670 22.5 33.4 28.0 1107.3 1384.2 65.8 276.9 1107.3 0.0 80.0 Semi-arid 39.6
mc4570 22.9 33.7 28.3 1116.6 1391.8 63.5 275.2 1116.6 0.0 80.2 Semi-arid 39.5
mc6070 22.9 33.8 28.4 1166.2 1392.8 63.1 226.6 1166.2 0.0 83.7 Semi-arid 41.1
mc8570 23.8 34.8 29.3 1111.7 1414.8 59.3 303.1 1111.7 0.0 78.6 Semi-arid 38.0
mg2670 22.6 33.0 27.8 850.9 1378.1 65.8 527.2 850.9 0.0 61.7 Semi-arid 30.6
mg4570 23.3 33.7 28.5 808.5 1393.6 63.5 585.1 808.5 0.0 58.0 Arid 28.4
mg6070 23.3 33.5 28.4 898.8 1390.9 63.1 492.1 898.8 0.0 64.6 Semi-arid 31.7
mg8570 24.3 34.6 29.5 911.2 1416.2 59.3 505.0 911.2 0.0 64.3 Semi-arid 30.9
mi2670 22.6 33.6 28.1 1258.7 1389.2 65.8 210.2 1178.9 79.7 86.3 Semi-arid 44.8
mi4570 23.4 33.5 28.4 1250.8 1392.8 63.5 227.1 1165.6 85.2 85.2 Semi-arid 44.0
mi6070 23.5 34.1 28.8 1320.6 1402.7 63.1 226.6 1176.1 144.5 86.4 Semi-arid 45.9
mi8570 24.5 33.4 28.9 1372.4 1399.8 59.3 222.0 1177.8 194.6 87.6 Semi-arid 47.5
mr2670 22.6 32.7 27.6 1062.2 1373.6 65.8 311.4 1062.2 0.0 77.3 Semi-arid 38.4
mr4570 23.5 33.4 28.4 1135.3 1391.9 63.5 256.6 1135.3 0.0 81.6 Semi-arid 39.9
mr6070 23.3 33.5 28.4 1162.7 1392.9 63.1 237.9 1155.0 7.7 83.1 Semi-arid 40.9
mr8570 24.3 34.5 29.4 1222.4 1415.6 59.3 232.7 1182.9 39.4 84.3 Semi-arid 41.5
no2670 22.2 33.4 27.8 1125.5 1381.2 65.8 256.0 1125.2 0.3 81.5 Semi-arid 40.4
no4570 22.9 34.2 28.5 1287.7 1397.8 63.5 155.3 1242.6 45.1 89.7 Semi-arid 45.1
no6070 23.0 34.4 28.7 1382.1 1400.7 63.1 152.2 1248.6 133.6 91.5 Appropriate 48.2
no8570 23.9 35.4 29.6 1476.7 1423.1 59.3 141.9 1281.2 195.4 93.5 Appropriate 49.8
Current 21.4 31.6 26.5 1292.0 1345.0 72.5 124.5 1220.4 0.0 90.7 Appropriate 48.8
Max 25.8 36.4 31.1 1476.7 1451.3 65.8 601.2 1281.2 195.4 93.5 49.8
Min 22.2 32.7 27.6 808.5 1310.1 59.3 141.9 808.5 0.0 57.7 27.8
Avg 23.4 34.2 28.8 1111.5 1400.6 62.9 311.4 1089.2 22.3 78.2 38.6
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