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RESUMEN

Realizamos la primera investigación en la República Checa para medir las tasas de emisión de amoniaco y 
la ventilación en una granja lechera con ventilación natural, durante un periodo de medición de cinco días en 
junio combinado con monitoreo de tres meses (mayo-julio) de la concentración de NH3 y de la deposición 
seca en 12 locaciones ubicadas en gradientes horizontales desde la granja lechera hasta una distancia de 400 
m. Se usaron muestreadores pasivos de tubo de difusión para medir las concentraciones mensuales de NH3. 
Se usó el balance de humedad (H2O) para determinar las tasas de ventilación. Se realizaron mediciones con-
tinuas de concentraciones gaseosas (NH3), temperatura y humedad relativa dentro y fuera del edificio. La tasa 
de intercambio de aire (AER, por sus siglas en inglés) fue de 4.8 h–1 y la tasa de emisión fue de 43.2 NH3 g 
vaca–1 d–1 para la construcción. La tasa de emisión fue del 126% con relación a lo estimado a partir de los 
factores de emisión del inventario nacional checo (34.2 g vaca–1 d–1). Las concentraciones de NH3 y los flujos 
de deposición seca disminuyeron exponencialmente con la distancia de la granja lechera. Entre mayo y julio, 
la mediana de las tasas de sedimentación pronosticada varió de 0.28 a 0.03 μg NH3 m–2 s–1 a los 50 y 400 m 
de distancia, respectivamente. La deposición seca de NH3 en los 400 m más cercanos a la fuente representó 
el 11.5% de las emisiones diarias. Los resultados confirman la dispersión de corto alcance del NH3 emitido 
desde una fuente puntual encontrada en otros estudios, pero puede no ser el mismo en otras situaciones, ya que 
la dispersión de NH3 depende de la cobertura terrestre circundante y del número de animales en un granero.

ABSTRACT

We conducted the first research in the Czech Republic to measure ventilation and ammonia (NH3) emis-
sion rates in a naturally ventilated animal building (dairy farm) during a five-day measurement period in 
June, combined with a three-month (May-July) monitoring of NH3 concentration and dry deposition at 12 
locations along horizontal gradients from the dairy farm up to the distance of 400 m. Passive diffusion-tube 
samplers were used to measure monthly NH3 concentrations. Moisture (H2O) balance was used to determine 
ventilation rates of the dairy farm. Continuous measurements of gas concentrations (NH3), temperature and 
relative humidity inside and outside the building were performed. The air exchange rate was 4.8 h–1 and the 
emission rate was 43.2 NH3 g cow–1 d–1 for building. The emission rate was 126% of what was obtained 
using emission factors from the Czech national inventory (34.2 g cow–1 d–1). NH3 concentrations and dry 
deposition fluxes decreased exponentially with distance from the dairy farm. Between May and July, mean 
predicted dry deposition fluxes ranged from 0.28 to 0.03 µg NH3 m–2 s–1 at a distance of 50 and 400 m from 
the source, respectively. Dry NH3 deposition over the nearest 400 m from the source accounted for 11.5% 
of daily emissions. The results confirm the short-range dispersion of NH3 emitted from a point source found 
in other studies, but it may not be the same in other situations, since dispersion of NH3 is dependent on the 
surrounding land-cover and on the number of animals in a barn.
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1. Introduction
Agriculture has been the main source of NH3 emis-
sions in Europe for a long time (Asman, 1998). 
Several studies have reported increasing atmospheric 
concentration of NH3 and ammonium, especially in 
the regions of concentrated animal feeding oper-
ations (Theobald et al., 2006; Walker et al., 2008; 
Sutton et al., 2011; Jones et al., 2013). Emissions 
of atmospheric NH3 from agriculture and its subse-
quent entry into sensitive ecosystems is an important 
environmental problem (Bobbink et al., 2002, 2010, 
2011). NH3 deposition may cause soil acidification 
through nitrification processes (van Breemen et al., 
1982). More importantly, NH3 plays a significant 
role in eutrophication of sensitive, mainly terrestrial 
ecosystems (Sutton et al., 2009; Theobald et al., 2009; 
Paoli et al., 2010). Atmospheric inputs of NH3 may 
cause a decrease of biodiversity in sensitive ecosys-
tems (Stevens et al., 2004; Emmett, 2007; Jones et al., 
2011). NH3 significantly affects the Earth´s climate, 
mainly because the volatilization potential of NH3 
nearly doubles for every 5 ºC increase in temperature 
(Sutton et al., 2013). Measurement of NH3 emissions 
from naturally ventilated animal houses is technically 
challenging (Phillips et al., 2001; Scholtens et al., 
2004; Welch et al., 2005a, b) due to the difficulties 
in determining the ventilation rate. Ventilation rate 
depends on the building design, animal occupancy, 
temperature, wind speed, wind direction and accu-
racy of the NH3 measurement (Phillips et al., 2001; 
Welch et al., 2005b; Zhang et al., 2005). However, 
methods such as the internal or external tracer-ratio 
techniques or the flux-sampling technique have been 
successfully tested under real conditions (Demmers 
et al., 1999; Dore et al., 2004). The conservation of 
mass is an important concept that underlies environ-
mental analysis of buildings (Albright, 1990). The 
concept of mass conservation is applied to latent heat 
(humidity) and gaseous contaminants (Samer et al., 
2012). Several studies have investigated moisture 
balance and tracer gas technique for ventilation rates 
measurements and NH3 emissions quantification in 
naturally ventilated buildings (Samer et al., 2011). 
Pedersen et al. (1998), Teye and Hautala (2007) and 
Samer et al. (2012) investigated the H2O balance 
for ventilation rate measurements. The H2O mass 
balance method largely depends on animal produc-
tion of H2O. Factors that influence H2O production 

include flooring system, stocking, density, watering, 
moisture content of the forages, animal activity and 
relative humidity.

In the vicinity of intense agricultural activities, 
deposition of atmospheric NH3 may totally domi-
nate the overall load of reactive nitrogen (N) from 
the atmosphere (Hertel et al., 2006), and NH3 dry 
deposition velocities in the areas of intensive animal 
production may exceed critical loads (Kuylenstierna 
et al., 1998).

NH3 dry deposition velocities for grassland, crops 
and forest are different (Smith et al., 2000; Theobald 
et al., 2006). Several field studies have shown that the 
deposition velocity of NH3 for forests is relatively 
high and variable (Wyers et al., 1992; Duyzer et al., 
1994; Andersen et al., 1999). Due to its high depo-
sition velocity and its reactivity in the atmosphere, 
gaseous NH3 has a relatively short atmospheric life-
time (few days or less; Warneck, 1999). Dry depo-
sition fluxes of NH3 to grassland, crops and forest 
are different (Zapletal 1998, 2001; Phillips et al., 
2004; Walker et al., 2006). The difference in fluxes 
is caused by the differences in emission strenght, and 
by differences between vegetation of low and high 
N status (Sutton et al., 1997; Flechard and Fowler, 
1998; Milford et al., 2001).

The objective of this study was to compare the 
inferred emission rates in a naturally ventilated dairy 
farm during a three months period with measured con-
centrations of NH3 to obtain data for derivation of the 
emission-deposition relationship around a dairy farm.

2. Materials and methods
2.1 Site and building description
The dairy barn was located in a rural area in the east 
of the Czech Republic at an altitude of 300-350 masl. 
About 240 dairy cows in loose housing were the 
main source of NH3 emissions from the barn (Fig. 1), 
which was 88 m long and 27 m wide. The height of 
the sheet metal roof was 9 m at the gable peak. The 
internal room volume of the barn was 21 100 m3 (87.9 
m3 per animal). The dairy barn was naturally venti-
lated by a draft introduced into the building through 
adjustable curtains on the long sidewalls (protected 
by nets), which were open in summer, and through 
five doors with a size of 3 × 4 m in the gable wall 
of the northern and southern sides. The prevailing 
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summer winds are north and south winds. Ambient 
meteorological parameters were measured from May 
to July at a height of 2 m above ground and 100 m 
from the dairy barn (Fig. 2, site B). Temperature and 
humidity were measured by a Young 41372LC/LF 
sensor (Young Company,Traverse City, Michigan, 
USA). Wind speed and direction were measured by 
a Gill 2D ultrasonic anemometer (Hampshire, UK), 
intensity of solar radiation was measured by an RS 
81 pyranometer (Envitech Bohemia, Prague, Czech 
Republic). Data was stored in an UJED datalogger 
(Baghirra, Prague, Czech Republic) at 1-min inter-
vals. The distribution of sensors is displayed in Fig. 1.

2.2 Estimation of air exchange rates
Moisture from animal respiration, evaporation from 
manure, and forages can be used as a natural gas 

tracers. The ventilation rate throughout the building 
can be determined by the mass balance of H2O. The 
moisture balance was based on several studies (Peder-
sen et al., 1998; Teye and Hautala, 2007; Samer et al., 
2012). The following mathematical model describes 
the ventilation rate:

QH2O = v Mw	/(Wi –	Wo) (1)

where QH2O (m3 s–1) represents the ventilation rate 
subject to the H2O-balance; v (m3 kg–1 dry air) is the 
specific volume; Wi (g H2O kg–1 dry air) is the hu-
midity ratio inside the building, and Wo (g H2O kg–1 
dry air) is the humidity ratio outside the building. 
Humidity ratios were determined by the psychomet-
rics software EZAir Properties v.1.3.5 (R.M. Parks, 
Gradyville, PA, USA). Mw (g H2O s–1) represents 
the moisture produced by the cows housed in the 
building, and can be calculated as follows:

Mw = n mw (2)

mw = PH2O Mavg (3)

where n represents the number of cows housed in the 
building, mw (g H2O s–1) is the moisture produced 
by one dairy cow, Mavg (kg) is the average mass of 
the cows, and PH2O (g H2O h–1 kg–1) is the moisture 
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produced by a dairy cow per mass unit, which is equal 
to 1.8 (Lindley and Whitaker, 1996).

2.3 Estimation of NH3 emissions
NH3 concentrations, air temperature and relative 
humidity were measured inside and outside the barn 
(Fig. 1) according to Samer et al. (2012). Multiwarn 
II gas detectors with infrared sensors (Dräger Safety, 
Germany) were used to measure NH3 concentrations 
at eight points (G2, G3, G5, G6, G7, G8, G10 and 
G11) inside the barn and four points (G1, G4, G9 and 
G12) outside the barn at a height of 2.8 m during one 
week during the summer (July) (Fig. 1). The outdoor 
gas sampling point (G4) and temperature-humidity 
sensor (TH3) were placed 30 m from the eastern 
side of the building. The outdoor gas sampling point 
(G9) and temperature-humidity sensor (TH4) were 
placed 30 m from the western side of the building. 
The outdoor gas sampling points (G12) and G(1) 
were placed 30 m from the northern and southern 
sides of the building.

The emission was calculated according to the 
following equation (Zhang et al., 2005; Wang et al., 
2006):

Eg;animal = V(Gc;in – Gc;out )	ρg/Na (4)

where Eg;animal is the gas emission per animal in 
g s–1, V is the ventilation rate in m3 s–1, ρg is the gas 
density in g m–3, and Na is the total number of ani-
mals. Indoor gaseous concentrations (µg m–3) Gc;in 
were calculated as the average of values measured 
by the eight inside gas sampling points. The outdoor 
gaseous concentrations Gc;out were calculated as the 
average of values measured by the four outside gas 
sampling points.

2.4 Ambient NH3 concentrations measurements
Monthly integrated NH3 concentrations were mea-
sured using a passive diffusion-tube sampler (Gradko 
International) described by Sutton et al. (2001), which 
was composed of polyacrylate tube approximately 4 cm 
long, with an internal diameter of about 1 cm and 
ends fitted with a polyethylene cover. Replacement of 
the sampler was performed every four weeks. Before 
and after exposure, the samplers were placed in a 
cool and dark place. The concentration of NH3 was 

measured (Fig. 2) at 12 locations (A to L), positioned 
as follows: locations A to E, 5 to 400 m to the north; 
locations F to G, 50 to 150 m to the south; locations 
H to I, 300 to 400 m to the west, and locations J to 
L, 150 to 400 m to the east. Passive samplers were 
situated at a height of 1.4 m.

NH3 concentrations were continuously measured 
in location B, 100 m north of the dairy barn using 
on-line instrumentation during five days in July, when 
the emission rate of this gas was measured in parallel. 
NH3 was detected using a well known fluorimetric 
method (Genfa, 1989) and continuously collected in 
a cylindrical wet effluent diffusion denuder (Mikuška 
et al., 2008). The limit of detection of NH3 was 0.102 
ppb (Kapoun, 2007) and the calibration curve was lin-
ear over 3 orders of magnitude (0.102-102 ppb NH3).

2.5 Modelling of dry NH3 deposition
Dry deposition fluxes were estimated from NH3 
concentrations in air multiplied by the corresponding 
deposition velocities:

F = Vd(z)C(z)	 (5)

where F is the deposition flux of the NH3 to a unit 
area, Vd (cm s–1) the deposition velocity of the NH3, 
and C(z) the concentration of NH3 at a height z above 
surface. Deposition velocity for NH3 (Vd) was calcu-
lated using the resistance analogy:

Vd = Ra(z) + Rb+Rc

1  (6)

where Ra (s cm–1) is the aerodynamic resistance for 
the turbulent layer, Rb (s cm–1) is the laminar layer 
resistance for the quasi-laminar layer, and Rc (s cm–1) 
is the surface or canopy resistance of the receptor. Ra 
was calculated from micrometeorological relations 
as suggested by Voldner et al. (1986) and Hicks et al. 
(1987). Rb was calculated from micrometeorological 
relations as suggested by Hicks et al. (1987). The 
surface roughness z0 = 90 cm was chosen for decid-
uous and coniferous forest, the surface roughness z0 
= 2.7 cm was chosen for crop (Voldner et al., 1986).

Surface resistance was calculated using the fol-
lowing equation (Erisman and Draaijers, 1995):

Rc = + +Rsto + Rm
1 –1( )Rinc + Rsoil

1
Rext
1  (7)
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Rc was expressed based on the known global ra-
diation, surface temperature, relative humidity, and 
land cover according to Eq. (7), using the results and 
assumptions obtained from literature for computing 
and parameterization of the canopy stomatal resis-
tence, Rsto (Wesely, 1989; Baldocchi et al., 1987); the 
mesophyll resistence, Rm (Wesely, 1989; Erisman 
and Draaijers, 1995); the canopy cuticle or external 
leaf resistance, Rext (Baldocchi et al., 1987); the soil 
resistance, Rsoil (Meyers and Baldocchi, 1988), and 
incanopy resistance, Rinc (van Pul and Jacobs, 1993). 
The stomatal resistance (Rsto) includes dependence 
upon global radiation and surface air temperature. 
Here we use the following generalized function to es-
timate the canopy stomatal resistance (Wesely, 1989):

Rsto = Ri{1+[200(G+0.1)–1]2}{400[Ts(40-Ts)]–1} (8)

where Ri is the input resistance (s m–1), G is the 
global radiation (W m–2), and Ts is the surface air 
temperature (ºC). The appropriate value of Ri was 
chosen from Wesely (1989). The incanopy resistance 
(Rinc) for vegetation was modelled according to van 
Pul and Jacobs (1993):

Rinc =	bLAIh/u*
 (9)

where LAI is the leaf area index (m2 m–2), h the veg-
etation height (m), b an empirical constant taken as 
14 m–1, and u

*
 the friction velocity (cm s–1).

3. Results and discussion
3.1 Estimation of air exchange rate and NH3 emis-
sion
Table I shows the air exchange rates in the dairy barn 
estimated by the H2O-balance method, ventilation 

rate, relative humidity and temperature inside and 
outside the buildings during the experiment. Fur-
thermore, mass flow emission rates per animal unit 
and per cow are presented. To obtain reliable data 
for emission rates, continuous measurements over 
longer periods are recommended (Joo et al., 2014). 
Five days was the minimum measurement period 
in this experiment. The mean NH3 emissions were 
43.2 g cow–1 d–1, 126% of what was obtained using 
estimated emission factors from the Czech national 
inventory (34.2 g cow–1 d–1; MZP, 2013). For examle 
Joo et al. (2014) reported 14 to 35 g cow–1 d–1 for 
a naturally ventilated freestall barns, and Bluteau et 
al. (2009) reported 11-19 g cow–1 d–1 for a naturally 
ventilated barn. The highest value was reported by 
Rumburg et al. (2008) also in a naturally ventilated 
barn (110 g cow–1 d–1). In this study, the mass flow 
emission rate of NH3 was of 1.4 g AU–1 h–1, a low-
er value than reported by Samer et al. (2012) and 
Fiedler and Müller (2011) (from 2 to 5 g AU–1 h–1 
during summer seasons in a naturally ventilated dairy 
building) but with a higher number of dairy cows 
(364 dairy cows).

3.2 NH3 concentrations
Monthly mean NH3 concentrations (µg m–3) vs. dis-
tance from the source in different wind directions, 
frequencies and speed during the period May-July are 
depicted in Fig. 3. Monthly mean NH3 concentrations 
in different wind directions and wind speed at 50, 
100, 150, 300 and 400 m during the period May-July 
for 12 sampling sites are depicted in Table II. NH3 
concentrations decreased rapidly with distance from 
the dairy barn, with highest concentrations observed 
in the eastern direction 200 m away from the source, 
and lowest concentrations observed in the southern 
direction. One possible reason for the smaller NH3 

Table I. Air exchange rates and average NH3 emission rates from a dairy barn during a five-day 
measurement period in June.

n Mavg RHi RHo ti to V AERH2O ENH3AU

240 632 71.1 74.8 16.7 14.8 34.2 4.8 1.4

n: Number of cows housed in the building; Mavg: Average weight of the cows (kg); RHi: Relative humidity 
inside the building (%); RHo: Relative humidity outside the building (%); ti: Air temperature inside the 
building (ºC); to: Air temperature outside the building (ºC); V: Ventilation rate (m3 s–1); AERH2O: Air 
exchange rate subject to H2O-balance (h–1); ENH3AU: Specific mass flow emission rate of NH3 (g AU–1 h–1).



342 M. Zapletal and P. Mikuška

a) b)

d)c)

0
5

10
15
20
25
30
35
40
45
50

0 100 200 300 400

C
on

ce
nt

ra
tio

n 
of

 N
H

3 (
µg

 m
–3

)
C

on
ce

nt
ra

tio
n 

of
 N

H
3 (

µg
 m

–3
)

Distance from dairy farms (m)

0
10
20
30
40
50
60
70
80
90

0 100 200 300 400
Distance from dairy farms (m)

0
10
20
30
40
50
60
70
80

0 100 200 300 400

Wind
direction

Frequency
(%)

East 3.3
South 14.9
Noth 21.2
West 14.8

Speed
(m s–1)

0.7
2.0
1.6
1.0

Wind
direction

Frequency
(%)

East 3.7
South 15.2
Noth 14.8
West 18.3

Speed
(m s–1)

0.6
1.7
1.4
1.1

0

10

20

30

40

50

60

70

0 100 200 300 400

C
on

ce
nt

ra
tio

n 
of

 N
H

3 (
µg

 m
–3

)
C

on
ce

nt
ra

tio
n 

of
 N

H
3 (

µg
 m

–3
)

Distance from dairy farms (m)

Wind
direction

Frequency
(%)

East 3.3
South 16.3
Noth 29.9
West 9.9

Speed
(m s–1)

0.9
2.0
2.0
0.8

Wind
direction

Frequency
(%)

East 2.8
South 13.2
Noth 18.9
West 16.2

Speed
(m s–1)

0.7
2.3
1.6
1.0

Distance from dairy farms (m)

Fig. 3. Mean NH3 concentrations (µg m–3) vs. distance from the source in different wind directions, wind direction 
frequencies and wind speed during the period (a) May-July, (b) May, (c) June, and (d) July.

Table II. Monthly mean NH3 concentrations in different wind directions and wind speeds during the period May-July 
for 12 sampling sites.

Month May Juny July

Wind
direction

Distance
(m)

Wind
speed

(m s−1)

NH3
concentration

(µg m–3)

Wind
speed

(m s−1)

NH3
concentration

(µg m–3)

Wind
speed

(m s−1)

NH3
concentration

(µg m–3)

North

50 2.0 47.1 1.4 76.2 1.6 68.2
100 36.6 27.9 40.6
150 16.4 19.8 20.4
300 8.0 8.3 8.4
400 6.0 6.1 6.4

East
150 0.9 13.9 0.6 23.9 0.7 22.9
300 10.4 17.2 11.8
400 9.1 14.7 10.1

South 50 2.0 12.0 1.7 14.7 2.3 13.2
150 5.0 5.3 6.2

West 300 0.8 6.2 1.1 3.4 1.0 5.4
400 5.0 3.3 3.3
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concentrations at 50 and 150 m from the dairy farm 
in the latter direction could be attributed to the 
highest wind speed at our site (with a three-monthly 
mean of 2 m s−1 at a 2 m height). High wind speed 
usually causes fast dispersion and dilution of the 
NH3 plume, and thus low NH3 concentration (Shen 
et al., 2016). The highest NH3 concentration at 300 
m and 400 m from dairy farm in eastern direction 
could be attributed to the lowest wind speed (with a 
three-monthly mean of 0.7 m s−1 at a 2 m height) and 
the lowest wind direction frequency. We recommend 
to locate tree belts around the source as a strategy 
to reduce the effects of emission hotspots on forest 
ecosystems located 300 m northeast and southwest 
from a dairy farm.

Several studies have dealt with the measurement 
of atmospheric NH3 profiles downwind of a known 
source. Our results were similar to those of Pitcairn 
et al. (1998), Theobald et al. (2006), Walker et al. 
(2008), Sutton et al. (1998, 2011) and Jones et 
al. (2013), who reported a rapid decrease of NH3 

concentrations with increasing distance to livestock 
farms. Our results show the short-range dispersion 
of NH3 emitted from a point source. However, short-
range dispersion of NH3 emitted from a point depends 
not only on the surrounding land-cover (Vogt et al., 
2013) and the number of animals in the barn (Adrizal 
et al., 2008; Verhagen and van Diggelen, 2006), but 
also on the strategies for reducing the effect of emis-
sion hotspots on ecosystems by locating tree belts 
around the sources (Theobald et al., 2001; Dragosits 
et al., 2006).

3.3 Comparison of NH3 emissions and concentra-
tions
The diurnal variation of NH3 emissions and concen-
trations through the measurement period at location 
B, with a maximum in the morning and minima in 
the afternoon and night, are shown in Figs. 4 and 5. 
Higher concentrations of NH3 on June 16 and 17 were 
caused by different meteorological conditions during 
those days. The diurnal variations of NH3 emission 
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were similar to those reported by Zhang et al. (2005) 
and Wang et al. (2006). Averaging the inferred hour-
ly emission rates over all of the available data and 
converting them to daily emission rates lead to the 
average emission of 10.3 kg NH3 d−1 from dairy barn 
with a standard error of 0.16 kg NH3 d−1 (n = 91). 
Hensen et al. (2009) reported a similar emission and 
concentration pattern and estimated NH3 emissions 
between 6.4 ± 0.18 kg d−1 (Huang 3-D model) and 
9.2 ± 0.7 kg d−1 (Gaussian 3-D model) from a nat-
urally ventilated livestock farm. Figure 6 shows the 
average NH3 emission rate as an exponential function 
of the indoor temperature in the cattle building. The 
emission level increased approximately from 1 to 7 g 
NH3 h−1 as the temperature increased from 9 to 25 ºC. 
Exponential dependence of NH3 emissions to indoor 
temperature was demonstrated by Zhang et al. (2005) 
over a temperature range of 5-23 ºC and Hensen et al. 
(2009) over a temperature range of 14-23 ºC.

3.4 Total and stomatal NH3 flux
Our mean deposition velocities computed according 
to Eq. (6) were 0.5 cm s−1 for coniferous forests and 
0.4 cm s−1 for crops. Zhang et al. (2009) reported a 
deposition velocity of 0.5 cm s−1 for coniferous for-
ests from June to July and 0.3 cm s−1 for the crops 
during spring. Deposition velocities were estimated 
from big-leaf models using on-site meteorological 
measurements (Hicks et al., 1987). Mean deposition 
velocities from 0.2 to 0.4 cm s−1 for agricultural 
sites were reported by several authors: 0.3 cm s−1 in 
spring by Cui et al. (2010); 0.2 cm s−1 in summer by 
Cui et al. (2010) and Zhou et al. (2010); 0.3 cm s−1 

by Hayashi et al. (2012); an annual mean of 0.3 cm 
s−1 by both Cui et al. (2011) and Delon et al. (2012), 
and an annual mean of 0.4 cm s−1 by Loubet et al. 
(2011). Mean fluxes to the forest vs. distance from the 
source in different wind directions, frequencies and 
wind speeds during the period May-July are depicted 
in Fig. 7. Mean fluxes to crops vs. distance from the 
source in different wind directions, frequencies and 
wind speeds during the period May-July are depicted 
in Fig. 8. The total flux of NH3 (Ftotal) to the forest 
canopy ranged from –0.32 to –0.03 µg NH3 m–2 s–1 

at 50 and 400 m, respectively, from the source to the 
north, which is the dominant downwind direction 
(Fig. 7a). The stomatal flux of NH3 to the forest can-
opy ranged from –0.092 to –0.009 µg NH3 m–2 s–1 
at distances of 50 and 400 m from the source to the 
north, which is the dominant downwind direction 
(Fig. 7b). The total flux of NH3 (Ftotal) to the crops 
ranged from – 0.24 to – 0.02 µg NH3 m–2 s–1 at 50 
and 400 m, respectively, from the source to the north 
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Fig. 7. (a) Total flux of NH3 and (b) stomatal flux of NH3 to the forest vs. distance from the source in different 
wind directions, frequencies and speeds during the period from May to July.
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(Fig. 8a). The stomatal flux of NH3 to the crops 
ranged from –0.094 to –0.008 µg NH3 m–2 s–1 at 
50 and 400 m, respectively, from the source to the 
north (Fig. 8b). Our estimated range is consistent 
with studies conducted in Europe and the USA, 
where deposition fluxes were estimated by Erisman 
and Wyers (1993), Duyzer et al. (1987), and Phillips 
et al. (2004). Erisman and Wyers (1993) observed 
deposition fluxes of 0.0 to 0.45 NH3 m–2 s–1 over 
heathland near a livestock production facility. Duyzer 
et al. (1987) reported NH3 fluxes in the range of –0.19 
to –0.03 NH3 m–2 s–1 over dry heathland. Phillips et 
al. (2004) observed the summer season-averaged 
deposition flux of –0.11 μg NH3 m–2 s–1 over a site 
with grass or short vegetation near a small swine 
production facility.

The total flux to forest and the total flux to crops 
displayed similar spatial patterns, decreasing expo-
nentially with distance from the cow-barn (Figs. 7 
and 8), which is in accordance with values reported 

previously (Fowler et al., 1998; Sutton et al., 1998; 
Verhagen and van Diggelen, 2006).

The mean Ftotal and Fsto from 0 to 400 m from the 
source respect to the surface type is shown in Fig. 9. 
Ftotal fluxes range from 0.06 to 0.08 µg N-NH3 m–2 s–1 
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for crops and forest, respectively. Fsto to the forest 
canopy and mean Fsto to crops represent 37 and 41% 
of Ftotal, respectively. Walker et al. (2008) estimated 
higher Ftotal fluxes of 0.08 to 0.16 for crops and forest, 
respectively. Mean Fsto to the forest canopy represent-
ed 26% of Ftotal in the vicinity of a swine production 
facility (Walker et al., 2008). Differences between our 
results and those reported by Walker et al. (2008) are 
partially attributed to the differences in spatial distri-
bution of forest and crops around the source and to the 
number of animals (4900 pigs). Assuming an emission 
factor of 43.2 g NH3 cow–1 d–1 and a mean population 
of 240 cows, the NH3 dry deposition over the nearest 
400 m from the source accounted for approximately 
11.5% (1192.3 g NH3) of daily emissions (10368 g 
NH3). Walker et al. (2008) found that 7.8-13.3% of 
emissions were deposited within 500 m of the swine 
facility surrounded by forest and crops. According to 
Fowler et al. (1998), 3-10% of emissions were depos-
ited within 300 m of a poultry facility surrounded by 
forest. Asman (1998) and Sutton et al.(1998) found 
that 2-50% of emissions were deposited within 300 m.

4. Conclusion
Inferred emissions were compared with measured 
concentrations of NH3 to obtain data for the deri-
vation of emission-deposition relationship around 
a dairy farm. The daily pattern of a source was 
correlated with the temperature inside a dairy farm. 
The daily pattern resulted from a combination of the 
temperature effect on a source concentration and the 
effect of the building’s ventilation rate. Both NH3 
concentration and NH3 total flux displayed similar 
spatial patterns, decreasing exponentially with dis-
tance from the dairy barn. The results show the short-
range dispersion of NH3 emitted from a point source, 
but it may not be the same in other situations, since 
dispersion of NH3 is dependent on the surrounding 
land-cover and on the number of animals in a barn. 
NH3 deposition around a dairy barn is a significant 
nitrogen input to surrounding crops and forest.
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