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RESUMEN

En este estudio se investigan los efectos directos, semidirectos e indirectos de los aerosoles en el clima del 
este de Asia, utilizando para ello el Modelo Climático Regional v. 4 (RegCM4.1.1, por sus siglas en inglés) 
del Centro Internacional de Física Teórica, para lo cual la investigación se centra en la temperatura y preci-
pitación del monzón de verano del este de Asia. Los aerosoles mezclados externamente, incluyendo sulfato 
(SO4

2–), carbono negro y carbono orgánico, redujeron el flujo solar que llega a la superficie, directamente 
mediante la dispersión de la radiación solar, y de manera indirecta incrementando la concentración de gotitas 
de agua en las nubes y el contenido de agua liquida integrada en la columna vertical sobre el este de China. 
Los efectos combinados (directos e indirectos) de los aerosoles redujeron la temperatura en el continente y 
la incrementaron en los océanos, lo que condujo a la reducción de precipitaciones en las regiones centrales 
de China y a su mejoramiento en las zonas adyacentes de los océanos.

ABSTRACT

In this study, the aerosol direct, semi-direct and indirect effects on the East Asia climate are investigated using 
the International Center for Theoretical Physics Regional Climate Model v. 4 (RegCM4.1.1), by focusing on 
the East Asian Summer Monsoon temperature and precipitation. The externally mixed aerosols, including 
sulfate (SO4

2–), black carbon and organic carbon, reduced the solar flux reaching the surface directly by 
scattering solar radiation, and indirectly by increasing the cloud droplet concentration and cloud liquid water 
path over East China. The combined aerosol effects (direct and indirect) decreased the temperature on the 
continent and increased it over the oceans, leading to the reduction of rainfall in the central regions of China 
and an enhancement of rainfall in the adjacent ocean regions.

Keywords: aerosol, indirect effects, East Asian summer monsoon, precipitation, Regional Climate Model.

1.	 Introduction
The impacts of aerosols on the radiation budget and 
precipitation are topics of many climate studies on 
both global (e.g., Charlson et al., 1992; Boucher 
and Lohmann, 1995; Takemura et al., 2005) and 
regional (e.g., Qian and Giorgi, 1999; Giorgi et al., 

2002; Huang et al. 2007; Kim et al., 2012; Salah et 
al., 2018) scales. Atmospheric aerosols, which are 
suspensions of solid and liquid particles in air, affect 
the global climate system by scattering and poten-
tially absorbing shortwave (SW) and thermal (LW) 
radiation (direct effects). Through their role as cloud 
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condensation and ice nuclei, aerosols can indirectly 
modify the microphysical and radiative properties of 
clouds. An increase in aerosol concentrations from 
anthropogenic sources can lead to increased cloud 
droplets number concentration with smaller radii, 
causing more reflected solar radiation (1st indirect 
or cloud albedo effect [Twomey, 1977]). The small-
er cloud droplets decrease precipitation efficiency 
and consequently increase cloud lifetime, and by 
adding more cloud water, the fractional cloud cover 
will increase (2nd indirect or cloud lifetime effect, 
[Albrecht, 1989]). The absorption of solar radiation 
by aerosols, such as black carbon, warms the tropo-
sphere and contributes to a reduction in cloudiness 
(semi-direct effect).

The aerosol radiative forcing (ARF) is a common 
metric to quantify the influence of aerosols on the 
Earth’s energy balance. The direct and 1st indirect 
aerosol forcing accounts for a large source of uncer-
tainty in IPCC climate change projections (Lohmann 
et al., 2010). This uncertainty is due to the wide 
variety of aerosol composition (e.g., sulfate [SO4

–2], 
black carbon [BC], organic carbon [OC], dust, sea 
salt, and nitrate), sources (e.g., rural, urban, deserts, 
or oceans), the short lifetime of the aerosols in the air, 
and the chemical and microphysical processes occur-
ring in the atmosphere, including the aerosol-cloud 
interactions (Menon, 2007; USCCSP, 2009). ARF 
is defined as the difference in the net radiative flux 
between the present day total aerosol loading (nat-
ural and anthropogenic) and an initial state, which 
can be defined as no aerosols, pre-industrial aerosol 
concentrations, or the current estimation of natural 
aerosol loading. ARF, therefore, varies according to 
each initial state implemented in model simulations 
(USCCSP, 2009).

Generally, the sum of direct and 1st indirect ARFs 
calculated at the top of the atmosphere (TOA) due to 
anthropogenic aerosols is negative (cooling effect), 
and estimated to be –1.2 [–0.2 to –2.3] (IPCC, 2007). 
The other aerosol effects on clouds such as the 2nd 
indirect and the semi-direct effects cannot be eval-
uated by the usual definition of ARF, but they can 
be treated as feedbacks (Lohmann et al., 2010) with 
changes in the global mean precipitation ranging from 
0 to –0.13 mm day–1 (IPCC, 2007).

Anthropogenic aerosols resulted from the rapid 
industrialization over Asia during the last decades, 

could be one of many factors causing an observed 
weakening trend of the East Asian Summer Mon-
soon (EASM) and the southward shift of rain belt 
(Xu, 2001; Menon et al., 2002; Zhao et al. 2006; 
Chen et al., 2016; Dong et al., 2019). EASM, which 
is a subtropical monsoon system, influences most of 
East Asia regions, resulting in heavy rainfall during 
the summer. The EASM has large effects on water 
resources, agriculture and human society in differ-
ent East Asian countries, because it provides most 
of their annual precipitation (Wang et al., 2018). 
Jiang et al. (2013) suggested that all anthropogenic 
aerosols lead to a precipitation reduction in North 
China and an increase in South China and regions 
near the Pacific Ocean. Guo et al. (2013) found that 
precipitation reduces in September by 26.4% for 
SO4

2– and 14.6% for BC based on the emissions 
levels of 2000.

Regional climate model studies using the ICTP 
Regional Climate Model (RegCM) estimated the 
cooling at TOA due to the direct and 1st indirect 
effects of SO4

2– over eastern Asia by –8 Wm–2 and 
–15 Wm–2 in winter and summer, respectively (Qian 
and Giorgi, 1999; Giorgi et al. 2002). Huang (2005) 
and Huang et al. (2007) investigated the effects of 
three anthropogenic aerosols (SO4

2–, BC and OC) 
with different auto-conversion parameterizations and 
found that the combined effects of direct, semi-di-
rect and 1st and 2nd indirect over East Asia reduced 
precipitation up to 30%.

Using the same procedures than Salah et al. (2018) 
to study aerosol effects on the West African Monsoon, 
we continued the investigation of the impact of var-
ious autoconversion parameterization rates on dif-
ferent meteorological parameters over East Asia, by 
focusing on EASM. Section 2 presents the methods 
of parameterization of the indirect effects used in the 
simulations. Section 3 describes the model structure 
and the simulation setup. Results and conclusions are 
presented in sections 4 and 5, respectively.

2.	 Model description and simulation setup
2.1 Model description
We used the ICTP regional climate model (Reg-
CM4.1.1), which is a hydrostatic model with sig-
ma-vertical levels (Giorgi et al., 2012). The radiative 
transfer processes have been parameterized using 
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the NCAR Community Climate Model (CCM3) 
(Kiehl et al., 1996). The solar spectrum optical of the 
cloud properties depend on three parameters: (a) the 
cloud liquid water path, which is derived from the 
amount of cloud liquid water content calculated by 
the model, (b) the fraction of the cloud cover, which 
is calculated as a function of relative humidity, and 
(c) the effective radius of the cloud droplets, which 
is represented as a function of temperature and land 
sea mask for a liquid phase cloud, and as a function 
of height for an ice phase cloud (Giorgi et al., 2012). 
The Biosphere-Atmosphere Transfer Scheme (BATS) 
(Dickinson et al., 1993) was used for land-surface 
processes, and the scheme of Holtslag (Holtslag et al., 
1990) to represent the boundary-layer processes. For 
convection, we used a modified version of the Kuo 
scheme of Anthes (1977), as described by Anthes et 
al. (1987). Non-convective clouds and precipitation 
were based on the Subgrid Explicit Moisture Scheme 
(SUBEX) (Pal et al., 2000). The simulations present-
ed here used a simplified aerosol scheme designed for 
long-term climate simulations. Solmon et al. (2006) 
implemented an aerosol model including SO4

2–, 
OC and BC. The scattering and absorption of solar 
radiation by aerosols are also included based on the 
aerosol optical properties, including the absorption 
coefficient and single-scattering albedo, which are 
both depend on aerosol composition (Solmon et al., 
2006).

2.2 Parameterization of auto-conversion processes
In RegCM4, the formation of non-convection pre-
cipitation is represented by the SUBEX, in which a 
Kessler-type formula (KS) (Kessler, 1969) converts 
cloud drops to rain drops by a defined auto-conver-
sion rate. Precipitation (P) is assumed to form in 
any atmospheric level when the cloud water content 
(WL) exceeds the threshold value (WL

th), as in the 
following relation:

P = Cppt (wL ⁄ fc – wL
th) fc	 (1)

where P is the raindrop formation rate (kg kg–1 s–1),  
1/Cppt is the characteristic time for which cloud 
droplets are converted into raindrops, and fc is the 
cloud fraction. The threshold value is obtained as a 
function of temperature according to the following 
relation derived by Gultepe and Isaac (1997):

wL
th = Cacs 10–0.49+0.013T	 (2)

where T is the temperature in ºC, and Cacs= 0.4 is the 
autoconversion scale factor (Pal et al., 2000). Thus 
to include the effect of aerosols on the lifetime of 
clouds and their efficiency to precipitate (2nd indirect 
effect), the auto-conversion rate is modified to depend 
on the number of cloud droplets (Nc) and their effec-
tive radius (re) as well as cloud liquid water content 
(WL). In this regard, we tested three autoconversion 
schemes, which have been used and mentioned in 
details by Salah et al. (2018): (1) Beheng (1994), 
based on a study by Lohmann and Feichter (1997), 
hereinafter the BH scheme; (2) Tripoli and Cotton 
(1980), referred here as the TC scheme, and (3) the 
auto-conversion parameterization (R6 scheme) of 
Liu and Daum (2004 a, b).

Our baseline control simulation is similar to the 
one used by Huang et al. (2007), with an updated 
version of the model RegCM4.1.1, and an additional 
auto-conversion scheme (R6) with another kind of 
data.

2.3 Data and experimental design
Simulations were conducted over East Asia, a region 
characterized by high concentrations of anthropo-
genic and natural aerosols. The model domain was 
centered over 34º N and 120º E, with 80 × 104 model 
grid cells at a spatial resolution of 60 km. The atmo-
sphere was represented by 18 sigma levels, with the 
model top at 10 hpa. All simulations used the reanal-
ysis global data NNRP2 for the meteorological initial 
and lateral boundary conditions, the NOAA Optimum 
Interpolation Sea-Surface Temperature weekly data 
(OI_WK) V2 as sea surface temperature, the Emis-
sion Database for Global Atmospheric Research 
(EDGAR) for aerosol emissions, and the MOZART4 
model output as the chemical boundary conditions. 
The 15-month simulations ran from June 1, 1994 to 
September 1, 1995, with the first two months being 
removed for model spin-up. We simulated aerosols 
included SO4

–2, and hydrophobic and hydrophilic 
BC and OC with source emissions from the EDGAR 
database.

To investigate the aerosol effects on EASM, we 
performed 10 sensitivity analyses with a varying 
treatment of aerosols in the atmosphere. In the control 
runs (ctrl_run, ctrl_BH, ctrl_TC, and ctrl_R6), four 
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different auto-conversion schemes were used (KS, 
BH, TC, and R6, respectively). In these control simu-
lations, the radius of the cloud droplets was constant 
(10 µm); these simulations did not include the effects 
of aerosols on radiation and clouds.

As illustrated in Table I, the runs of dirBC and 
dir0 included the direct effect of all aerosols with 
and without BC, respectively, with a constant cloud 
droplet size. The first indirect effect of aerosols was 
explored with an additional simulation (Indir1); 
this simulation allowed the size of cloud droplets to 
change according to the aerosol concentrations. The 
combined effects of all aerosols (direct, 1st indirect, 
and 2nd indirect) were included in the runs of all_BH, 
all_TC, and all_R6 for the three new auto-conversion 
schemes.

The observational climate data set used to evaluate 
the model performance and to assess the anthropogenic 
aerosol effects has been developed by the Climate 
Research Unit (CRU) of East Anglia University 
(Mitchell and Jones, 2005), which includes monthly 
surface air temperature and precipitation over land 
from 1901 to 2009 gridded at a resolution of 0.5º.

3.	 Results and discussion
3.1 Control runs (without aerosol climate inte-
ractions)
In Figure 1, the spatial distribution of seasonal tem-
perature differences between the ctrl_run and CRU 
shows that a warm bias exists in northern China, espe-

cially in winter and summer (Fig. 1b, d, respectively), 
and a cold bias exists in the southern domain in fall 
and winter (Fig. 1a, b, respectively). Figure 2 rep-
resents the spatial distribution of seasonal precipita-
tion differences between ctrl_run and CRU. The cold 
bias in winter is accompanied by more precipitation 
inland than observed in southern regions (Figs. 1b 
and 2b). However, in the summer (Fig. 1d) when a 
warm bias occurs over much of the domain, the model 
simulates more precipitation than CRU inland in the 
eastern regions and less precipitation in the southern 
regions (Fig. 2d) in conjunction with the warm bias.

Figure 3 shows the variation in monthly mean 
surface-air temperature, precipitation, and total 
cloud cover in the control run simulations when 
changing the auto-conversion parameterizations. It 
can be noticed from Figure 3a that all the various 
control runs produce a warm bias in the winter 
months relative to the CRU surface-air tempera-
ture, and the KS and BH auto-conversion schemes 
give higher temperatures than CRU during the 
summer months. The TC and R6 parameterizations 
(ctrl_TC, and ctrl_R6, respectively) produce less 
precipitation over the domain than the Kessler 
parameterization (ctrl_run), but the BH scheme 
(ctrl_BH) simulates more precipitation than ctrl_
run (Fig. 3b). All model configurations reproduce 
the seasonal variations of the East Asian climate 
with a dry cold winter and a wet warm summer 
with an onset of the monsoonal precipitation in 
spring. In general, the four control runs produce 

Table I. List of the experiments performed in this study.

Experiment ctrl_run ctrl_BH ctrl_TC ctrl_R6 dir0 dirBC Indir1 all_BH all_TC all_R6

Auto-
conversion scheme

KS BH TC R6 KS KS KS BH TC R6

Aerosols All1 All All All All - BC All All All All All

Aerosol effect none none none none Direct Direct Direct+
1st 

indirect

Direct+
1st +2nd

indirect

Direct+
1st +2nd

indirect

Direct+
1st +2nd

indirect

Cloud droplet
number

Fixed 
(10µm)

Fixed 
(10µm)

Fixed 
(10µm)

Fixed 
(10µm)

Fixed 
(10µm)

Fixed 
(10µm)

predicted predicted predicted predicted

1All: SO4
2 + BC + OC (biomass burning and anthropogenic).
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less precipitation than CRU in summer (Fig. 3b), 
actually underestimating the monsoon precipita-
tion by a factor of two. The three schemes of BH, 
TC, and R6 lead to less total cloud cover than the 
control run using the KS scheme (Fig. 3c), but all 
these parameterizations produce a cloud cover 
greater than the CRU observations by about 40% 
in summer and more than 90% in winter.

Figure 4 shows the variations in rainfall produced 
by the control run of simulations with different au-
to-conversion parameterizations with respect to the 

base model control run (ctrl_run). The runs of ctrl_TC, 
and ctrl_R6 produced less precipitation over the do-
main than ctrl_run, but ctrl_BH simulates more pre-
cipitation than ctrl_run. Precipitation decreases in all 
seasons for the TC scheme, with the greatest decrease 
in the fall (–19%) and a decrease of up to –17% in 
spring, with similar patterns for the R6 scheme (–17% 
in the fall and –10% in the spring). For the BH scheme, 
precipitation increases slightly in the winter (10%) and 
summer (< 2%). These varying responses are due to 
the different auto-conversion treatments. For example, 
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Fig. 1. Seasonal mean difference between the ctrl_run and CRU observations for temperature (in K).
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in the KS scheme the cloud droplets are converted 
to rain drops when the cloud liquid water content 
(WL) exceeds a critical value. In the TC scheme, rain 
can occur if the number of cloud droplets have a 
radius of 20 µm (Nc20) that exceeds 103 m–3, so that 
at low liquid water content, the auto-conversion is 
activated, provided the aerosol concentrations are 
sufficient to achieve this condition. In the R6 scheme, 
the auto-conversion occurs when R6 exceeds R6c that 
increases with low WL and vice versa. In contrast, the 
BH scheme without a threshold simulates more rainfall 
than the other scheme.

3.2 Aerosol direct, semi-direct, and 1st indirect 
effects
We investigated the seasonal changes in the ARF, 
temperature, and precipitation resulting from the 
direct, semi-direct and 1st indirect effects of aerosols. 
Table II summarizes the seasonal means of aerosol 
optical depth (AOD), column concentration of SO4

2–, 
OC and BC, ARF at the surface (RF_SRF) in the clear 
and cloudy sky, and at TOA (RF_TOA), and changes 
in surface air temperature and precipitation as sim-
ulated in the basic control run (ctrl_run), the dir0, 
dirBC, and Indir1 simulations relative to ctrl_run.
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Fig. 2. Seasonal mean difference between the ctrl_run and CRU observations for precipitation (in mm month–1).
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3.2.1 Seasonal mean of simulated aerosols
Fig. 5a, b shows the distributions of the anthropo-
genic and biomass burning emissions of SO2, respec-
tively, along with the anthropogenic emissions of BC 
and OC (Fig. 5c, d, respectively). The monthly mean 
aerosol column burden included in our simulations 
(Table II) shows that SO4

2– decreases in winter and 
increases in summer and fall months, while BC and 
OC decrease in winter and increase in the fall. In 
addition, Table II shows the highest seasonal mean 
of AOD of 0.3 occurs in summer coincident with the 
maximum column burden of SO4

2–.

3.2.2 Direct effects of SO4
2– and OC (dir0 experi-

ment)
Changes in the seasonal averaged solar radiation 
reaching the surface due to the aerosol direct effect 
(RF_SRF) are listed in Table II. For clear sky, there is 
no substantial change in solar radiation resulting from 
the addition of SO4

2– and OC (e.g., dir0 relative to the 
ctrl_run), with domain average changes less than ± 
0.1 Wm–2. For all-sky, there is a negative forcing in all 
seasons with the maximum in spring and summer of 
–0.9 and –0.7 Wm–2, respectively. The annual change 
of solar radiation at the surface (–0.59 Wm–2) results 
in a decrease in surface air temperature (–0.04 K) due 
to the direct effect of sulfate and organic carbon. The 
largest percentage decreases in precipitation occurred 
in the fall and winter, when the direct effect of SO4

2– 

and OC (dir0) causes reduction of rainfall of –3% 
and –2.3% in fall and winter, respectively (Table II).

3.2.3 BC effect (dirBC experiment)
We will now examine the effects of adding BC to 
SO2–

4 and OC aerosols, which are treated as exter-
nally mixed in the model (Solmon et al., 2006). BC 
increases cooling at the surface by absorbing solar 
radiation, and at the same time it heats the atmosphere 
by absorbing the downward solar radiation and the 
scattering shortwave from the surface and clouds 
(Seinfeld and Pandis, 2006). For our simulations, 
BC slightly reinforces the negative cooling at the 
surface in all seasons in the clear-sky cases except 
the winter, which has the lower column concentration 
of BC (Table II). The total annual effect is a slight 
cooling at the surface (–0.03 Wm–2). In the cloudy 
sky, this cooling increased due to the presence of 
clouds, increasing the annual mean cooling effect 
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26% more than the clear-sky case to reach the value 
of –0.81 Wm–2 (Table II). The direct ARF at TOA, 
which is defined as the summation of the forcing 
at the surface and in the atmospheric column, is 
stronger in the fall and summer (–0.8 and –1 Wm–2 
as compared to –0.3 and 0.6 W m–2, respectively, 
in dir0), and weaker in the winter and spring (–0.5 
and –0.8 Wm–2 as compared to –0.6 and –0.9 Wm–2, 

respectively, in dir0). The results in Table II suggest 
that BC’s effect is relatively weak on the surface 
temperature in this region in all seasons (e.g., less 
than 0.1 K). However, there is an obvious effect of 
BC on the vertical temperature profile in between the 
levels from 600 to 200 hpa in fall, spring, and summer 
with little change in winter (Fig. 6). By adding black 
carbon, the precipitation reduction decreases in the 
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Fig. 5. Emissions used in simulations: a) anthropogenic SO2 (grams m–2 month–1), b) biomass burning SO2 (grams 
m–2 month–1), c) anthropogenic BC (grams m–2 year–1) and d) anthropogenic OC (grams m–2 year–1).
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fall and spring and increases slightly in winter and 
summer, relative to the direct effect without BC. In 
summer and spring, the addition of BC decreases 
lower tropospheric temperatures (from the surface 
up to 700 hpa), but causes warming in a layer from 
700 to 200 hpa, especially in summer (Fig. 6d). This 
increases the stability of the boundary layer and can 
decrease the development of clouds, consequently 
decreasing the precipitation as observed by Huang 
et al. (2007) and Jiang et al. (2013).

3.2.4 1st indirect effect (Indir1 experiment)
The simulation of Indir1 (including direct, semi-di-
rect and 1st indirect effects) reinforces the negative 
forcing of the direct effect by decreasing the cloud 
droplet size and increasing cloud reflectivity. This 
also increases the cooling at the surface with the 
maximum in the summer (–6 Wm–2) under cloudy sky 

(Table II). Adding the 1st indirect effect (Indir1) gen-
erally cools the surface-air temperatures over conti-
nental areas by about –0.3 degrees annually (Table II), 
and reduces precipitation by –9% in SON and DJF and 
–6% in MAM, with weaker effects on JJA with a pre-
cipitation reduction of –3%. As shown in Figure 7d, 
adding the 1st indirect effect to dirBC increases the 
precipitation more than 60 mm month–1 over the 
eastern coasts of East Asia, and decreases it over the 
inland north regions. Whereas in the fall, winter and 
spring (Figures 7a, b, and c, respectively) the decrease 
in rainfall is the dominant impact of Indir1 simulation 
with small areas of surplus rainfall.

3.3 Aerosol effects on EASM
Here we discuss the aerosol effects (direct, semi-di-
rect, and 1st and 2nd indirect effects) on temperature 
and precipitation during EASM, using the different 

Table II. Seasonal mean AOD, column concentration of simulated aerosols (µg m–2), differences in net solar radiation 
reaching the surface (RF_SRF) and TOA (RF_TOA), surface-air temperature change (∆T; K), and precipitation change 
(∆P; mm month–1) relative to ctrl_run using the original scheme of auto-conversion rate of Kessler. 

Experiment SON DJF MAM JJA Annual

AOD ctrl_run 0.21 0.20 0.20 0.27 0.22

SO4 (µg m–2) ctrl_run 18.01 13.88 15.61 20.03 16.88

OC*1e3 (µ m–2) ctr__run 20.54 16.62 17.86 17.45 18.12

BC*1e3 (µg m–2) ctrl_run 18.35 14.80 16.03 15.82 16.25

ARF_SRF (Wm–2)
clear sky

dir0-ctrl_run 0.07 0.00 0.02 –0.06 0.01
dirBC-ctrl_run 0.00 0.01 –0.02 –0.13 –0.03
Indir1-ctrl_run 0.01 –0.01 0.02 –0.03 0.00

ARF_SRF (Wm–2)
all sky

dir0-ctrl_run –0.25 –0.56 –0.92 –0.74 –0.59
dirBC-ctrl_run –0.85 –0.49 –0.87 –1.03 –0.81
Indir1-ctrl_run –3.03 –2.58 –4.54 –5.68 –3.96

ARF_TOA (Wm–2)
all sky

dir0-ctrl_run –0.30 –0.57 –0.89 –0.55 –0.58
dirBC-ctrl_run –0.83 –0.50 –0.83 –0.96 –0.78
Indir1-ctrl_run –3.60 –2.98 –5.01 –6.64 –4.56

∆T (K) dir0-ctrl_run –0.06 –0.08 –0.04 0.02 –0.04
dirBC-ctrl_run –0.07 –0.07 –0.04 0.02 –0.04
Indir1-ctrl_run –0.29 –0.48 –0.26 –0.33 –0.34

∆P (mm month–1) dir0-ctrl run –346.68 –0.59 (–2.28) –0.73 (–1.27) –1.05 (–0.89) –0.91 (–1.85)
dirBC-ctrl_run –0.97 (–2.35) –0.61 (–2.38) –0.59 (–1.09) –1.93 (–1.77) –1.03 (–1.90)
Indir1-ctrl_run –4.41 (–9.28) –2.39 (–9.19) –2.87 (–5.80) –3.62 (–3.47) –3.32 (–6.94)

Notes: All values were averaged over the land only; the relative change in total precipitation is given in percent (in 
brackets).
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auto-conversion parameterizations (KS, BH, TC, 
and R6, as in section 2). The EASM is an important 
source of precipitation in the region and the dominant 
climatological feature in the summer.

3.3.1 Combined aerosol effects (all_BH, all_TC, 
and all_R6) on EASM
Table III summarizes the changes in the atmospheric 
and radiative quantities due to the parameterization of 
the indirect effects, including the mean of total cloud 
fractional cover (ΔCLD) and cloud liquid water path 
(weighted by cloud fraction) (ΔCLWP), the planetary 
albedo (ΔPALB), SW and LW radiation flux at TOA, 
surface temperature and total precipitation during the 
summer season. In Table III, results are presented 

as spatially averaged over the land-only model do-
main for the four auto-conversion parameterization 
experiments relative to the corresponding control 
experiments (i.e. all_BH – ctrl_BH, all_TC – ctrl_TC, 
and all_R6 – ctrl_R6).

Including all aerosol effects, cloud cover decreased 
by less than –0.2% with the BH and R6 schemes, 
whereas it increased 0.2% with TC (Table III). 
CLWP increases from 4-13% in the three auto-con-
version simulations. These results show that the au-
to-conversion scheme of BH has the strongest impact 
on CLWP and precipitation as compared to the R6 
and TC schemes. This could be due to the lack of a 
critical threshold for cloud droplet conversion in the 
BH scheme as is present in the other schemes. These 
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Fig. 6. Seasonal variation of the temperature vertical profile resulting from simulations of dir0 
(red) and dirBC (blue) relative to the basic control run (ctrl_run).
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Fig. 7. Seasonal mean of the precipitation difference between the Indir1 and dirBC (in mm month–1).

Table III. Changes in summer (JJA) mean of total cloud fractional cover (ΔCLD), cloud liquid water path weighted 
by cloud fraction (ΔCLWP), planetary albedo (ΔPALB), short-wave (SWR), long-wave (LWR) at TOA, temperature 
(ΔT) and precipitation (ΔP) for the combined aerosol effects with different auto-conversion schemes (all_BH, 
all_TC, and all_R6) relative to their control runs (ctrl_BH, ctrl_TC, and ctrl_R6). All results were averaged over 
the model domain land grid only.

Experiments all_BH all_TC all_R6

ACLD (%) –0.24 0.18 –0.25
ACLWP (%) 12.53 6.64 3.96
APALB (%) 4.79 3.14 2.17
SWR (Wm-2) –5.94 –3.92 –3.84
LWR (Wm-2) 0.13 0.60 1.35
∆T (K) –0.44 –0.41 –0.42
∆P (%) –7.60 –5.03 –7.56
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changes in cloud cover and CLWP due to including 
combined aerosol effects, resulted in an increase 
in the planetary albedo of up to 5% using the BH 
scheme (Table III).

The combined aerosol effects further reduced the 
SW radiation in the BH auto-conversion scheme as 
compared to the TC and R6 schemes. However, there 
is an increase in the TOA LW radiation, especially for 
the BH parameterization (Table III). The experiments 
of all_BH, all_TC, and all_R6 reinforce the reduction 
of temperature and precipitation (ΔT, and ΔP, respec-
tively) resulting from the 1st indirect effect (Indir1; 
Table II). Specifically, the BH and R6 experiments re-
duce precipitation by –8% and temperature by –0.4 K 
(Table III).

3.3.2 Different aerosol effects on EASM ARF, tem-
perature and rainfall
Figure 8 illustrates the surface and TOA ARF (RF_
SRF and RF_TOA, respectively) due to direct and 
indirect aerosol effects in JJA 1995. BC adds more 
cooling to SO4

2– and OC at the surface and TOA, 
but this cooling does not exceed –1 Wm–2. Whereas 
Indir1 run makes ARF_SRF and ARF_TOA more 
negative (< –5 and –6 Wm–2, respectively). By adding 
the 2nd indirect effect, the cooling at the surface in-
creases with all auto-conversion schemes (ARF_SRF 
< –11 Wm–2 with BH scheme), but at TOA there is a 
warming with all auto-conversion schemes compared 
to Indir1 simulation (ARF_TOA = –6 Wm–2).

Figures 9 and 10 show the spatial distribution of 
the summer temperature and precipitation change 
due to the aerosol direct and indirect effects for the 
simulations of (a) dir0, (b) dirBC (c) Indir1, (d) 
all_BH, (e) all_TC, and (f) all_R6 relative to ctrl_run, 

to show their different impacts on temperature and 
rainfall during the summer monsoon. Figure 9a 
shows that the direct effect of SO4

2– and OC (dir0) 
results in relatively small decreases in temperature 
(less than 0.5 K) over the eastern coast of China with 
some temperature increase over the inland. By adding 
BC, the area of higher temperature over the ocean 
increased but temperature changes are still relatively 
small (< 0.5 K) (Fig. 9b). However, the addition of 
the 1st indirect effect decreased the temperature by 
about –1K over most of the region.

The inclusion of the 2nd aerosol effect with the 
different auto-conversion parameterizations (all_BH, 
all_TC, and all_R6) further decreased the tempera-
ture over almost all the continental regions (Fig. 9d, 
e, f, respectively). Cold biases are up to 3 K in some 
regions with the R6 scheme. This suggests that sur-
face temperatures are most sensitive to the combined 
effects of the direct and indirect parameterizations.

As shown before in Figure 3d, the basic control 
run reproduced the main features of the JJA rainfall 
but underestimated the magnitude of precipitation 
as compared to the CRU dataset, especially over the 
regions on the Bay of Bengal and the Korean penin-
sula. As noted with the surface temperature, changes 
in precipitation are relatively small and spatially in-
homogeneous in the direct effects experiments (dir0 
and dirBC; Fig. 10a, b, respectively); they decrease 
inland precipitation and increase precipitation near 
the coasts. This increased precipitation on the eastern 
coast of China and near Japan is enhanced by adding 
the 1st indirect effect (Fig. 10c), and the amount of 
rainfall changing up to ± 100 mm month–1 in some 
regions. Closely linked to temperatures, the largest 
changes in the simulations occur when all effects of 
aerosols are included, which leads to large changes 
in precipitation within the region (–6, –20, and –30% 
using BH, TC, and R6 auto-conversion parameter-
izations, respectively).

This spatial change in precipitation patterns is 
consistent with a weakening of the EASM, where 
cooler land temperatures reduce the land-ocean 
temperature gradient that drives the monsoon inward, 
leading to more precipitation near the coast and less 
precipitation inland as observed in other modeling 
studies (Huang et al., 2007; Liu et al., 2011; Jiang et 
al., 2013). This effect of the temperature gradient on 
the summer monsoon is strengthened substantially 
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0
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Fig. 8. Simulated ARF at the surface and TOA, during JJA 
1995 for all the direct and indirect runs.
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by including the 2nd indirect effect with the differ-
ent auto-conversion schemes (all_BH, all_TC, and 
all_R6; Fig. 10d, e, and f, respectively), which leads 
to intense reduction of rainfall along the eastern re-
gions of East Asia and limit the rainfall surplus in the 
adjacent ocean regions. The most increases of precip-
itation over the land occurred in the region between 
20-30º N and 110-120º E on the China eastern coast 
(surrounded by a red square in Fig. 10f).

4.	 Summary and conclusions
The RegCM4 model was used to investigate the 
effects of sulfate and carbonaceous aerosols on the 
regional climate over East Asia, focusing on their 
impacts on EASM using different auto-conversion 
parameterizations. The direct, semi-direct, and indi-
rect effects were investigated individually and in a 
combined simulation to explore the role of aerosols 
in the climate of the region. It was found that the 
direct, semi-direct, and 1st indirect aerosol effects 
generate a surface cooling that is reinforced when 
simulating precipitation inhibition. The largest re-
duction of rainfall occurred in fall and winter, when 
the direct effect decreased precipitation by 2-3% with 
no substantial difference between the influence of 
direct and semi-direct effects on precipitation. How-
ever, the inclusion of the first indirect effect further 
decreased precipitation up to about 9% in SON and 
DJF. The cooling effect of SO4

–2 was dominant in all 
seasons, and the BC effect was relatively weak in our 
simulations. The combined effects in the simulations 
(including the direct, semi-direct, 1st and 2nd indi-
rect effects) indicated that the model exhibits more 
sensitivity in precipitation when including the indi-
rect effects than the direct effects alone. The results 
showed that the presence of atmospheric aerosols 
could alter the migration and magnitude of the mon-
soon system. The simulations revealed that the EASM 
system is likely to be very sensitive to the indirect 
effect parameterization or treatment in models, and 
this inclusion can improve these models' accuracy.
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