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RESUMEN

Las tendencias climáticas locales y regionales impulsarán las tasas de cambio en los ecosistemas costeros. Se 
caracterizaron series temporales de 35 años de duración de la temperatura del aire, la humedad relativa y la 
precipitación en el sistema arrecifal del suroeste del Golfo de México. Los datos provinieron de un modelo 
climatológico, pero para evaluar su fluctuación local, las diferencias con los registros in situ se estimaron 
cuando los registros estuvieron disponibles. Las tres variables mostraron coherencia con el registro de alta 
presión del sistema de alta presión del Atlántico norte en tiempos similares y en periodos de 4 a 8 y > 10 
años, lo que evidencia la influencia, a escala regional, de las señales de El Niño Oscilación del Sur (ENOS) y 
la Oscilación Multidecadal del Atlántico (AMO). Las anomalías positivas y negativas mostraron tendencias 
lineales que representan un aumento de eventos más cálidos y húmedos dentro de una climatología estacional 
en el área de estudio del Golfo de México, y presentaron una correlación relativamente alta (> 0.5) con el 
modo AMO. Los periodos de retorno de valores extremos variaron de 5 a 10 años. En general, las tendencias 
y los eventos extremos mostraron patrones similares a escala regional, pero el aumento de la lluvia puede 
ser mayor en la ubicación central del área de estudio. Una mayor frecuencia de eventos extremos podría 
amenazar los ecosistemas locales y a la población. Son necesarios planes y acciones de gobierno a escala 
local para lograr una adaptación preventiva al clima.

ABSTRACT

Local and regional climate trends drive rates of change in coastal ecosystems. To better understand local 
climate, 35-year-long time series of air temperature, relative humidity and rainfall were analyzed along the 
reef corridor of the southwestern Gulf of Mexico. Data came from a climatological model and to assess its 
local performance, differences with in situ records were estimated when available. All three variables showed 
coherence with the record of the North Atlantic high-pressure system (also known as the Bermuda High) at 
similar times and periods between 4 to 8 and >10 years, evidencing the influence, at this regional scale, of El 
Niño Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO). Positive and negative 
anomalies showed linear trends depicting an increase of warmer and moister events during a seasonal cli-
matology at the reef corridor of the southwestern Gulf of Mexico and a relatively higher correlation (> 0.5) 
with the AMO mode. Return periods of extreme values varied between 5 and 10 years. In general, trends 
and extreme events showed similar patterns at a regional scale, but the increase in rainfall is expected to be 
larger near the central location of the study area. A higher frequency of extreme events could threaten local 
ecosystems and human populations; therefore, plans and actions at local scales of governance are needed to 
achieve preemptive climate adaptation. 

Keywords: Sistema Arrecifal Veracruzano National Park, Los Tuxtlas reefs, long-term linear trends, extreme 
values, ENSO signal, AMO signal.
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1.	 Introduction
The North Atlantic Subtropical High (NASH) system 
has intensified over the last 40 years, associated with 
anthropogenic warming, extending its western ridge 
further west (Li et al., 2011; Díaz-Esteban and Raga, 
2018). The NAHS has a direct effect over the regional 
coastal climate, as shown by Zhu and Liang (2013) 
over the eastern United States. To characterize the 
NASH variability, Zhu and Liang (2013) used an 
index that is the result of a sea-level pressure gradient 
between two specific locations: Bermuda (40º N, 60º 
W) and New Orleans (30º N, 90º W). Previous studies 
computed a similar index using the location of New 
Orleans but different locations near Bermuda, such 
as (32.5º N, 65º W) by Katz et al. (2003) and (35º 
N, 65º W) by Ortegren et al. (2011). Those studies 
indicate that positive values of the Bermuda Index 
corresponded to the westward displacement of the 
western edge of the NASH from its normal position 
(Katz et al., 2003). 

A coral reef corridor lies close to the shore along 
the southwestern Gulf of Mexico, with coastal la-
goons, mangroves, and towns in the state of Veracruz, 
Mexico. Human activities along this coastline depend 
on fishing, tourism, oil, gas and commercial pier ac-
tivities (Jordán-Dahlgren and Rodríguez-Martínez, 
2003; Tunnell et al., 2007; Jiménez-Badillo, 2007; 
Mendoza-Cantú et al., 2011). Yet, ecosystems’ func-
tions are threatened, among other forcing factors, by 
the effects of climate change driving extreme climatic 
events (Moberg and Folke, 1999; Hoegh-Guldberg 
et al., 2007), threatening also the lives of over seven 
million people along the coastline (INEGI, 2010). 
A good understanding of local scale present climate 
variability is crucial to understand and predict future 
scenarios and to design adaptation strategies (Adger et 
al., 2005; Tang et al., 2010; Pandolfi et al., 2011; Pa-
lumbi et al., 2014). The climate of the reef corridor of 
the southwestern Gulf of Mexico could be influenced 
by the westward displacement of the NASH. This 
regional climate variability could influence changes 
in coastal ecosystems, from coral bleaching events 
and coral-disease epizootics, to even life-threatening 
extreme weather events. Thus, one hypothesis of 
this study is that regional climate fluctuations on the 
reef corridor of the southwestern Gulf of Mexico are 
potentially driven by the NASH displacement further 
west than its normal position (Fig. 1).

Atmospheric and oceanic teleconnections from 
the tropics and extra-tropics may also modulate cli-
mate variability in the Gulf of Mexico on a broader 
range of time and spatial scales (Kucharski et al., 
2010). Teleconnections of the El Niño Southern Os-
cillation (ENSO) and the North Atlantic Oscillation 
(NAO) could influence climate variability in the Gulf 
of Mexico associated with the location and strength 
of the NASH. Such oscillations could influence 
regional air temperature and precipitation in areas 
of the basin particularly sensitive to floods/droughts 
(Saravanan and Chang, 2000; Stahle and Cleaveland, 
1992; Salas-Pérez and González-Gándara, 2016). 

Tett et al. (2002) strongly suggest that anthropo-
genic forcing (by tropospheric ozone, well-mixed 
greenhouse gases alone, sulfate aerosol) over the 
worldwide climate have been the dominant cause 
of air temperature changes over 30-50 years around 
the world, following a periodicity related to the 
Multidecadal Atlantic Oscillation (AMO). However, 
natural forcing like solar irradiance and stratospheric 
aerosol due to explosive volcanic eruptions could 
influence climate variability in smaller proportions. 
Thus at large scale, climate variability response to 
anthropogenic and natural forcing could cause tem-
perature changes at regional and local scales too. In 
conjunction, these signals could potentially affect 
climate anomalies and trends on the three main areas 
of the Veracruz-reef systems of the reef corridor of 
the southwestern Gulf of Mexico: Sistema Arrecifal 
Lobos-Tuxpan (SALT, Spanish acronym), Parque 
Nacional Sistema Arrecifal Veracruzano (PNSAV) 
and Los Tuxtlas reefs (Jordán-Garza et al., 2017; 
Salas-Pérez and Jordán-Garza, 2018). Because it is 
unclear how local climate will follow global climate 
trends, this study analyzed trends of key selected 
climate variables from two meteorological stations 
next to the three main Veracruz-reef systems: Tux-
pan, Veracruz and Coatzacoalcos, using the National 
Center for Environmental Predictions and North 
American Regional Reanalysis (NCEP-NARR) mod-
el (Mesinger et al., 2006). The objectives of the study 
were to (1) identify common oscillations of local 
climate variables and the North Atlantic High-pres-
sure System (NASH); (2) characterize local trends of 
climate anomalies at three locations (north, central, 
south) along the coastal Veracruz; and (3) identify 
return periods of climatic anomalies.
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2.	 Materials and methods 
2.1 Study region and data sets
The reef corridor is in the central part of the south-
western Gulf of Mexico (Fig. 2). Numerous rivers, 
wetlands and lagoons characterize the coastal area 
(Carricart-Ganivet and Merino, 2001; Rivera-Guz-
mán et al., 2014; Salas-Pérez and González-Gánda-

ra, 2016; Salas-Pérez and Jordán-Garza, 2018). 
Despite conditions driven by river discharges that 
cause high variability in turbidity, temperature, sa-
linity, etc. (Salas-Pérez et al., 2008; Jordán-Garza 
et al., 2017), numerous reefs have developed and 
are distributed in the abovementioned three main 
systems (Fig. 2). 
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Fig. 1. Anomalous mean sea-level-pressure field derived from daily maps for a 66-year period. Upper 
panel: 1948 to 1979; lower panel: 1980 to 2015. Note the displacement of the NASH between these two 
periods over the Atlantic Ocean (black squares) and Gulf of Mexico, and the consequent displacement 
around the Veracruz coast (black rectangles). Image provided by the Physical Sciences Division, ESRL/
NOAA, from their website at http://www.esrl.noaa.gov/psd/
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Daily time series for air temperature, relative 
humidity and atmospheric pressure at mean sea lev-
el dating from 1980 to 2015 were provided by the 
Servicio Meteorologico Nacional (National Weather 
Service) and the Comisión Nacional del Agua (Na-
tional Water Commission). These data came from the 
Tuxpan (north) and Veracruz (central) meteorological 
stations (Fig. 2). The data sets were inspected for 
outliers (values larger than three standard deviations 
from the mean) and missing daily values were re-
placed using linear interpolation (Salas-Pérez et al., 
2007, 2012). No station data were available neither 
for Coatzacoalcos nor for rainfall at any location. 
Thus, NCEP-NARR modeled data were downloaded 
from their site at http://www.esrl.noaa.gov/psd/data. 
To select the data, three reanalysis grid points were 
selected around the study zones (Fig 2). The distance 
between the reanalysis grid points to the meteorolog-
ical stations was 8 and 4 km for Tuxpan and 1 and 4 
km for Veracruz (Fig. 2).

Also, a matching daily time series (1980-2015) 
of the atmospheric pressure at mean sea level of the 
NASH (32º N and 66º W) was obtained from 
the NCEP-NARR node at http://www.cgd.ucar.
edu/cas/catalog/climind/index.html (Messinger 
et al., 2006).

2.2 Data analysis 
The in-situ data of air temperature and relative hu-
midity from Tuxpan and Veracruz were compared 
with the model data using a mean squared error:

MSE =
∑N

i=1 (yi – xi)2

N√
	 (1)

where yi and xi are the data from each time series and 
N is the number of observations of the time series. De-
scriptive statistics (mean and standard deviation) and 
the MSE comparing the air temperature and relative 
humidity time series are shown in Table I for Tuxpan 
and Veracruz and in Figure 1 of the supplementary 
material (Fig. SM-1). 

Although no in situ rainfall data was available, sev-
eral studies have shown that the NCEP-NARR rainfall 
data is reliable at local scales (Kalnay et al., 1996; 
Nieto et al., 2004; Messinger et al., 2006; Tolika et al., 
2006; Ruane, 2010; Salas-Pérez and González-Gánda-
ra, 2016). In this study, the time series of the Bermuda 
Index is computed from daily mean sea level pressure 
at 32º N, 66º W, minus the Tuxpan reefs (20.999º N, 
97.348º W), Veracruz (19.285º N, 96.208º W) and 
Coatzacoalcos (18.248º N, 94.465º W). 

To understand local climate variability related to 
large-scale processes, the time series of air tempera-
ture, relative humidity and rainfall were correlated 
with time series of the NASH through a wavelet 
coherence analysis with zero-time lag (Grinsted et 
al., 2004). Wavelet coherence allows investigating 
the temporal variation of the correlation between two 
signals in a cross-spectral density diagram. A near-ze-
ro coherence indicates no linear relationship between 
the series while a value close to 1 indicates linear 
relationship (Labat et al., 2005). The period and time 
of occurrence of significant coherence are depicted by 
a thick black line in the wavelet maps. Also, arrows 
within the contour lines indicate if the series were 
in phase (arrows pointing right), anti-phase (arrows 
pointing left), or if one series is lead by 90º (arrows 
pointing down) or vice versa (arrows pointing up). 
The analysis was done using Matlab (2017).

Seasonal means from the daily time series of air 
temperature, relative humidity, and rainfall were 
calculated and then anomalies were obtained for each 
time series (i) using Eq. (2): 

ait = xit – xi	 (2)
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Fig. 2. Reef corridor of the southwestern Gulf of Mexico 
showing the three main reef systems: Tuxpan (SALT), 
Veracruz (PNSAV) and Coatzacoalcos (Los Tuxtlas). The 
meteorological stations and the NCEP-NARR model grids 
are shown with pentagrams and circles, respectively. 
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where 𝑎𝑖𝑡 is the anomaly of series i at time t, 𝑥𝑖𝑡 is 
a datum of series i at time t, and 𝑥 ̅𝑖 is the mean of 
the time series (Salas-Pérez and González-Gándara, 
2016).

The maximum positive and negative seasonal 
climate anomalies per year were selected to from 
annual minima and maxima time series:

Ymaxsummeri = max(ai summer)	 (3)

Yminwinteri = mix(ai winter)	 (4)

where Ymaxsummeri and Yminwinteri represent the max-
imum values of positive and negative anomalies 
selected to form the i annual time-series. 

Linear trends for each maximum positive and 
negative time series anomalies were estimated using a 
generalized least squares regression that accounts for 
autocorrelation in the residual series (Cowpertwait 
and Metcalfe, 2009). The analysis was done using the 
“nlme” library (Pinheiro et al. 2016) in R (R Core 
Team, 2016). 

Using the maximum positive and negative data 
of the seasonal climate anomalies, two new yearly 
times series were constructed. These time series de-
pict the extreme anomalies that occurred during the 
summer (positive, maxima) and winter (negative, 
maxima) for the 35-year data set. These extremes 
were modeled using a generalized extreme value 
distribution following the block maximum approach 
with the “extRemes” library (Gilleland and Katz, 
2014). To capture spatial variation, an extreme value 
distribution was fit to positive and negative maximum 
anomalies time series by location (Murphy et al., 
2004; Cooley, 2009). Model fitting was assessed us-
ing quantile-quantile and density plots (Gilleland and 
Katz, 2014), and the probability that annual minima 

or maxima exceeded the 75 percentiles of each series 
was estimated (Tank et al., 2009).

3.	 Results 
The annual cycle in this region is characterized by 
a cold and dry winter, with increasing temperature 
and humidity during spring, reaching a maximum in 
summer and decreasing again in fall (Salas-Pérez and 
Granados-Barba, 2008; Salas-Pérez and Jordán-Garza, 
2018). The mean for each climate variable followed 
this seasonal pattern at the three locations, but rainfall 
data showed higher variability than air temperature 
and relative humidity (Fig. 3, based on modeled data). 

Climate anomalies followed a similar annual 
pattern as the mean climatic series, with negative 
anomalies predominating on winter and fall and 
positive on spring and summer; variability was larger 
for rainfall anomalies (Fig. 4). 

3.1 Results from the Bermuda High Index 
Bermuda High Index computed at the reef locations 
of this study, showed positive values indicating its 
influence on climate variability (Fig. 5). Note the sim-
ilarity between time series (which have multi-annual 
fluctuations) due to the influence of the NASH over 
the relatively small area where the three locations 
are situated.

3.2 Coherence with the Bermuda High pressure system 
The three climate variables showed significant co-
herence at different periods and years with the North 
Atlantic High-pressure System at the three locations 
(Fig. 6). 

Significant coherence at periods of approximately 
4 years was common to the three variables and on 
the three locations (Fig. 6). The arrows within the 
significant coherence pointed up or were inclined to 

Table I. Mean values (± standard deviation) and mean squared error (MSE) of in situ and modeled (NCEP-
NARR) data for Tuxpan and Veracruz. 

Tuxpan
(in situ)

Tuxpan
(modeled)

Veracruz (in 
situ)

Veracruz
(modeled)

Tuxpan, Vercaruz
(MSE)

Air temperature (ºC) 24.27 ± 2.44 23.99 ± 3.08 25.44 ± 2.15 24.12 ± 2.21 2.89 ± 1.15 
Relative humidity (%) 77.24 ± 9.62 78.24 ± 9.62 75.19 ± 8.43 78.19 ± 8.43 0.90 ± 2.85 
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the right, suggesting that the changes in the climate 
variables occurred slightly before or at the same time as 
the changes of atmospheric pressure at mean sea level 
(Bermuda High pressure oscillation) (Fig. 6). A similar 
pattern occurred with significant coherence between 
the signals at periodicities of 8+ years, particularly 
in Coatzacoalcos, the southern location (Fig. 6 c, i). 

3.3 Linear trends in minimum and maximum ano-
malies 
In general, climate anomalies of all three variables 
(air temperature, relative humidity, and rainfall) 
showed similar trends at the three locations for the 
studied period (Table II). Maximum anomalies of 
air temperature showed significant increasing trends 
in the northern and central locations and minimum 
anomalies showed a significant increasing trend at 

the southern location (Table II). Maximum anomalies 
of relative humidity showed significant increasing 
trends at all locations and minimum anomalies 
showed no significant trends (Table II). Maximum 
rainfall anomalies showed a significant increasing 
trend only at the central location, and minimum 
anomalies showed no significant trends (Table II). 

3.4 Extreme values 
For all cases, the quantile-quantile plots and density 
plots showed a reasonable model fit (Gilleland and 
Katz, 2014). In general, the return level of maxi-
mum positive and negative anomalies followed a 
gradually decreasing trend with the return period, 
except for negative anomalies of rainfall at Tuxpan 
and Veracruz (see Fig. 7 for Tuxpan and supplemen-
tary Fig. SM-5). 
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Fig. 3. Mean 35-year seasonal patterns for air temperature, relative humidity and rainfall at the three locations: 
(a, g, m) Tuxpan, (b, h, n) Veracruz, and (c, i, o) Coatzacoalcos. Bars show means and whiskers show 95% 
confidence intervals. 
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The thresholds for each anomaly were chosen 
using the 75th percentile for each variable and each 
location. The probability of exceeding these thresh-
olds was calculated for each variable and location; 
in all cases, it was > 0.5 (Table III). 

The correlation between anomalies of the three 
meteorological variables with ENSO, NAO and 
AMO indexes is shown in the supplementary in-
formation (Figs. SM-3 and SM-4). It is observed 
that correlation coefficients of the ENSO and NAO 
indexes with anomalies are lower (–0.4 to 0.4) than 
with the AMO index (> 0.5) and, in some cases, 
negative. Thus, the correlation with the Bermuda 
High Index appears to dominate. However, in 
Figure 8 the AMO index had correlation coefficients 
> 0.5 and significant (p = 0.001). Hence, both the 
NASH and the AMO can potentially affect climate 
variability over the reef corridor of the southwestern 
Gulf of Mexico.

4.	 Discussion and conclusions
All climate variables at the three locations along the 
reef corridor of the southwestern Gulf of Mexico 
showed significant coherence with the Bermuda 
High pressure index at periods from 4 to 8 years, 
and only for air temperature and relative humidity, at 
multidecadal (> 16 years) periods. Climate variability 
has been related to changes in the atmospheric fluxes 
of heat and rain that can occur over large spatial scales 
and different temporal scales (Marshall et al., 2001). 
These periods of significant coherence for climate 
variables suggest the modulation of different atmo-
spheric phenomena that can act through teleconnec-
tions (Sheridan, 2003). For example, ENSO, NAO, 
and AMO could influence interannual to interdecadal 
scales (Jin and Kirtman, 2010; Zhu and Liang, 2013)
(see Figs. SM-3 and SM-4). 

The influence of the synoptic-scale circulations 
can generate short-term (a few days) up to seasonal 
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fluctuations in air temperature, relative humidity, and 
rainfall at the study area (Salas-Pérez and Grana-
dos-Barba, 2008; Salas-Pérez and Arenas-Fuen-
tes, 2011) (Fig. SM-1). Several synoptic-scale 
phenomena, like tropical waves, and tropical cy-
clones can locally increase the amount of rainfall 
in the western Gulf of Mexico (Tejeda-Martínez 
and Welsh-Rodríguez, 2006). It is not clear if the 
shortest meteorological scales can influence the 
seasonal scales on an interannual basis (Gutiérrez 
de Velasco and Winant, 1996). But a previous study 
on the north location of the reef corridor (Fig. 2) 
showed that teleconnections like the ENSO inter-an-
nual signal have an impact on rainfall fluctuations in 
the study area (Salas-Pérez and González-Gándara, 
2016; Díaz-Esteban and Raga, 2018). 

Stahle and Cleaveland (1992) measured the in-
fluence of NASH on the southern United States and 
southwestern North Atlantic, through the pressure 

gradient across their study area. Their results showed 
positive values, indicating that the western edge 
of the Bermuda High was located farther east than 
its normal position (Katz et al., 2003), which may 
correspond to enhanced southerly moisture advection 
and reduced stability of the atmospheric layer over 
the southeast United States (Henderson and Vega, 
1996). In this context, the coherence phase arrows of 
the pressure at mean sea level of the Bermuda High 
and the meteorological variables in the reef corridor 
of the southwestern Gulf of Mexico showed that, in 
general, atmospheric pressure at mean sea level was 
leading changes in air temperature, relative humidity 
and rainfall in periods of 4 to 8 years, which could 
be related to the ENSO signal affecting the study 
area (Salas-Pérez and Gónzalez-Gandara, 2016). A 
multidecadal signal affecting mainly air temperature 
could be related to AMO and its effects to the in-
creased variability in rainfall over the region (Fig. 8). 

Table II. Linear trends for climate anomalies (maximum and minimum) at the three locations along Veracruz*. 

Anomalies Location Slope p-value Differences between
locations 

Air temperature
(max, ºC/ year) 

Tuxpan 
Veracruz 
Coatzacoalcos

0.03 (0.0007, 0.05)
0.03 (0.01, 0.05)
0.02 (–0.004, 0.05)

0.01 
0.007 
0.1 

Tuxpan = 
Veracruz > 
Coatzacoalcos 

Air temperature
(min, ºC/ year) 

Tuxpan 
Veracruz 
Coatzacoalcos 

0.01 (–0.004, 0.03)
0.01 (–0.0015, 0.03)
0.02 (0.002, 0.04) 

0.15 
0.08 
0.03 

Tuxpan = 
Veracruz < 
Coatzacoalcos 

Relative humidity
(max, %/year) 

Tuxpan 
Veracruz 
Coatzacoalcos 

0.13 (0.05, 0.22) 
0.14 (0.05, 0.24)
0.16 (0.06, 0.26)

0.048
0.005 
0.002 

Tuxpan = 
Veracruz = 
Coatzacoalcos 

Relative humidity
(min, %/year) 

Tuxpan 
Veracruz 
Coatzacoalcos 

0.003(–0.07, 0.07)
0.025 (–0.04, 0.08) 
0.06 (–0.01, 0.13)

0.93
0.43 
0.09 

Tuxpan = 
Veracruz = 
Coatzacoalcos 

Rainfall (max,
mm/month.year) 

Tuxpan 
Veracruz 
Coatzacoalcos 

0.21 (–0.4, 0.8) 
0.98 (0.003, 1.9)
0.83(–0.005,1.72)

0.49 
0.05 
0.07 

Tuxpan < 
Veracruz > 
Coatzacoalcos 

Rainfall (min,
mm/month.year)

Tuxpan 
Veracruz 
Coatzacoalcos 

–0.017 (–0.11, 0.07) 
–0.12 (–0.25, 0.006) 
–0.11 (–0.25, 0.03)

0.7 
0.07 
0.13

Tuxpan = 
Veracruz = 
Coatzacoalcos 

*Figures are the result of a generalized least squares regression showing the slope (representing the linear 
trend), its 95% confidence interval, and significance (p-value). Differences between locations were based on 
the slope significance and represent which location experiences similar (=), larger (>) or smaller (<) change 
between each other.
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Table III. Estimated probabilities of exceeding an anomaly threshold for the observed dataset. 

Climate anomalies Location 75
percentile

Probability of exceeding 
the 75 percentile

Positive maximum
air temperature (ºC/year) 

Tuxpan 3.15 0.68
Veracruz 2.77 0.7
Coatzacoalcos 3.87 0.98

Negative maximum air
temperature (ºC/year)

Tuxpan –2.87 0.69
Veracruz –2.12 0.98
Coatzacoalcos –1.41 0.99

Positive maximum
relative humidity (%/year)

Tuxpan 11.8 0.73
Veracruz 12.9 0.98
Coatzacoalcos 9.84 0.81

Negative maximum
relative humidity (%/year)

Tuxpan –10.93 0.74
Veracruz –7.4 0.99
Coatzacoalcos –6.74 0.78

Positive maximum rainfall
(mm/month.year)

Tuxpan 26.58 0.73
Veracruz 47.38 0.75
Coatzacoalcos 49.02 0.74

Negative maximum rainfall
(mm/month.year)

Tuxpan –14.03 0.69
Veracruz –6.01 0.99
Coatzacoalcos –27.89 0.72
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Enfield et al. (2001) showed that during the warm 
phase of AMO rainfall was minimum in the United 
States and it increased during the transition to a cold 
AMO phase.

Positive anomalies of air temperature showed 
significant increasing trends except in Coatzacoal-
cos (southern location), where negative anomalies 

became warmer. These patterns depict a future in-
crease of positive temperature anomalies in spring 
and summer at the central and northern locations 
and milder cold anomalies in winter and fall at the 
southern location. These trends are following 
the general warming of sea surface temperature that 
has been observed in other regions of the Gulf of 
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Mexico (Kuffner et al., 2015). Winter cooling and 
warming have also been reported (Chollett et al., 
2012), and the latter has facilitated a range expansion 
of coral species to northern latitudes in Florida (Precht 
and Aronson, 2004). Yet, these warming patterns are 
expected to cause important changes in the ecology of 
the reef systems in the study area (Walther et al., 2002; 
Bruno et al., 2007; Heron et al., 2010; Ruiz-Moreno 
et al., 2012). Positive relative humidity anomalies 
showed a significant trend at the three locations, just 
like positive rainfall anomalies did at the central loca-
tion. These patterns depict moister spring and summer 
conditions in the region that can potentially increase 
the risk of floods in the area (Milly et al., 2002), which 
could be related to teleconnections, mainly with the 
AMO mode. It is known that when the Bermuda High 
approaches the Gulf of Mexico, rain amounts increase, 
and when the Bermuda High moves away, then rain 
amounts decrease at interannual and decadal scales 
(Kucharski et al., 2010).

We acknowledge that the data set analyzed encom-
passes a relatively short period (1980 to 2015), so the 
significant trend of warmer air temperature anomalies 
is not surprising. Historical reconstructions of global 
air temperature have shown that, since 1880, global 
mean temperature has increased about 0.85 ± 0.2 ºC 
(Easterling et al., 1997; Reynolds et al., 2008; Wiles et 
al., 2014; IPCC, 2014). This warming could, in turn, 
influence changes in relative humidity and rainfall, as 
the three climate variables are highly correlated (Table 
SM-I). An interesting observation is the increase of 
positive anomalies regarding relative humidity at the 
three locations of the study area. As temperature in-
creases, so does saturated vapor pressure, and relative 
humidity should decrease or remain constant, but only 
if vapor pressure remains the same or increases at a 
lower rate than temperature, which could be the result 
of the relative short time-series analyzed in this study. 

The coherence of the pressure at mean sea level 
of the Bermuda High pressure system with the 
raw meteorological time-series showed variability 
consistent with well-known modes such as ENSO, 
NAO, and AMO. Positive and negative anomalies 
showed low correlation values (–0.4 to 0.4) with 
the ENSO and NAO modes while correlations were 
high (> 0.5) and significant with the AMO mode. 
Therefore, the results indicate that both the Bermuda 
High and the AMO modes modulate the climatic 

variability of the reef corridor in the southwestern 
Gulf of Mexico.
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