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RESUMEN

A menudo se reporta que los modelos más simples tienen mejor desempeño que los más complejos debido 
a que requieren menos parámetros. Para probar lo anterior, en el presente estudio se comparó un modelo 
simple de escorrentía de precipitación (IHACRES) con un modelo complejo de cuencas (SWAT). Con base 
en estos dos enfoques se desarrollaron seis modelos para tres cuencas climatológicamente diferentes (árida, 
semiárida y semihúmeda) en Irán. En cada caso se calculó tanto el coeficiente de determinación (R2) como 
el coeficiente Nash-Sutcliffe (NS) de eficiencia del modelo. En cuencas áridas, semiáridas y semihúmedas el 
modelo SWAT (R2 = 0.52, 0.68, 0.66; NS = 0.54, 0.63, 0.64, respectivamente) tuvo mejor desempeño que el 
modelo IHACRES (R2 = 0.37, 0.70, 0.57; NS = 0.22, 0.57, 0.56, respectivamente) para las zonas climáticas 
respectivas. En general, el modelo SWAT tuvo mejor desempeño que el modelo IHACRES, aunque ambos se 
desempeñaron de manera satisfactoria en cuencas semiáridas y semihúmedas. En la cuenca árida, el modelo 
IHACRES tuvo un desempeño deficiente en comparación con el modelo SWAT.

ABSTRACT

It is often reported that simpler models, due to their low parameter requirements, perform better than more 
complex models. To test this, the current study compared a simple rainfall-runoff model (IHACRES) with 
a complex watershed model (SWAT). Based on these two approaches, six models were developed for three 
climatically distinct (arid, semi-arid and semi-humid) watersheds in Iran. The coefficient of determination 
(R2) and the Nash-Sutcliffe model efficiency coefficient (NS) were calculated in each case. In arid, semi-arid, 
and semi-humid watersheds the SWAT model (R2 = 0.52, 0.68, 0.66; NS = 0.54, 0.63, 0.64, respectively) 
outperformed the IHACRES model (R2 = 0.37, 0.70, 0.57; NS = 0.22, 0.57, 0.56, respectively) for the same 
respective climate zones. Overall, SWAT performed better than IHACRES, although both models had ac-
ceptable performances in the semi-arid and semi-humid watersheds. In the arid watershed, the IHACRES 
model performed poorly compared to SWAT.

Keywords: Climate, IHACRES, Iran, Runoff, Simulation, SWAT.

1. Introduction
In recent decades, hydrological models have be-
come increasingly useful and important tools in 
water resource planning and management. Various 
hydrological models have been developed to sim-

ulate hydrological processes in a watershed. These 
models include:

i. Simple models such as the Soil Conservation Ser-
vice (SCS), NAM (Nielsen and Hansen, 1973), 
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TANK (Sugawara, 1974), TOPMODEL (Beven 
and Kirkby, 1979), Identification of Hydrographs 
and Components for Rainfall, Evapotranspiration 
and Stream Flow Data (IHACRES) (Croke et al., 
2003).

ii. Complex models such as MIKE-SHE (Refsgaard 
and Storm, 1995), WetSpa (Wang et al., 1997) 
and the Soil and Water Assessment Tool (SWAT) 
(Arnold et al., 1993).

Both the SCS (USDA, 1972) and SWAT models 
were developed by the U.S. Department of Agricul-
ture (Arnold et al., 1993). Selecting the most appro-
priate model from this broad array of options depends 
on watershed characteristics and management goals 
(Borah et al., 2006; Liu, 2018) as well as available 
data (Croke and Jakeman, 2008; Lobligeois et al., 
2014). With increasing model complexity, the cost 
of implementing the model increases (Croke and 
Jakeman, 2008). Therefore, in selecting a suitable 
model, many factors come into play.

In watersheds with scarce data, simple water-
shed-scale models are often preferred to complex 
models, as the former require less data. However, 
simple models may not generate desirable outputs, 
while complex models are inappropriately complex 
and could be prohibitively expensive to implement 
in large watersheds (Borah et al., 2006). Selecting a 
suitable hydrologic model for a given purpose and a 
specific watershed requires a trade-off between model 
complexity and data availability. Complex models 
require detailed databases containing information on 
phenomena such as groundwater delay, initial rough-
ness after last tillage, hydraulic conductivity through 
pond bottoms, and organic nitrogen concentration 
in the channel, data that are often not available. In 
general, the best model for a specific watershed is the 
one which gives results as close to reality as possible, 
with the use of the least number of parameters and 
model complexity (Ha et al., 2017).

Some studies have shown that decreasing spatial 
resolution did not have a significant effect on model 
performance in streamflow simulation (Das et al., 
2008; Apip et al., 2012). Other studies have shown 
that the results of streamflow simulation can change 
significantly due to the spatial heterogeneity of 
rainfall patterns (Koren et al., 2004; Arnaud et al., 
2011; Apip et al., 2012). Information on spatial and 

temporal variations in rainfall is therefore important 
in understanding hydrological processes (Lobligeois 
et al., 2014).

In arid and semi-arid climates, rainfall depth is low 
but its intensity usually high. In these areas, heavy 
rainfall leads to a rapid hydrographic response, with 
higher peak discharges (Croke and Jakeman, 2008; 
Golshan et al., 2016). In contrast, in humid areas the 
response to rainfall is very slow and peak discharge 
takes more time to occur (Ward, 2003). Such differ-
ences in climate can be expected to have a large impact 
on the performance of streamflow simulation models.

The hydrological models used in this study are 
commonly employed and were selected due to their 
widespread use in Iran and other countries (Taesom-
bat and Sriwongsitanon, 2010; Tho et al., 2016; Islam 
et al., 2017). We selected simple watersheds in Iran 
with three different climates where running different 
models can give information about their performance 
in diverse regions of a country.

Accordingly, the main objectives of the present 
study were to: (i) analyze the sensitivity of model 
parameters for different climates, (ii) compare flow 
characteristics for these climates, and (iii) assess the 
feasibility of using SWAT and IHACRES models to 
simulate flow discharge in three completely different 
climate zones in Iran.

2. Study areas
Three climates are dominant in Iran (Zareiee et al., 
2014). In the central and southern regions of Iran, arid 
climate is dominant due to its latitude and proximity 
to a subtropical high-pressure region (Alijani, 1997). 
Table I shows altitudinal, latitudinal and longitudinal 
ranges, annual mean precipitation, runoff and tem-
perature, as well as Köppen climate classification 
system designations for three watersheds: Jazmurian 
(arid; Warid), Khorramabad (semi-arid; Wsa), and Talar 
(semi-humid; Wsh), located in southern, central and 
northern Iran, respectively. The three watersheds, 
each from a different climatic region, are presented 
in Figure 1. A vast range of data is needed for running 
models in these selected watersheds, which have 
better data than other watersheds in the same climatic 
regions. The normality and homogeneity of the data 
were assessed and a common statistical period was 
selected as models input.
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Table I. Characteristics of the arid, semi-arid and semi-humid watersheds under study.

Site Area
(km2)

Elevation
(masl) Location

Measured annual means
ClimateP

(mm)
T

(Cº)
R

(mm)

Warid 1258 1969 3798 Kerman
(South)

Jazmurian 162 22 33.35 Arid

Wsa 2267 949 2981 Lorestan
(Central)

Khorramaban, in 
Karkheh basin

402 15 68.77 Semi-arid

Wsh 2057 216 3977 Mazandaran
(North)

Talar, in
Haraz basin

609 11 153.31 Semi-
humid

P: precipitation; T: temperature; R: runoff.
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Fig. 1. Location of the Jazmurian (Warid), Khorramabad (Ws a), and Talar (Ws h) watersheds.
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Climates of the study areas were classified ac-
cording to the Köppen climate classification system 
(Table I) (Djamila and Yong, 2016). Warid is charac-
terized by dry land agriculture with poor soil fertility. 
In Wsa, most precipitation occurs in December and 
April, and rangelands and natural environment have 
a better condition than in Warid. Dense bushes cover 
many parts of the Wsa area. This last watershed is 
located along the southern coastline of the Caspian 
Sea, and is categorized by warm, humid summers 
and conditions suitable for agriculture.

3. Methodology
3.1 Description of the SWAT model
The SWAT model is a physically based, compre-
hensive, continuous, semi-distributed and water-
shed-scale simulation model that can simulate most 
of the hydrological processes in watersheds (Arnold 
et al., 2012; Islam et al., 2017; Kavian et al., 2017). 
Primary input data for the SWAT model comprises 
land use data, a digital elevation map, a soil texture 
map and meteorological records. The SWAT model 
divides a catchment into sub-catchments and then 
further divides each sub-catchment into smaller 
homogeneous units known as hydrologic response 
units (HRU), based on unique combinations of land 
use, soil class and land slope (Neitsch et al., 2011; 
Pirnia et al., 2018).

The simulation of the hydrological cycle by SWAT 
is based on the water balance equation, presented as 
follows:

SWt = SW + ∑t=1 (Rt – Qt – ETt – Pt – QRt) t=n  (1)

where SWt is the final soil water content (mm), SW is 
the initial soil water content on day i (mm), t is time 
(days), n is the total number of days, Rt is the amount 
of precipitation on day i (mm), Qt is the amount of 
surface runoff on day i (mm), ETt is the amount of 
evapotranspiration on day i (mm), Pt is the amount 
of percolation on day i (mm) that may reach to the 
underground water, and QRt is the amount of return 
flow on day i (mm).

In the SWAT model, surface flow can be simulated 
using two methods: (i) the Soil Conservation Service 
(SCS) Curve Number (CN) and (ii) the Green-Ampt 
infiltration (Neitsch et al., 2011). The SCS method 

was applied in this study with surface flow rate cal-
culated as follows (Bosznay, 1989):

Qsurf =
(Rday – 0.2S)2

(Rday + 0.8S)  (2)

where, Qsurf is the accumulated runoff (mm), Rday is 
the rainfall depth for the day (mm), and S is the po-
tential maximum soil moisture retention after runoff 
begins (mm). Daily mean rainfall was calculated, in 
each case, using the skewed normal option. To calcu-
late potential evapotranspiration, three methods are 
available: Penman-Monteith, Priestley-Taylor, and 
Hargreaves. In this study, the Hargreaves method 
was used (Eqs. 3 and 4, Neitsch et al., 2005). Actual 
evapotranspiration was then derived from potential 
evapotranspiration as a function of plant parameters 
and water storage in the soil (Neitsch et al., 2011).

ETo = 0.0135KtRa √TD (T + 17.8) (3)

Kt = 0.00185(TD)2 – 0.0043TD + 0.4023 (4)

where ETo is evapotranspiration (mm), Kt is an em-
pirical constant calculated using Eq. (4), Ra is the 
water equivalent of extraterrestrial radiation (MJ d–1), 
calculated based on the latitude of the site and the 
specific month when data is collected, TD is the av-
erage difference between maximum and minimum 
temperatures for day i, and T is the average tempera-
ture on day i (ºC).

3.2 Calibration, validation and uncertainty of the 
SWAT output
SWAT-CUP is a program developed by Abbaspour 
et al. (2007) to automatically assess sensitive model 
parameters and calibrate SWAT by optimizing pa-
rameter values. In this study, integrated algorithm 
consecutive uncertainty (SUFI2) was selected for 
simulation because it has the potential to change 
and analyze parameters with the lowest number 
of model repetitions (Ha et al., 2017). The global 
sensitivity analysis option of the SUFI2 program 
was applied for sensitivity analysis and uncertainty 
analysis. In the parameters sensitivity analysis and 
calibration step the SUFI2 algorithm was performed 
in 350 and 1000 repeats. Among various evaluation 
coefficients available in SUFI-2, the Nash-Sutcliff 
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model efficiency coefficient (NS) was selected for 
model calibration in SWAT-CUP. In order to analyze 
uncertainty and determine 95% prediction uncertain-
ties (95PPU), the SUFI2 algorithm uses p-factor and 
r-factor (Abbaspour et al., 2007). The p-factor is a 
percentage of observed data bracketed by the 95% 
prediction area known as 95PPU. In the other hand, 
the r-factor is the average width of the 95PPU band 
divided by the standard deviation of the measured 
variable. More detailed information on the process 
to create a SWAT-CUP program, specifically SUFI2, 
are available in Abbaspour et al. (2007).

3.3 Description of the IHACRES model
The IHACRES model (Jakeman et al., 1990) is a 
watershed-scale rainfall-runoff model that was de-
veloped for semi-arid Australian watersheds. This 
model was updated to version 2.1 by the Centre 
for Resource and Environmental Studies (CRES) 
of the Australian National University (Taesombat 
and Sriwongsitanon, 2010). Its purpose is to assist 
the hydrologist or water resources engineer to char-
acterize the dynamic relationship between basin 
rainfall and streamflow (Croke et al., 2005). We 
chose the IHACRES model because it is applied 
throughout the world and has been recently applied 
with success (Samuel et al., 2011; Sriwongsitanon 
and Taesombat, 2011; Onyutha, 2019). One of the 
major advantages of this model over other hydro-
logical models is the minimal data input require-
ment (Zolghadr-Asli et al., 2018). It engages either 
linear, nonlinear, or multiple regression methods to 
estimate streamflow (Jakeman et al., 1990; Samuel 
et al., 2011). The effective rainfall uk in the revised 
model, which must be nonnegative, is given by 
(Wheater et al., 2007):

uk = [c(Φk – l)]p rk       uk ≥ 0 (5)

where rk denotes the measured rainfall (mm), c 
denotes the water balance coefficient, l represents 
the soil moisture index, p denotes the power of the 
soil moisture index, and Φk is the soil moisture in-
dex. Evapotranspiration is a valuable parameter for 
obtaining soil moisture and effective rainfall, and is 
calculated as (Croke and Jakeman, 2004):

ET,k = c1 Tk exp(–c2 Mk) (6)

where ET,k, Mk, and Tk are evapotranspiration, catch-
ment moisture deficit, and temperature for time step 
k, and c1 and c2 are parameters affected by rainfall 
depth for time step k.

The flow concentration calculation module con-
verts ut into discharge and simulate the peak flow 
response and flow recession process. The following 
equations are relevant (Kan et al., 2016):

Xt+L = Xt
s+Xt

q (7)

Xt
s = αs Xs

t 1 + βs Ut (8)

Xt
q = αq Xq

t 1 + βq Ut (9)

where L is the lag time step, Xt
s and Xt

q are slow and 
quick discharge, respectively, αs and αq represent the 
recession rate of slow and quick discharge respec-
tively, and βs and βq are the peak flow response of 
slow and quick discharge, respectively.

Dynamic response characteristics (DRCs) unit 
hydrographs for quick flow and slow flow are respec-
tively calculated as (Taesombat and Sriwongsitanon, 
2011):

τq =
–∆t
ln(–αq)

 (10)

τs =
–∆t
ln(–αs)  (11)

where ∆t is the computation time step (daily), αq and 
αs are time constants, and τq and τs are the recession 
time constants for quick flow and slow flow in days, 
respectively. The parameter τq ranges between 0 and 
5 (Kan et al., 2016). The relative volume of quick 
flow and slow flow can be calculated as (Taesombat 
and Sriwongsitanon, 2011):

Vq = 1 – Vs = = 1 – βq

1+αq

βs

1+αs
 (12)

where Vq is the proportion of quick flow to total flow 
(1 – Vs), and βq and βs are the peak flow response 
of slow and quick discharges (m3

 s–1), respectively. 
This version of the non-linear module is described 
in detail in Jakeman et al. (1990) and Jakeman and 
Hornberger (1993).
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3.4 Calibration and validation of the IHACRES out-
put
A large number of software frameworks have been 
developed for optimizing the lumped model pa-
rameters using the open-source R software. In this 
study, the Hydromad package was used to optimize 
the IHACRES model parameters. This package pro-
vides a set of functions to perform the model in large 
repetitions. The details of this package can be found 
online at http://hydromad.catchment.org/. Several 
optimization algorithms are available for calibrat-
ing the models that the DEoptim (Price et al., 2005) 
was used in this study. To simulate the streamflow, 
rainfall, temperature, and observation streamflow 
values were entered in the algorithm and performed 
in 500 repeats. Finally, the optimum value for each 
parameter in different climates was obtained and used 
for the IHACRES model simulation.

3.5 Preparing data and simulation streamflow
The input data used in the SWAT model can be broad-
ly categorized into three groups for model calibration: 
spatial data, climate data and flow data.

3.5.1 Climate and flow data
Accordingly, towards the goal of running the model 
in each distinct climate we selected watersheds (Warid, 
Wsa, and Wsh) for which a complete and accurate data-
base was available. Climate data consists of a weather 
generation (WGN) table, daily rainfall, daily mini-
mum and maximum temperatures, daily mean wind 
speed and daily mean relative humidity. The number of 
used meteorological stations in Warid, Wsa, and Wsh are 
eight, six and five, respectively (shown in Figure 1). 
All stations are active and could provide long term 
data. The data sets were checked for normality and 
homogeneity by using parametric and nonparametric 
tests. Rainfall, temperature, wind speed, humidity and 
radiation over a 20-year period were used to prepare 
the WGN table. As inputs, the SWAT model receives 
weather station names, elevation, and geographical 
coordinates. The skewed normal method was used 
to calculate daily rainfall.

3.5.2 Spatial data
Spatial data consisted of a digital elevation map 
(DEM), a soil texture map, and a land use map, all 
prepared at a 28-m cell resolution. To prevent the 

creation of an unnecessarily large number of HRUs, 
the threshold for HRU creation was set at 10% of the 
total sub-basin area. Daily streamflow data were ob-
tained from hydrometric stations at the outlets of each 
of the three watersheds. The mean observed stream-
flow in the Warid, Wsa, and Wsh watersheds was 1.33, 
5.84, and 8 m3 s–1, respectively. Using the observed 
mean discharge and precipitation, the percent of pre-
cipitation lost by evapotranspiration was calculated as 
follows: Warid,79.41%; Wsa, 77.23%; and Wsh, 74.82 %. 
The period from 2000-2010 was selected for mod-
els’ calibration in each watershed. In addition, data 
spanning the three-year period of 1997-1999 served 
to warm up the SWAT model. The validation period 
for all watersheds was 2010-2015. The IHACRES 
model used climate data and streamflow with daily 
steps as input data (Table II). Both models required 
a watershed area value for determining the amount 
of output discharge.

3.6 Evaluation of model performance
To evaluate model performance, several statistical 
indicators must be determined (Santhi et al., 2001; 
Gassman et al., 2007). In the current study the 
Nash-Sutcliffe model efficiency coefficient (NS), 
the regression coefficient (R2) for the linear rela-
tionship between measured and modelled values, the 
percent bias (PBIAS), and the deviation of discharge 
(Dv) were used to quantitatively assess model per-
formances in simulating monthly streamflow. The 
range of values for the R2 and NS coefficient are 
between –1.0 to 1.0 and –∞ to 1.0, respectively. In 
these coefficients, values equal to 1.0 represent a 
perfect fit simulation, and values near to 1.0 show 
a fit simulation (Kavian et al., 2017). The optimal 
value for PBIAS is 0.0, since low-magnitude values 
show precision simulation. Positive and negative 
values in these criteria indicate overestimation and 
underestimation, respectively (Islam et al., 2017). 
The other used criteria for assessing the model 
performance was Dv. Donigian et al. (1983), Singh 
et al. (2005) and Wu and Johnston (2007) indicate 
that in terms of model simulations Dv < 10% can 
be considered very good, 10% < Dv < 15% good, 
and 15% < Dv < 25% fair.

∑i=1 (Qi
obs – Qi

sim)2 
∑i=1 (Qi

obs – Qobs)2 
NS = 1 – [ ]i=n

i=n
 (13)

http://hydromad.catchment.org/
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∑i=1  (Qi
sim – Qsim)(Qi

obs – Qobs) 2

∑i=1(Qi
sim – Qsim)2 •∑i=1(Qi

obs – Qobs)2
R2 =

[ ]i=n

i=n i=n
 (14)

∑i=1 (Qi
obs – Qi

sim)
∑i=1(Qi

obsPBIAS = 100 ∙
i=n

i=n
 (15)

Qobs – Qsim

QobsDv = 100 ∙  (16)

where Qi
obs is the ith observed discharge, Qi

sim is the 
ith simulated discharge, Qobs is the average observed 
discharge, Qsim is the average simulated discharge,  
Qobs is the total observed volume, and Qsim is the total 
simulated volume (in m3 s–1).

The flowchart in Figure 2 illustrates complex and 
simple models for the three different climatic areas.

4. Results and discussion
For the SWAT model, the watersheds under study were 
divided into sub-watersheds, resulting in 8, 33 and 23 
sub-watersheds for Warid, Wsa, and Wsh, respectively. 
The sub-watersheds were further partitioned into 
HRUs, which were based on unique overlays of land 
use, land slope and soil type layers. After overlapping 
these layers, 96, 223 and 265 HRUs were created in 
the  Warid, Wsa, and Wsh watersheds, respectively.

4.1 Flow discharge simulation results
4.1.1 SWAT model calibration
The results of the sensitivity analysis for the SWAT 
model using the SUFI2 algorithm are presented 
in Table III. In each watershed, the most sensitive 
parameters were selected for model calibration. The 
number of parameters used for the calibration of the 
SWAT model were limited to prevent over-parame-
terization. The most sensitive parameter for all three 
watersheds was CN2, implying that this parameter 
was sensitive to different climates. This was con-
sistent with previous studies in Iran (Ghobadi et al., 
2015; Dowlatabadi and Zomorodian, 2016; Gholami 
et al., 2016). The rank of sensitivity for the parameters 
was different for each watershed. The parameters of 
soil evaporation compensation (ESCO), groundwater 
delays (GW_DELAY) and available water capacity 
of the soil layer (SOL_AWC) were sensitive for wa-
tershed Warid. The alpha coefficient for the baseflow 
recession curve and ALPHA_BNK were sensitive 
only for watershed Wsa. Similarly, saturated hydrau-
lic conductivity (SOL_K) and surface flow lag time 
(SURLAG) were only sensitive parameters in the 
case of watershed Wsh. This suggests that the sensitive 
parameters in semi-arid and semi-humid watersheds 
are more alike than implied by Tho et al. (2016). The 
set of seven most sensitive parameters was unique 

Table II. Source of input data for the SWAT and IHACRES models.

Source Description Data

River flow
Jazmurian hydrometric station

Khorramabad hydrometric station
Talar hydrometric station

Kerman Regional Water Company
Lorestan Regional Water Company

Mazandaran Regional Water Company

Meteorology

Talar: stations Baladeh, Chamestan,
Edareh Babol, Firozkoh, Gatkola, Kadir and Karesang

Khorramabad: stations Cham Angi,
Dehno, Kakareza, Khorramabad, Srabsy and Sorkhab

Jajmoreian: Bydkrdvyyh, Jamil Abad, Baft, swch, Kigan

Regional Water Company and 
Meteorological Department of the 

Province

DEM 12.5 ×12.5 m https:/doi.org/vertex.daac.asf.alaska.edu/

Land use
Warid: 7 land use types 
Wsa: 11 land use types
Wsh: 7 land use types

Department of Natural Resource and 
Catchment Management

Soil map
Warid: clay, loamy, silty

Wsa: clay, clay-loam, sandy- clay-loam, sandy-loam
Wsh: clay, clay-loam, loamy, silty, silty-loam 

Regional Water Company
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for each watershed. Initial ranges for each parameter 
and final calibrated values via the SUFI2 algorithm 
are shown in Table IV.

4.1.2 IHARES model calibration
Calibrated values for the IHACRES model parame-
ters in Warid, Wsa, and Wsh are summarized in Table V. 

All the IHACRES parameters have an important 
effect on simulated streamflow in the watersheds; 
however, the relative volume of the slow flow pa-
rameter has the highest sensitivity and the mass 
balance parameter (c) the lowest. This concurs with 
the results of Taesombat et al. (2010). Calculating 
the DRCs’ unit hydrographs for quick flow and slow 

Hydrological models

Distributed model

Model inputs

Land use

Humidity

Soil Wind speed

Run model

Three different climates

Model selection

Lumped model

IHACRES
Model inputs

Arid climate

Semi-arid climate

Semi-humid climate

Run model

Run model

Run model Discharge Temperature Rainfall

Area
Run model

Run model

Assessment of models performance Assessment of models performance

Discharge

DEM Rainfall

Min-Max
temperature

SWAT

Model calibration Model calibration

Comparison of the models
results

Fig. 2. Methodological flowchart of the study.

Table III. SWAT model sensitivity analysis results.

(Ws h)(Ws a)(Warid)CommentsParameters

Sensitivity rank

111Initial SCS runoff curve numberCN2
-2—Baseflow alpha factor for bank storage (day)ALPHA_BNK
2——Saturated hydraulic conductivity (mm h–1)SOL_K
335Deep aquifer percolation fractionRchrg_Dp

542
Threshold depth of water in the shallow aquifer 
required for return flow to occur (mm)

GWQMN

45—Soil depth (mm)SOL_Z
—64Manning coefficient in the main riverCH_N2
67—Groundwater revapREVAPMN
7——Surface flow lag time (days)SURLAG
——3Soil evaporation compensation factorESCO

——6
Available water capacity of the soil layer
(mm H2O/mm soil)

SOL_AWC

——7Groundwater delay (days)GW_DELAY
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flow in different climates resulted in a higher value 
for the arid watershed (Warid) compared to the humid 
watershed (Wsh). This suggests a higher likelihood 
of flash floods in arid areas (Knox, 1985). The soil 
moisture parameter (τw) increased from the arid to 
the humid climate, whereas parameter c decreased. 
These results are similar to those found in Sriwong-
sitanon and Taesombat (2011) for semi-humid and 
humid areas.

4.2 Model performance assessment for three diffe-
rent climates
Discharge rates in the three watersheds were sim-
ulated using the SWAT and IHACRES models for 
the period of 2000-2010 (Fig. 3). In the model 

calibration and validation stages, concordances 
between observed and simulated streamflow (at 
monthly time steps) were evaluated using statistical 
and graphical measures. The simulated streamflow 
for both models and R2 coefficients are shown in 
Figure 4. According to Motovilov et al. (1999), sim-
ulation of the hydrological model can be considered 
good if  R2 > 0.75 and satisfactory if R2 is between 
0.36 and 0.75.

The uncertainty analysis was also performed for 
SWAT model outputs using the p- and r-factors in the 
SWAT-CUP model. The calculated values for these 
criteria are listed in Tables VI and VII. A balance 
between the p- and r-factors is observable, and the 
parameter ranges of both factors reached the desired 

Table V. Calibrated parameters for the IHACRES model.

Linear moduleNon-linear moduleHydrometric stations

Vsτqτsfτwc

0.532.6469.870.331.020.091Jazmurian (Warid)
0.862.0341.540.631.270.002Khorramabad (Wsa)
0.741.22633.521.596.160.00075Talar (Wsh)

τs: recession time constant for slow flow in days; τq: recession time constant for quick 
flow in days; Vs: relative volume of slow flow; c: mass balance; τw: soil moisture; 
f: temperature coefficient.

Table IV. Initial parameter calibration ranges and calibrated parameter values for the SWAT model in three watersheds.

Talar (Wsh)Khorramabad (Wsa)Jazmurian (Warid)Parameters

Calibrated
value

Initial
range

Calibrated
value

Initial
range

Calibrated 
value

Initial
range

0.67(–0. 695-0.751)0.337(–0.3-0.762)–0.71(–0. 8-0.8)r-CN2
1.149(–0.54-2.63)0.083(–0.562-0.58)——v-ALPHA_BNK
0.567(–0.0053-0.748)————r-SOL_K
0.016(–0.047-0.624)0.428(0.086-0.5)0.39(0- 1)v-Rchrg_Dp
0.537(0.09-1.794)0.93(0.017-1.219)0.374(0.06-1.126)r-GWQMN
0.604(0.326-1.362)0.534(0.243-1.927)——r-SOL_Z

––0.418(0.017-1.562)0.283(0.054-1.36)v-CH_N2
0.198(0.06-0.621)0.134(0.145-0.446)——v-REVAPMN
1.234 (–0.144-1.57)————v-SURLAG

————0.58(0-0.975)r-ESCO
————0.301(0.215-0.771)r-SOL_AWC
————21(0-100)v-GW_DELAY

r-: multiply existing value by obtained absolute value (+1); v- : replace existing value with calibrated value (Kavian 
et al., 2017).
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limits. The r-factor is less than 1 in all stations both 
in the calibration and the validation period, which 
generally shows a good calibration result (Kavian et 
al., 2017). In the other hand, the p-factor is near to 
1 in all stations, which indicates that uncertainty in 
the simulation results is lower.

4.3 Comparing the models’ performance according 
to climate
In the arid climate, the SWAT model (R2 = 0.71, 
NS = 0.64) performed better than the simple IH-
ACRES model (R2 = 0.65, NS = 0.61) (Fig. 3a, d). 
The performances of these models for the wetter 
watersheds were different (Table VI). The SWAT 
model had R2 values of 0.70 and 0.80 and NS values 

of 0.68 and 0.77 for the Wsa and Wsh watersheds, 
respectively. The results of evapotranspiration (ET) 
and potential evapotranspiration (PET) simulation 
using SWAT showed that different climates show 
considerable differences in the magnitudes of ET 
and PET. Under the arid, semi-arid, and semi-hu-
mid climates the obtained averages of ET were 
241, 134.9, and 135.7 mm, respectively, whilst the 
average of PET values were 1873, 932.4, and 776.5 
mm, respectively. The IHACRES model showed R2 

values of 0.69 and 0.78 and NS values of 0.64 and 
0.73 for the Wsa and Wsh  watersheds, respectively. 
Under all climates, the calculated PBIAS values for 
the IHACRES model estimations were higher than 
those for the equivalent SWAT model estimations. 
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Fig. 3. Observed and simulated discharge during the calibration period using the SWAT model (at monthly time 
steps): (a) Jazmurian, (b) Khorramabad, and (c) Talar; and the IHACRES model: (d) Jazmurian, (e) Khorramabad 
and (f) Talar.
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Fig. 4. Correlation between observed and simulated discharge during the calibration period using the SWAT 
model: (a) Jazmurian, (b) Khorramabad, and (c) Talar; and the IHACRES model: (d) Jazmurian, (e) Khor-
ramabad, and (f) Talar.

Table VI. Assessment of the SWAT and IHACRES models performance during the calibration period.

r-factorp-factorDv (%)PBIASNSR2CatchmentModel

0.640.78–10.784.130.640.71WaridSWAT
0.680.849.865.29.0.680.70Wsa
0.790.76–6.214.260.770.80Wsh

——24.625.230.610.65WaridIHACRES
——11.246.770.670.69Wsa
——–8.015.740.740.78Wsh
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Table VII. Summary of the models performance under different climates during the calibration period.

Area Catchment Climate Model R2 NS EI Reference

Ping, Thailand UPRB-P42
UPRB-P77

Semi-humid
Humid

IHACRES 0.55
0.76

62.95
75.4

Sriwongsitanon
and Taesombat (2011)

Burdekin, AU
Liverpool, AU

Queensland
Namoi

Arid
Semi-arid

IHACRES 0.76
0.9

Croke and
Jakeman (2008)

West Iran Karkheh
Seimareh

Arid
Semi-arid

IHACRES 0.58
0.75

Zolghadr et al. (2018)

China and India Brahmaputra Humid SWAT 0.88 0.84 Islam et al. (2017)

Kansas, USA Smoky Hill Semi-humid SWAT 0.75 Gao et al. (2017) 

Oromia, Ethiopia Mojo Humid SWAT 0.76 0.75 Biru and Kumar (2017)

Java, Indonesia Samin Semi-arid SWAT 0.65 Marhaento et al. (2017)

Laos, South 
East-Asia

Hinhurb
Nam Xong

Semi-humid
Humid

SWAT 0.68
0.74

64.3
74

Sayasane et al. (2016)

In arid climates this difference was even more 
significant. The models were also compared with 
deviation (Dv) values. According to this criteria, the 
SWAT model performance in arid climates can be 
viewed as good, and in other climates very good, 
while the IHACRES performance in arid, semi-arid 
and semi-humid climates can be viewed as fair, 
good or very good, respectively. This indicates that 
both models exhibit high performance in humid 
(vs arid) regions, which concurs with the results of 
other studies (see Table VII). Some of these studies 
(e.g., Zolghadr-Asli et al., 2018; Sayasane et al., 
2016)  show that model weakness in arid regions, 
compared to humid regions, may be the result of 
rainfall intensity and distribution.

4.4 Models’ ability to simulate average streamflow 
and peak flow
In the arid (Warid), semi-arid (Wsa), and semi-humid 
(Wsh) watersheds, observed discharges were 1.33, 
5.84 and 8 m3 s–1, respectively. Monthly average 
streamflow rates obtained by the SWAT model for 
Warid, Wsa, and Wsh were 1.26, 6.31, and 8.66 m3 s–1, 
while for the IHACRES model they were 0.84, 6.13, 
and 8.31 m3 s–1, respectively. It was evident that both 
models were able to simulate stream discharge in the 
studied watersheds. These results concur with many 
other studies (Abbaspour et al., 2007; Croke and 

Jakeman, 2008; Ghobadi et al., 2015; Biru and Kumar, 
2017). In the Warid, Wsa, and Wsh watersheds, the ob-
served peak flows were 12.91, 64.4 and 25.95 m3 s–1, 
respectively. The SWAT model estimates were 14.3, 
41.03 and 28.57 m3 s–1, while the IHACRES model 
results were 12.34, 54.96, and 23.39 m3 s–1, respec-
tively. Results showed that both models performed 
well for the different climates by simulating peak 
discharge flow rates that were fairly close to the 
measured flow rates.

In the arid climate, IHACRES simulated stream-
flow values were greater than the observed ones, 
indicating an overestimation of the streamflow. This 
was also noted by Liu et al. (2018). During spring, 
the SWAT simulated peak flow was lower than ob-
served data. This underestimation by SWAT may 
have been due to poor snow melt simulation, which 
has been been poised in previous studies (Arnell and 
Gosling, 2013; Golshan et al., 2016). PBIAS values 
for this model during the calibration period were 
4.13, 5.29 and 4.26, for the Warid, Wsa, and Wsh water-
sheds, respectively, while for the IHACRES model, 
equivalent values were 5.23, 6.77 and 5.74. Positive 
PBIAS values suggest that the model underestimated 
streamflow rates. IHACRES model results indicated 
that the underestimation of stream discharge was 
more pronounced than with SWAT, especially for 
the Warid watershed.

https://en.wikipedia.org/wiki/Indonesia
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4.5 Validation of model results
Validation of model results is necessary to increase 
user confidence in the accuracy of model simulation. 
Models were validated using observed flow data for 
the period of 2009-2010 in the Warid, Wsa, and Wsh 
watersheds. The hydrographs obtained for the val-
idation period and correlations between observed 
and simulated flows are presented in Figures 5 
and 6, respectively. According to the SWAT model 
validation results (Table VIII), values of R2, NS 
and PBIAS were 0.74, 0.69, and 5.29 for Warid, 
0.72, 0.70, and 3.44 for Wsa,and 0.84, 0.83, and 
4.21 for Wsh, whilst for the IHACRES model 
(Table VIII) the equivalent values were 0.63, 0.61, 

and 6.28 for Warid, 0.72, 0.69, and 5.89 for Wsa, 
and 0.74, 0.72, and 4.59 for Wsh. Overall, PBIAS 
values for an arid climate in both models were 
large; however, values for the IHACRES model 
were larger than those for SWAT, which indicates 
that the latter’s performance is better. Regarding Dv 
values in the validation period for arid, semi-arid 
and semi-humid climates, the SWAT model had 
good, very good and very good performances, re-
spectively, whilst the IHACRES model had good, 
good and very good performances. Validation 
results suggest that the models were acceptable 
for studying the watersheds; however, they were 
considered less reliable for Warid.
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Fig. 5. Comparison of observed and simulated discharge for the validation period using the SWAT model (at 
monthly time steps): (a) Jazmurian, (b) Khorramabad, and (c) Talar; and the IHACRES model: (d) Jazmurian, 
(e) Khorramabad, and (f) Talar.
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Fig. 6. Correlation between observed and simulated discharge in the validation period using the SWAT model: 
(a) Jazmurian, (b) Khorramabad, and (c) Talar; and the IHACRES model: (d) Jazmurian, (e) Khorramabad, 
and (f) Talar.
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R2 = 0.8441

R2 = 0.72079

R2 = 0.63369

R2 = 0.7262
R2 = 0.74195

Observated monthly discharge (m3 s–1)  Observated monthly discharge (m3 s–1)  

Observated monthly discharge (m3 s–1)  Observated monthly discharge (m3 s–1)  

Observated monthly discharge (m3 s–1)  Observated monthly discharge (m3 s–1)  

Table VIII. Assessment of the SWAT and IHACRES models performance during the validation period.

r-factorp-factorDv

 (%)

PBIASNSR2CatchmentModel

0.640.7711.385.290.690.74WaridSWAT
0.580.736.033.440.700.72Wsa
0.530.694.624.210.830.84Wsh

——13.576.280.610.63WaridIHACRES
——12.635.890.690.72Wsa
——5.134.590.720.74Wsh
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5. Conclusions
SWAT and IHACRES are two of the most com-
mon models employed in simulating streamflow 
conditions. In the present study, the simulation of 
streamflow variation by both models represented a 
new attempt to estimate hydrological response un-
der different climates. A different condition in each 
watershed, especially with respect to climate, makes 
the choice of the appropriate model particularly im-
portant. In order to assess the efficacy of the models, 
three watersheds were selected in different geograph-
ic and climatic regions: the Jazmurian watershed in 
the central part of the country, with an arid climate 
(Warid); the Khorramabad watershed in the west, with 
a semi-arid climate (Wsa); and the Talar watershed 
in the northern portion of Iran, with a semi-humid 
climate (Wsh). The models were calibrated and vali-
dated for the 2000-2010 and 2011-2015 time periods, 
respectively. Based on NS, R2, PBIAS, and Dv, the 
streamflow simulated by these models was assessed.

Both models satisfactorily simulated runoff 
patterns in time and magnitude. In the arid climate, 
with 150 mm annual precipitation, IHACRES 
showed a poorer performance (overestimation) in 
simulating discharge compared to the SWAT model. 
In the semi-arid and semi-humid watersheds, with 
405- and 610-mm annual precipitation, respectively, 
the simulated streamflow by both models returned 
high NS and R2 coefficients, suggesting very good 
performance. The accuracy of the SWAT model in 
all the study watersheds was greater than that of the 
IHACRES model for both calibration and validation 
periods. The SWAT model uses many parameters and 
detailed input data which improve the simulation 
precision. In simulating the runoff, SWAT evaluates 
the effect of underground water and management 
activity, which could be very important. However, 
the results of the IHACRES model showed that it 
can be used for the study of watersheds, but given 
its better performance in wetter watersheds, it is 
suggested that this model be used predominantly in 
this environment in Iran.
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