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RESUMEN

Se estiman los pronósticos y tendencias de los princcipales contaminantes atmosféricos (O3, SO2, NO2, CO, 
PM10, PM2.5, NO y NOx) por regiones en la Zona Metropolitana de la Ciudad de México (ZMCM) con va-
lores máximos diarios de 2008 a 2018. Se utilizó una técnica controlada no paramétrica de suavizado basada 
en el filtro de Hodrick y Prescott y estimada medianta el filtro de Kalman. Se generan tanto estimaciones 
puntuales como de intervalo, junto con sus respectivos pronósticos. Las estimaciones se confrontaron con 
la Norma Ambiental para la Ciudad de México (NADF-009-AIRE-2017) y es evidente que, en general, aún 
están lejos de cumplir con un estándar de buena calidad del aire en la ZMCM, en comparación con el CO y el 
NO2. Las tendencias y pronósticos del resto de los contaminantes superan ampliamente los límites permitidos.

ABSTRACT

Trends and forecasts of the main atmospheric pollutants (O3, SO2, NO2, CO, PM10, PM2.5, NO and NOx) are 
estimated by regions in the Mexico City Metropolitan Area (MCMA) with maximum daily data from 2008 
to 2018. A non-parametric statistical smoothing controlled technique based on the Hodrick and Prescott 
filter and estimated through the Kalman filter, is used. Both point and interval estimates, as well as their 
respective forecasts are generated. Estimates are compared against the environmental standard for Mexico 
City (NADF-009-AIRE-2017), and it is evident that, in general, they are still distant from good air quality 
in the MCMA, as opposed to CO and NO2. The remaining pollutants have trends and forecasts that are far 
from the permissible limits.

Keywords: trend, controlled smoothing, smoothness index, smoothing parameter, Hodrick and Prescott filter, 
Kalman filter, forecasts, atmospheric pollutants.

1. Introduction
According to the Organization for Economic Coop-
eration and Development (OECD, 2015), the Mexico 
City Metropolitan Area (MCMA) is the third me-
tropolis with greatest population concentration. The 
Consejo Nacional de Población (National Population 
Council) (CONAPO-INEGI-SEDATU, 2018) reports 
that it has 20.9 million people in an area of 7866 
km2, located southwest of the basin of Mexico, at an 

altitude of 2240 masl, and comprises 76 municipali-
ties. Several papers such as Bravo et al. (2002), SEDE-
MA (2017) and Rodríguez et al. (2016) agree that, due 
to its geography and orographic characteristics, wind 
circulation is impeded. With the added dynamics of 
population mobility and industrialization, this favors 
the accumulation of atmospheric pollutants.

On the other hand, the OECD (2015) suggests that 
the one-dimensional and sectorized administration 
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of the MCMA does not allow the generation of 
comprehensive public policies in the long term. The 
Secretaría de Medio Ambiente y Recursos Naturales 
(Ministry of Environment and Natural Resources) 
(SEMARNAT, 2016) states that air quality, in addi-
tion to being affected by climatic and geographical 
factors, is related to the concentration and charac-
teristics of pollutants in the region, therefore under-
standing its behavior is essential to determine the 
concentration levels of the main pollutants.

The main objective of this study is to estimate 
trends of atmospheric pollutants in the MCMA and 
their respective forecasts. The considered pollutants 
are ozone (O3), sulphur dioxide (SO2), nitrogen di-
oxide (NO2), carbon monoxide (CO), particles less 
than 10 and 2.5 µm (PM10 and PM2.5, respectively), 
nitrogen oxide (NO) and nitrogen oxide (NOx). The 
study applies the non-parametric statistical tech-
nique of controlled smoothing proposed by Guerrero 
(2008), which is based on the Hodrick and Prescott 
filter. Daily observations are taken from January 
2008 to October 2018. The trends are estimated 
within five regions that constitute the MCMA, all of 
which have estimation intervals. Data are extracted 
from the Red Automática de Monitoreo Ambiental 
(Automatic Network of Atmospheric Monitoring, 
RAMA).

It should be mentioned that this work does not 
intend to show the efficiency or inefficiency of 
programs formulated by authorities in charge of 
air quality control in the MCMA (for this see, e.g., 
Gallego et al. [2013a, b] and Davis [2008], among 
others). Likewise, the study of the adverse effects 
of air pollution on the morbidity and mortality of 
exposed population is left aside. It is important to 
note that this study only addresses those air pollutants 
monitored by RAMA.

The work is structured as follows. In the next 
section, several researches that show the study of 
trends and forecasting of pollutants, both in Mexico 
and some other cities around the world are cited. The 
methodology then estimates and predicts the behavior 
of selected air pollutants, which is discussed in detail 
below. Subsequently, the origin of data and its process-
ing for the appropriate application of the methodology 
is exposed. Estimates of the trends are illustrated in 
the results, and their forecasts are contrasted with 
NADF-009-AIRE-2017 (Gaceta Oficial de la Ciudad 

de México, 2018). Finally, conclusions are addressed.

2. Background
This section presents various statistical analyses on 
estimates of pollutants carried out for the MCMA 
and other Mexican cities. Emphasis is consequently 
placed on the methods used to estimate and forecast 
pollutants in other cities around the world. This 
exposition is given chronologically in the following 
regional order: Mexico, Latin America, North Amer-
ica, Europe and Asia.

2.1 MCMA and other Mexican cities 
Huerta and Sansó (2007) illustrate the behavior of 
the daily extreme values of O3 for the center of the 
MCMA from 1990 to 2002 through a method for 
both time and space. Under a Bayesian approach, 
they define the temporal component as a dynamic 
linear model (DLM) and the spatial element imposed 
by the evolution matrix of the DLM. As a result, the 
maximum levels of O3 decreased in that period, as 
well as in the region.

On the other hand, Gong and Ordires (2015) 
predict the maximum daily concentrations of ozone 
in the MCMA through several models of artificial 
intelligence: multiple linear regression, neural net-
works, support vector machines, random forest and 
two assembly techniques. They find that prediction 
errors in relation to the current day are around 50%. 
Likewise, with maximum values of O3 in Mexico 
City, Rodríguez et al. (2016) present a trend analysis 
for this pollutant in the five regions, between 2001 
and 2014, by means of a generalized distribution 
model of extreme values, using Open-BUGS/Win-
bugs. The results show that the monthly maximum 
of O3 decreased during this period.

Later, Aguilar and Reyes (2018) perform an 
analysis through Haar wavelet transformation for 
extreme values of O3 and its precursors (NO2 and 
CO) in Mexico City from 2015 to 2016. During 
these years, notorious changes were implemented 
in driving restrictions by the local government. The 
results showed that for multi-day events of O3 exhibit, 
T periods are greater than four days, while for NO2 
and CO they are greater than two. In addition, it is 
shown that these air pollutants are multi-temporal 
and comprise a correlated group.
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By means of a space-time regression, Yeongkwon 
et al. (2018) study the behavior of the concentrations 
of PM2.5, PM10, O3, NO2, CO and SO2 in Mexico City. 
Through models that consider hourly, daily, monthly, 
semiannual and annual averages, they deduce satis-
factory results in the forecasts, except for the series 
of PM10, PM2.5 and SO2.

In other cities of Mexico, the problem of air pol-
lution and its monitoring has also become visible; 
in this regard, Hernández et al. (2004) present a 
geospatial analysis of CO with monthly and annual 
averages from 1995 to 2001 in Toluca (capital of 
the State of Mexico). They use the software Surfer 
7.2 and determine how the dispersion of the CO is 
favored with winds and precipitations, where the 
norm established is only surpassed during the winter, 
a situation that does not happen in the MCMA.

Hernández (2009) carries out a study for the 
Metropolitan Zona of Guadalajara (MZG), in cen-
ter-west Mexico, to predict the daily maxima of O3 
monitored by seven stations from 1997 to 2006. By 
means of the theory of extreme values, this study 
verifies that with high temperatures and low wind 
speeds, an increase in O3 is obtained. In addition, 
when using non-stationary and atmospheric infor-
mation (wind direction, relative dampness, tem-
perature, wind speed), it is possible to predict the 
daily maximum of O3 in order to have a monitoring 
activity that protects the population from dangerous 
concentrations.

Corona and Rojas (2009) perform an air quality 
diagnosis of the city of Mexicali, Baja California (in 
the northwest of Mexico) through concentration data 
of pollutants, which were interpolated with the Surfer 
8 software. It was found that air quality (measured 
through the number of days in which the standard 
is exceeded) was not satisfactory in the period from 
1997 to 2005.

For the city of Hermosillo, Sonora, Cruz et al. 
(2013) found that concentrations of heavy metals 
(Pb, Cd, Ni, Cu, and Cr) in samplings of suspended 
particles were below the maximum permissible; 
however, air quality was not satisfactory. Hernán-
dez et al. (2017) made estimates of long-term 
trends of O3 in the Metropolitan Zone of Monterrey 
(MZM) and compared it with the MCMA and MZG 
through the analysis of hourly, daily and monthly 
averages. The estimates were elaborated with the 

tools openair, WindRose, timeVariation and Thei-
lSen of the R software, for the period from 1993 
to 2014. It was observed that the trend of O3 for 
the MZM increases in spring, summer and autumn, 
compared to the downward trend of the MCMA. 
There was not a clear trend for the MZG in the 
reference period.

2.2 Other cities 
Air quality is currently not satisfactory in various 
urban areas around the world, so there is a need 
to conduct studies that establish and anticipate the 
behavior of air pollutants. In this sense, Gramsh et 
al. (2006) analyze contaminant trends in Chile using 
clusters to identify patterns; in particular, PM10 and 
O3 are examined, evidencing that concentration 
levels vary with seasonality. For the case of PM10, 
concentrations are higher in winter and O3 in summer. 
The topographic and meteorological characteristics 
of the evaluated areas play an important role in the 
recognized patterns.

Later, Jaramillo et al. (2007) refer to the im-
portance of O3 forecast studies in the city of Cali, 
Colombia, using the Box-Jenkins methodology to 
analyze the period from April to July 2003. From 
2496 pieces of weekly data analyzed, the first 2232 
were used for the estimate, while the rest were used to 
corroborate the results of the model. The best model 
had the predictive capacity of 8 h, so that preventive 
measures could be taken beforehand.

In North America, Camalier et al. (2007) describe 
and exemplify a generalized linear model (GLM) in 
which they relate O3 with meteorological variables to 
infer its trends in 39 cities of the USA. They establish 
a separate model for each city and propose another 
model with splines for the non-linear relationships 
that exist among the meteorological components, 
O3 and seasonal changes. From this analysis, it is 
evident that O3 rises when temperature increases and 
humidity decreases.

Brantley et al. (2019) applied regression by quan-
tiles with natural cubic splines to estimate the trends 
of CO, NO, NO2, NOy (oxides of nitrogen), BC (black 
carbon) and other air pollutants, in a railyard area 
of Atlanta (Georgia, United States). Among several 
findings, they observed similar trends in NO and NOy 
as well as differentiated concentrations of pollutants 
according to their location.
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Kumar and de Ridder (2010) made forecasts of 
O3 maximum daily concentrations using the GARCH 
model in association with the FFT-ARIMA model for 
four urban areas of Brussels and London. They found 
that certain factors, such as traffic, play an important 
role in the concentration of the pollutant, since the 
structure of the GARCH model depends on the site, 
unlike the FFT-ARIMA model; therefore, the use of 
the GARCH model not only improves the intervals 
of prediction, but also makes more accurate forecasts 
of O3 maxima.

In Bulgaria, Georgieva et al. (2014) analyze the 
concentration of pollutants (NO, NO2, NOx, PM10, 
SO2 and O3) from 2011 to 2012 to assess air quality, 
using factor analysis (FA) and the Box-Jenkins meth-
odology. Multicollinearity was found and three fac-
tors were established: F1 = {NO2, NO, NOx, PM10}; 
F2 = {O3}; and F3 = {SO}, explaining 90.74% of the 
total variance. On the other hand, SARIMA models 
were estimated for each of the six pollutants using 
a forecast horizon of 72 h, with results observed to 
be accurate. It was detected that in the case of PM10, 
higher concentrations are present in winter, exceeding 
national and European standards.

To predict average concentrations of PM10 in 
three urban areas of Andalusia (Spain), Palomares et 
al. (2019) use five methods, divided into parametric 
(persistence model and multiple linear regression) 
and nonparametric (adaptive linear neuron, multi-
layer and radial basis function). The data correspond 
to the period from 2005 to 2010 and meteorological 
measurements are used as exogenous variables for 
the conformation of the models. It was found that the 
forecasts with non-parametric models were better, 
therefore including information on weather condi-
tions improves their predictive capacity. However, 
such models have a disadvantage, since they require 
a large amount of data.

In Asia, for Hong Kong, So et al. (2007) carried 
out an ANOVA analysis of PM2.5 where long-
term trends and spatial variations were evaluated, 
considering roads, urban environments and rural 
environments. Samples collected every six days for 
12 months were analyzed in strategic sites. Among 
several results, seasonal variations were found sim-
ilar: high in autumn and winter and low in summer; 
moreover, the behavior of PM2.5 was not similar in 
the areas considered.

Chang and Yao (2008) recognize an association 
between economic development and emissions of air 
pollutants in densely populated cities that account 
for 20% of the GDP, which identifies the immediate 
challenges to understand and control such problems. 
They review long-term trends of air pollutants for 
the case of three cities in China, through chemical 
analysis and ANOVA, finding that the increase in 
pollutants in cities is similar: high in autumn and 
winter and lower in summer.

Zamri et al. (2009) obtain forecasts of CO and 
NO2 of maximum monthly concentrations through 
the Box-Jenkins methodology. The data covers the 
period from 1997 to 2006 in four areas of Malaysia. 
They emphasize that, in general, the 2016 forecasts 
do not exceed the permissible limits. The prediction 
of PM2.5 in Beijing is seen in Aditya et al. (2018), 
where several machine learning models are com-
pared, and logistic regression is chosen. Daily data of 
the following variables are considered: temperature, 
wind speed, dew point and pressure. Likewise, for 
prediction purposes, an autoregressive model (AR) is 
used and it is affirmed that these models are efficient 
to predict PM2.5 levels.

Jaiswal et al. (2018) study the annual trend of 
CO, NO2, SO2, PM2.5 and PM10 from 2013 to 2016 
for Varanasi, India. They use the Mann-Kendall test 
and perform their forecast using an ARIMA model. 
The results show that PM2.5, CO, NO2 and SO2 have 
a decreasing tendency, unlike PM10, which shows an 
upward trend.

Vita et al. (2018) develop an algorithm using the 
fractional Kalman filter (FKF) method to predict the 
concentrations of the following pollutants: O3, NO, 
NO2, SO2, PM2.5 and PM10. The Air Pollution Model 
and Chemical Transport Model Model (TAPM-CTM) 
is used to measure the concentrations of air pollutants. 
They compare the results with the Kalman filter and 
show that the model with FKF has better precision.

The diverse methodologies that have been used to 
estimate trends and forecasts of different atmospher-
ic pollutants have varied according to the intended 
objective, being the most important GLM, DLM, 
extreme values, Box-Jenkins (ARIMA), clusters, 
splines, Bayesian approaches and machine learning 
algorithms. The method applied in this study could be 
considered as simpler, because it has no distributional 
assumptions to satisfy and its implementation and 
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maintenance are economic. In fact, the analyst with 
this proposal has a fast description of the pollutant 
trends and their dynamics. Only empirical evidence 
of the pollutants under study is used, thus leaving 
additional variables aside.

3. Methodology
Maravall (1993) documents several methods for 
estimating trends. Among them is the Hodrick and 
Prescott (1997) filter, which does not require the 
application of a formal statistical model for the esti-
mation of trends and forecasts, unlike for example, 
ARIMA or the structural models (Guerrero, 2008).

The Hodrick and Prescott filter has its origin in 
the so-called Whittaker-Henderson method (Hodrick 
and Prescott, 1997), which was first used by actuaries 
to smooth mortality tables, which was also useful 
in astronomy. The authors define it as the recurrent 
fluctuations in real activity with respect to a trend. 
Fluctuations are deviations from a smooth but vari-
able path (trend), which can be estimated by a process 
of adjustment to a smooth curve. In this sense, for 
the analysis of trends and forecasts of the selected 
pollutants in the MCMA within this work, it should be 
noted that such time series are not seasonally adjusted 
and only the data trend is developed.

3.1 Controlled smoothing and forecasts
The approach used for the Hodrick and Prescott filter 
through the Kalman filter is followed as suggested 
by Guerrero (2007 and 2008). It encapsulates a set 
of data observed over time (technically a time series) 
composed by the sum of a non-observable trend and 
a random component:

yt = τt + ηt,      for t = 1,….,N  (1)

where τt is the trend, ηt is the random component 
from which no specific distribution is assumed with 
Var(ηt) = ση

2 and N is the number of data. Through 
the controlled smoothing method, the random 
component is gradually reduced, inducing smooth-
ness. Smoothed values are estimated with this 
method using an index that will be discussed later. 
The filter is simple to apply for any data series. The 
structure of the filter comes from the following 
expression:

min M (λ) = (yt – τt)2 + λ

(τt–1 – τt–2)]2

[(τt – τt–1) –∑τ

N

t=1

∑
N

t=3  (2)

where λ is the smoothing parameter that penalizes 
for smoothness. In the first term, the goodness of 
fit of the trend with the observed data is sought, 
while the second is the induction of smoothness. 
When the parameter approaches zero (λ → 0) the 
estimated trend approaches the observed data, and 
when the value of the parameter is ∞ (λ → ∞) the 
trend tends to a straight line. In a matrix notation, 
we have

min M (λ) = (y – τ)' + (y – τ) + λ(K2τ)' (K2τ)
τ  (3)

where y = (y1,…,yN)', τ = (τ1,…,τN)' and K2 is the 
matrix (N - 2) × N given by

K2 =
1
0
.
0

–2
1
.
0

1
–2
.
0

0
1
.
0

0
0
.
0

0
0
.
0

0
0
.
1

0
0
.

–2

0
0
.
1

...

...

...

...

The solution to the problem is 

 τ̂ = (IN + λK2'  K2)–1 y (4)

where τ̂  represents the estimated trend given a value 
of λ, while the variance of τ̂ in terms of mean square 
error is given by Var(τ̂ ) = (IN+λK2' K2)–1 ση

–2, where 
IN is the N dimensional identity matrix. Using the 
positive square root of the diagonal elements from 
Var(τ̂ ), it is possible to construct intervals for esti-
mated trends. 

Given that the second derivative of M (λ) eval-
uated in τ = τ̂ is a symmetric and positive matrix, 
we see where (4) produces a minimum. It should be 
noted that to obtain τ̂, the matrix of dimension N × 
N has to be inverted, so this calculation can cause 
instability and lack of precision of the numerical 
solution when N is large; in addition to obtaining 
(4), it is required that there is no missing data in the 
series. In this context, the Hodrick and Prescott filter 
estimated through the Kalman filter is a solution, 
in which it is required to formulate a state-space 
model as follows:
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xt = Atxt–1 + wt, yt = ct'xt + ηt, (5)

with xt = , At = , ct' = (1  0) and wt = ,( )τt
τt–1 ( )2

1
–1
0 ( )εt

0  
where εt and ηt are two independent random errors of 
zero mean, uncorrelated and identically distributed 
with var(εt) = σε

2 and var(ηt) = ση
2. Therefore, the 

equation of state has the following form:

τt = 2τt–1 – τt–2 + εt (6)

where, according to Guerrero (2008), λ = ση
2 / σε

2. To 
equate the results of the Kalman filter with smooth-
ing with those obtained by (4), it is assumed that 
σε

2 = 1 and ση
2 = λ.

On the other hand, in Guerrero (2007) the forecast 
of the trend, τ̂N (h), for the period h of τN+h with origin 
in N for h ≥ 1 and d = 2, is

 τ̂N (h) = [h(h + 1) /2]µ + (h + 1)τN – hτN–1 (7)

where we assume μ = 0. Likewise, in order to obtain 
forecasts by intervals, all the available data is consid-
ered, and both the trend and its respective estimation 
interval are recalculated.

3.2 Smoothness index
The smoothness index (proposed by Guerrero, 
2008), which measures the smoothness of the trend, 
is given by 

S (λ; N) = 1 – tr  (lN + λK2' K2)–1 /N[ ]  (8)

where tr(.) represents the matrix trace. Note that when 
λ → 0 the smoothness S(λ; N) → 0, therefore when λ → ∞ 
we have that (λ; 𝑁) → 1. In other words, the index is 
between zero and one. The index for practicality can 
be expressed in percentage terms. It can be shown 
that the maximum value of the achievable smoothness 
index for a set of 𝑁 data is given by 1-2/𝑁. In partic-
ular, given the amount of data per pollutant available 
for this study (𝑁 = 3950), the maximum smoothness 
achievable is 99.95%.

Note that different indexes of smoothness, S (λ; 
N), generate different trends; therefore, there is no 
single trend or, under such optic, an optimal trend. In 
fact, an infinite number of trends could be estimated 
from a single set of specific data. With this method, 
estimations can be made from a trend that is exactly 

the set of observed data to another that is a straight 
line at the limit. The problem focuses on deciding 
what percentage of smoothness is appropriate. This 
technique has been used for time series in economics 
and demographic issues; however, there is no history 
of its use in environmental issues.

To decide the percentage of smoothness through 
the said index, Guerrero et al. (2017) suggest a certain 
index of smoothness based on the structure of the data. 
However, the sample sizes of the time series in that 
work very different: in this document there are 3950 
observations per series compared to 48, 100 and at 
most 400 observations in that reference. Additional-
ly, the applications illustrated by these authors have 
substantially less variability than that observed in the 
series analyzed here. In fact, it should be noted that 
the index, S(λ; N), depends on two parameters: λ and 
N. Therefore, the larger the sample size, the greater 
the index of smoothness, i.e., when N → ∞ we have 
that S(λ; N) → 1. With this, it is clear that with the 
amount of data used here, significantly large smocks 
are required.

The proposal to impose a pertinent smoothness 
index in this work consists of choosing one that 
generates trends that are not affected by extreme 
observations or seasonal effects; this is, a high index 
of smoothness is imposed such that in the estimated 
trends, it mitigates the said effects. When a change 
in the variability of the respective pollutant is detect-
ed, a segmented analysis can be done as proposed by 
Guerrero and Silva (2015). In particular, a percent-
age of smoothness close to 1 will be imposed by the 
amount of data, which will overcome the possible 
generation of spurious trends. After multiple tests, a 
smoothness index of 99.91% (which corresponds to 
a smoothing parameter of λ = 1 × 1011) is then used 
for the estimation of contaminant trends. 

To choose the appropriate λ, we first selected the 
observed time series with the highest variance and 
with seasonality effects. In this case, it was the O3 
time series. Secondly, we tested different values of λ. 
With the chosen value it was possible to appreciate 
the underlying trend (see Fig. SM1 in the supple-
mentary material). Third, we estimated the rest of the 
trends with a similar λ, so that the same smoothness 
index was imposed for all the pollutants series. This 
enabled us to make valid comparisons between all 
the estimated trends.
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On the other hand, for the estimation of Var (τ̂ ) 
and S(λ; N) the effects of any discrepancies in terms 
of differentiated quality of the data used are mitigated 
from the statistical point of view, since the estimated 
trends are standardized with the use of an identical 
smoothness index for all pollutant series. This does 
not necessarily occur when using other statistical 
techniques, where there are automatic criteria for 
the selection of the smoothing parameter. It is also 
assumed that the quality of the data for each pollutant 
is the same throughout the RAMA.

3.3 Precision measurements of forecasts
The accuracy of pollutant forecasts is assessed using 
the following precision measures (see Petris et al., 
2007):

Mean absolute deviation (MAD):

MAD = 1
N |et|∑

N

t=1

 (9)

Mean square error (MSE):

MSE = 1
N et

2∑
N

t=1

 (10)

Mean absolute percentage error (MAPE):

MAPE = 1
N ∑

N

t=1

|et|
yt

 (11)

where et = yt – ŷ t, ŷ t = τ̂ , which refers to the forecast 
error in period yt and ŷ t. This represents the real and 
predicted values of the trend in period t. For all these 
measures, the smaller the value, the better fit the data 
set to the estimated trend (see Klimberg et al., 2010).

3.4 Delimitation of the MCMA and monitoring net-
work location
The spatial behavior of air pollutants is not homoge-
neous for the entire MCMA (e.g., SEDEMA, 2016, 
2018, as well as other references available at shorturl.
at/cuAG1). For this reason, the MZCM was divided 
into five regions according to the localization of the 
monitoring units (Rodríguez et al., 2016) and air 
pollutant reports from the Atmospheric Monitoring 
System (Mexico City’s atmospheric monitoring 
system, SIMAT) (shorturl.at/yzQ03). This regions 
are: northwest (NW), northeast (NE), center (C), 
southwest (SW) and southeast (SE). It is considered 
that the estimated trends are important to describe the 

main characteristics of the five regions studied, each 
of which contain 34 monitoring units that, according 
to information provided by SIMAT and RAMA, 
could be located as shown in Figure 1.

The type of pollutant monitored in each of the 
centers was identified. However, since they are not 
measured constantly, an evaluation was made of each 
monitoring unit and pollutant by region. Thus, only 
those centers that recorded information during the 10 
years of the study (2008-2018) were taken into ac-
count. The catalogue of the 20 stations by regions that 
monitor the selected pollutants is shown in Table I.

3.5 Data
RAMA monitors the concentrations of eight pollut-
ants (O3, SO2, NO2, NO, NOX, PM10, PM2.5 and CO) 
every hour. Since each pollutant can be captured by 
more than one monitoring station in the five geo-
graphical regions, the maximum daily concentration 
reached was identified in each station in order to 
extract its daily maximum in a specific region. This 
was done during the period from January 1, 2008 
to October 24, 2018, obtaining a total of 3950 daily 
data. Except for O3 in the northeast region and SO2 
in the northwest and northeast regions, the rest of 
the pollutants had a certain percentage of missing 
data (Table II).

Geographic region
Northwest

Southwest

Northeast

Southeast

Center
10 0 10 20 30 40 km

Fig. 1. Location of the monitoring network. Source: own 
elaboration.
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With missing values, it is justified to apply the 
Hodrick and Prescott filter through the Kalman filter 
as proposed by Guerrero (2008), both for estimating 
their trends and for their respective forecasts. It is 
worth mentioning that SAS software version 13.2 

and R version 3.5.2 were used to process the data 
and prepare the estimates.

In the MCMA, the so-called Índice Metropoli-
tano de Calidad del Aire (metropolitan air quality 
index, IMECA), relies on the Official Mexican 

Table I. Monitoring stations by geographic region.

Region Station Abbreviation Location Pollutant

Northwest

FES Acatlán FAC Naucalpan de Juárez, Estado de México O3, NO2, NOX, NO, SO2, 
CO, PM10 

Tlalnepantla TLA Tlalnepantla de Baz, Estado de México O3, NO2, NOX, NO, SO2, 
CO, PM10, PM2.5

Atizapán ATI Atizapán de Zaragoza, Estado de México NO2, NOX, NO

Tultitlán TLI Tultitlán, Estado de México NO2, NOX, NO, SO2, CO, 
PM10

Northeast

Acolman ACO Acolman, Estado de México O3, SO2,

Montecillo MON Texcoco, Estado de México O3

San Agustín SAG Ecatepec de Morelos, Estado de México O3, NO2, NOX, NO, SO2, 
CO, PM10, PM2.5

Xalostoc XAL Ecatepec de Morelos, Estado de México O3, NO2, NOX, NO, SO2, 
CO, PM10 , PM2.5

Villa de las Flores VIF Coacalco de Berriozábal,
Estado de México

NO2, NOX, NO, SO2, CO, 
PM10 

Los Laureles LLA Ecatepec de Morelos, Estado de México SO2

La Presa LPR Tlalnepantla de Baz, Estado de México SO3

San Juan
de Aragón

SJA Gustavo A. Madero, Mexico City PM2.5

Center

Merced MER Venustiano Carranza, Mexico City O3, NO2, NOX, NO, SO2, 
CO, PM10, PM2.5

Iztacalco IZT  Iztacalco, Mexico City O3, NO2, NOX, NO, SO2, 
CO, PM10 

Camarones CAM Azcapotzalco, Mexico City PM2.5

Southwest

Cuajimalpa CUA Cuajimalpa de Morelos, Mexico City O3

Pedregal PED Álvaro Obregón, Mexico City O3, NO2, NOX, NO, SO2, 
CO, PM10 

Coyoacán COY Coyoacán, Mexico City PM2.5

Southeast
Tláhuac TAH Xochimilco, Mexico City O3, SO2, PM10, PM2.5

UAM Iztapalapa UIZ  Iztapalapa, Mexico City O3, NO2, NOX, NO, SO2, 
CO,PM2.5
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Standards to determine permissible limits for 
the preservation of the population’s health. This 
index may suffer changes due to the updating 
of some environmental standards such as NOM-
025-SSA1- 2014O3 (Secretaría de Salud, 2010), 
NOM-022-SSA1-2010 (Secretaría de Salud, 
2014a) and NOM-020-SSA1-2014 (Secretaría de 
Salud, 2014b). The IMECA takes O3, SO2, NO2, 
PM10, PM2.5 and CO into account. It also considers 
the pollutants NOX and NO. Table III shows the 
criteria to establish air quality according to the 
concentration corresponding to each of the six 
criteria pollutants.

4. Results
Estimates of trends and forecasts are presented, 
divided both by pollutant and by region. For this 
purpose, a description of findings is made in a re-
gional manner according to Figure 2, for the case of 
trends and Figure 3, together with Table IV, for the 
case of forecasts.

4.1 Trends
4.1.1 Northwest (NW) 
In general, the estimated trend of daily maxima for 
PM10, NO2, NOX, NO and CO in the northwest region 
is decreasing. In addition, despite showing a marked 

Table II. Missing data on pollutants by region.

Pollutant
% 

Northwest Northeast Center Southwest Southeast

O3 0.13 0.00 2.99 0.25 0.25
NO2 0.05 0.03 7.16 3.22 5.44
NOx 0.05 0.03 7.16 3.22 5.44
NO 0.05 0.03 7.16 3.22 5.44
SO2 0.00 0.00 3.52 4.68 1.01
CO 0.03 0.03 6.56 4.28 7.54
PM10 0.33 0.05 7.75 29.57 9.42
PM2.5 11.32 6.63 1.59 13.72 19.54

Table III. Air quality standards.

IMECA Category O3
(ppm)

SO2
(ppm)

NO2
(ppm)

PM10
(µg m–3)

PM2.5
(µg m–3)

CO
(ppm)

0-50 Good 0.000-0.070 0.000-0.025 0.000-0.105 0-40 0.0-12.0 0.0-5.5

51-100 Regular 0.071-0.095 0.026-0.11 0.106-0.210 41-75 12.1-45.0 5.6-11.0

101-150 Bad 0.096-0.154 0.111-0.207 0.211-0.430 76-214 45.1-97.4 11.1-13.0

151-200 Very bad 0.155-0.204 0.208-0.304 0.431-0.649 215-354 97.5-150.4 13.1-15.4

201-300 Extremely bad 0.205-0.404 0.305-0.604 0.650-1.249 355-424 150.5-250.4 15.5-30.4

301-400
Dangerous

0.405-0.504 0.605-0.804 1.250-1.649 425-504 250.5-350.4 30.5-40.4

401-500 0.505-0.604 0.805-1.004 1.650-2.049 505-604 350.5-500.4 40.5-50.4

Source: Gaceta Oficial de la Ciudad de México (2018).
Notes: the air quality index for O3 and NO2 was obtained from 1-h average concentrations; SO2 was derived from 
a concentration obtained as a moving average of 24 h; CO was derived from a concentration obtained as a moving 
average of 8 h; PM10 and PM2.5 were derived from concentrations obtained as a 24-h moving average.
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decreasing trend at the beginning, the rhythm of O3 
and SO2 tends to slow down at the end of this period, 
while; PM2.5 shows oscillations that do not allow the 
determination of a single trend.

Taking into account the environmental norm 
NADF-009-AIRE-2017 (Gaceta Oficial de la Ciudad 
de México, 2018), the estimate of the trend of daily 
maxima for O3 in the northwest region is outside the 
range of good air quality standards at all times (it 
remains in the regular quality category). The same 
happens with PM10 and PM2.5. Regarding SO2, it is 
accredited as regular. The trends of CO and NO2 are 
the only ones that, at no time, exceed the permissi-
ble concentrations standards. Although no Mexican 
standard regulates the NO and NOX behavior, both 
present a similar trend pattern in the beginning of the 
period with a slight growth; however, for 2012, they 
initaite a remarkable descent.

4.1.2 Northeast (NE)
The trend, in general, is decreasing for all pollut-
ants in the northeast region, with the exception of 
O3 and PM2.5. It should be noted that the O3 starts 
with a downward trend; however, in 2016, a slight 
rise begins, while for PM2.5 a similar pattern to that 
observed 4 yrs earlier begins.

According to the environmental standard NADF-
009-AIRE-2017 (Gaceta Oficial de la Ciudad de 
México, 2018), the tendency of O3 during the whole 
study period is in the regular quality interval, since 
maxima concentrations are below 95 ppm. SO2 also 
shows a regular trend, while the PM10 and PM2.5 
trends place these pollutants in the poor air quality 
interval throughout the period of analysis. NO2 and 
CO trends show good air quality criteria. On their 
part, NOX and NO reflect a clearly decreasing trend.

4.1.3 Center (C) 
The observed series corresponding to NO2, NO, NOX, 
CO and PM10 show missing data segments. The es-
timated trend is decreasing for NO2, NO, CO, PM10 
and NOX, while O3 and PM2.5 still present a trend 
behavior distinguished by segments, as O3 in mid 
2016 initiates a growing trend. On the other hand, 
PM2.5 initiates a downward trend until the end of 
2010, when it began increasing until the beginning 
of 2016 and decreased again thereafter. SO2 shows 
only a slight downward trend.

Alternatively, the trends of PM10 and PM2.5 indi-
cate that during the period from January to October 
2008 these pollutantes were in the range of poor 
quality, although with a decreasing trend for PM10. 
The tendency of O3 was contrary to that of PM10; 
up to 2015 it had been decreasing to be reversed in 
that year. However, the whole trend remains within 
the criterion of regular quality. On their part, the 
trends of NO2, SO2 and CO are found throughout the 
study period under the criterion of good air quality. 
The behavior of NOx and NO trends are similar and 
decreasing.

4.1.4 Southwest (SW) 
Despite the absence of data for PM10 and PM2.5 at 
the end of the study period and exclusively for the 
southwest region, the model was able to perform 
the respective trend of estimates and intervals up to 
October 2018. NO2 and CO show clear decreasing 
trends, while PM10 and NOX show a similar pattern 
in their trends, although with differentiated maxima 
concentration levels. It can also be observed that, 
despite the fact that SO2 starts with a marked growing 
trend, this becomes slower in the course of time. With 
regard to O3, unlike PM2.5 it starts with a decreasing 
trend and then reverses in 2014.

When observing the behavior of trends with 
respect to the environmental standard NADF-009-
AIR-2017, O3 initiates the period with poor air 
quality; however, it continues with a regular situation 
during most of the period. Like in the other regions, 
starting in 2015 there has been a rise in the trends of 
this pollutant. The same happens with PM10, since 
in the middle of the period its trend corresponds to 
poor air quality, but then it begins to regularize. Con-
trary to this, PM2.5 begins with a regular trend until 
2010, and then ascends to maximum concentrations 
of poor quality. SO2 shows a trend with maximum 
concentrations within the good quality interval; the 
same occurs with NO2 and CO with respect to NOX 
and NO, as the regions above mentioned show similar 
behavior in terms of trends.

4.1.5 Southeast (SE)
The observed series of PM2.5 has a considerable 
proportion of missing data, in addition to showing a 
trend marked by segments. For CO, it is evident that 
its trend is decreasing. Unlike the other regions, O3 
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presents a clearly decreasing trend. Regarding the rest 
of the pollutants, their trends are decreasing, although 
they begin with a slight stagnation.

The trends of PM10 and PM2.5 lay within the inter-
vals of poor air quality, highlighting that while the first 
one shows a decreasing trend and is less accelerated at 
the end of the period, the trend of the second pollutant 
is ascending. The O3 trend is in the regular quality 
range. The pollutants that show a downward trend, as 
well as those in the intervals of good air quality, are 
NO2, CO and SO2. On its part, NOX and NO continue 
to show the same behavior in their trends.

4.2 Forecasts
It is important to emphasize that no forecasts are made 
of the maximum observed pollutant concentrations, 
but of the estimated trends. Thus, these forecasts are 
made in a seven-day horizon. Note that the observed 
data for the analysis were registered from January 1, 
2008 to October 31, 2018; however, the estimation of 
the trend was only contemplated until October 25, to 
then predict the period from 26 to 31 October, 2018. 
With the intention of verifying the validity of the 
forecasts, we also estimated the trend with all the data 
until October 31, 2018. We also obtained the precise 
MAD, MSE and MAPE for each pollutant by region.

In general, the forecasts of the eight pollutants 
trends showed a significant proximity between both 
series (see Table IV), since through the MAPE it is 
possible to observe that the average error between the 
estimate of the trend and the forecast was less than 
1.5%. Compared to the MAD, these were less than 
0.5%, and for MSE they did not exceed 0.2%. The 
following paragraphs describe in detail what happens 
with the forecasts by region.

4.2.1 Northwest (NW) 
According to the forecasts of daily maxima trends, 
CO, NO2 and SO2 remained below the permissible 
concentrations established by the environmental 
standard NADF-009-AIRE-2017 (Gaceta Oficial de 
la Ciudad de México, 2018). Regarding, PM10 and 
PM2.5, air quality was affected by these pollutants, 
qualifying it as bad. As for O3, air quality was regular.

4.2.2 Northeast (NE)
For PM10, higher concentrations were predicted 
than for the rest of the regions, and air quality was 
considered non satisfactory. PM2.5 contaminated the 
air, conferring it a poor quality. O3 contributed to a 
regular air scenario. In contrast, CO, NO2 and SO2 
complied with the standards.

Table IV. Precision forecast measurements by pollutant and region.

Region Statistic O3 PM10 PM2.5 NO2 NOx NO SO2 CO

Northwest
MAD 0.05805 0.43961 0.05700 0.01889 0.21703 0.44569 0.28543 0.00678
MSE 0.00337 0.19325 0.00325 0.00036 0.04710 0.19864 0.08147 0.00005
MAPE 0.00076 0.00431 0.00121 0.00036 0.00153 0.00416 0.00742 0.00446

Northeast
MAD 0.07371 0.38584 0.19862 0.01665 0.18827 0.00608 0.14881 0.00024
MSE 0.00543 0.14887 0.03945 0.00028 0.03545 0.00004 0.02215 0.00000
MAPE 0.00098 0.00285 0.00409 0.00034 0.00121 0.00005 0.00533 0.00014

Center
MAD 0.01019 0.13284 0.09271 0.05826 0.02055 0.08566 0.25027 0.00252
MSE 0.00010 0.01765 0.00859 0.00339 0.00042 0.00734 0.06264 0.00001
MAPE 0.00013 0.00157 0.00191 0.00107 0.00016 0.00097 0.01351 0.00202

Southwest
MAD 0.15206 0.00000 0.00000 0.02701 0.10974 0.25950 0.17437 0.00102
MSE 0.02312 0.00000 0.00000 0.00073 0.01204 0.06734 0.03040 0.00000
MAPE 0.00172 0.00000 0.00000 0.00067 0.00167 0.00787 0.01400 0.00131

Southeast
MAD 0.32526 0.69153 0.00000 0.00000 0.00000 0.00000 0.14300 0.00000
MSE 0.10579 0.47821 0.00000 0.00000 0.00000 0.00000 0.02045 0.00000
MAPE 0.00420 0.00759 0.00000 0.00000 0.00000 0.00000 0.01276 0.00000
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4.2.3 Center (C)
The forecasts of trend estimates for O3 were located 
in a regular quality, while PM10 and PM2.5 were in 
the poor quality range. Although the predictions 
for NO2 did not exceed the established norms, its 
predicted maximum concentrations were higher 
than for other regions; CO and SO2 did also not 
exceed the norms.

4.2.4 Southwest (SW) 
The forecasts showed tha this region was the only 
one with regular quality levels for PM10. In addition, 
although air quality was poor for PM2.5, the lowest 
levels for this contaminant were registered in this 
region. O3 showed a similar behavior to that of the 
northwest region. CO, NO2 and SO2 remained within 
the established norms, although it should be noticed 
that NO2 had the highest concentrations compared 
to the other regions.

4.1.5 Southeast (SE)
In the trend estimates for this region, the only contam-
inants that showed concentrations outside the norm 
were PM10 and PM2.5, while O3 seemed to be a little 
more controlled. However, this was more clearly 
reflected in CO, NO2 and SO2.

In summary, the trends for PM10 and PM2.5 during 
the study period and for each of the regions of the 
MCMA showed that these contaminants were at the 
threshold of poor quality. On the other hand, O3 trends 
for the five regions were characterized by beeing in 
the regular air quality interval, with a decreasing trend 
found only in the southeast.

SO2 trends in the northwest and northeast regions 
were within the threshold of regular air quality, while 
in the center, southwest and southeast they were in 
the good air quality range. CO and NO2 can be con-
sidered two pollutants that have been controlled in 
the entire MCMA, since in all regions their trends 
and forecasts were low and never exceeded the per-
missible limits.

Although NOX is monitored for the MCMA, 
permissible concentrations are not established in the 
Mexican health standard, therefore it is important that 
this contaminant is included in the environmental 
norms. NOX is one of the precursors of O3, a pollut-
ant that in high concentrations affects the health of 
the population. NO trends present a similar behavior 

than those of NOx, and this contaminant is also not 
regulated by the norm.

5. Conclusions
In the specialized literature, various methodologies 
have been developed and/or applied regarding the 
behavior of trends and forecasts of atmospheric 
pollutant concentrations, with the intention of 
understanding the phenomenon or anticipating 
future scenarios. It is considered that the applied 
methodology and the analysis here exposed by 
region, represent a pertinent technical resource, of 
exploratory, useful and simple nature, that contrib-
ute to this matter.

By means of controlled smoothing, estimated by 
the Kalman filter, it was possible to estimate trends 
of O3, SO2, NO2, CO, PM10, PM2.5, NO and NOx for 
the five regions of the MCMA, even when the data 
presented missing values both in the central part and 
at the end of the series. However, this circumstance 
did not prevent the elaboration of their respective 
forecasts, which is why it is considered to be a robust 
and efficient tool.

Although there is no optimal smoothness index, 
the imposition of this measure in the model for all the 
series allowed to compare the behavior of the trends 
between different pollutants and for each region 
within the MCMA. This evidences the need to solve 
the problem of pollution from an integral perspective.

The forecasts presented here are based on trend 
estimates, so they do not reflect point estimates; how-
ever, the trend forecast of the period from October 
26 to 31, 2018 verifies that the forecasts are numeri-
cally close to the expected values for each pollutant 
and region. Finally, it is considered that this type of 
statistical tool would be useful for decision makers 
regarding air pollution issues. It would be desirable 
as a future line of research to estimate the trends and 
forecasts of the eight pollutants, considering their 
seasonality.
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