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RESUMEN

La calibración de radares meteorológicos es un tema de gran interés actual, ya que es útil para diversas 
aplicaciones hidrológicas. No obstante, se han desarrollado varios métodos para ajustar la relación entre los 
datos de reflectividad Z y la intensidad de lluvia R (Z/R). Esto se debe a que la distribución del tamaño de las 
gotas para diferentes tormentas es desconocida y muy variable en el tiempo y el espacio. El presente estudio 
desarrolló y probó un nuevo procedimiento basado en ventanas de tiempo y espacio para la calibración local 
óptima del radar meteorológico utilizando relaciones Z/R, y lo aplicó a tormentas convectivas y estratifor-
mes en la cuenca baja del río Grijalva en México. Mejorar las estimaciones de lluvia del radar de Sabancuy, 
Campeche, es fundamental porque esta cuenca es propensa a inundaciones. Las estimaciones resultantes del 
procedimiento se basan en la optimización de ventanas (OPV) usando la ley de potencia (Z = ARb). Dichas 
estimaciones se comparan con las resultantes del uso de la relación predeterminada de Marshall y Palmer (MP) 
utilizando para ello los registros de pluviómetro observados. La ventana apropiada se seleccionó utilizando 
un criterio que considera los factores que afectan la caída libre de las gotas de lluvia. Para la mayoría de las 
tormentas probadas, los estadísticos de los modelos OPV mostraron mejores valores que los calculados para 
los modelos MP. El mejor rendimiento de MP ocurrió cuando se utilizaron datos de calibración suavizados, 
pero sólo se alcanzaron resultados similares a los obtenidos con OP. El método de calibración propuesto 
podría ser útil para mejorar las estimaciones del modelo MP por defecto en cualquier radar meteorológico 
con características similares a las analizadas en este trabajo. Las relaciones Z/R resultantes podrían mejorar 
las estimaciones del radar de precipitación para la captura de datos en modelos hidrológicos. 

ABSTRACT

Weather radar calibration is a topic of great current interest because it is useful for various hydrological ap-
plications. Several methods have been developed for adjusting the relation between reflectivity data Z and 
rainfall intensity R (Z/R) because droplet size distributions in different storm events are unknown and highly 
variable in time and space. The present study developed and tested a new space and time window-based 
procedure for optimal local calibration of weather radar using Z/R relations and applying it to convective and 
stratiform storms in the lower Grijalva river basin in Mexico. Improving rain estimates from the Sabancuy, 
Campeche radar is essential because it monitors this basin, which is prone to floods. The resulting estimates 
of the optimal power-law (Z = ARb) window-based procedure (OP) are compared with those of the default 
Marshall and Palmer (MP) relation using the observed rain gauge records. The appropriate window was 
selected using a criterion that considers factors affecting the free fall of raindrops. For most of the storms 
tested, metrics for the OP models showed better values than those calculated for the MP ones. The best MP 
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performance is when using smooth calibration data, achieving similar metric results to that of the OP. The 
proposed observed calibration method could be useful to improve the default MP model estimates at any 
weather radar with similar characteristics to the ones analyzed in this work. The resulting Z/R relations could 
improve precipitation radar estimates for hydrologic model inputs.

Keywords: optimization, flood, power-law, Grijalva river, space-time windows.

1. Introduction
Analyzing rain gauge information collected within 
a given basin or region allows understanding the 
hydrological cycle dynamics, which has a great 
relevance in socioeconomic, agricultural, and envi-
ronmental sectors, among others. Applications range 
from designing and planning construction projects to 
predicting extreme events such as droughts and floods 
(Boushaki et al., 2009). Thus, rainfall information can 
be considered a basic asset that, like insurance, must 
be acquired to protect against an uncertain future. 
Recent developments in computing and Geographic 
Information Systems (GIS) have allowed distribut-
ed hydrological models to increase their popularity 
among researchers and others interested in the sub-
ject, increasing the demand for spatially distributed 
data in grid format (Mantas et al., 2015). In general, 
rainfall data is gathered mainly through rain gauge 
networks, or remote sensing, such as meteorological 
radars and satellites. These data sources have ad-
vantages as well as disadvantages, and differences 
between them may cause certain grid products to be 
unsuitable for some applications (Li and Shao, 2010; 
Woldemeskel et al., 2013).

Rain gauge networks are considered the only 
source of direct physical measurements of liquid 
precipitation and, therefore, the most reliable source 
of information. However, monitoring sites are often 
scattered and poorly distributed, limited by the spa-
tial coverage that prevents their use in hydrological 
applications. On the other hand, data produced 
by remote sensors (radar and satellite) represent 
a potential high-resolution alternative when rain 
gauge networks are dispersed, especially in poorly 
monitored regions. Nevertheless, satellite data are 
indirect measurements that have limitations due to 
spatio-temporal measurement scales, cloud effects, 
and the lack of effective algorithms for data recovery 
(Long et al., 2016). 

Weather radar overcomes some rain gauge and sat-
ellite data limitations, as they provide high-resolution 

raster data with measurements closer to the Earth’s 
surface than those of satellites. However, radar data re-
quire sophisticated post-processing to eliminate some 
errors such as beam attenuation, bright band effects 
(Rico-Ramírez et al., 2005), variation in the vertical 
profile of reflectivity (VPR) (Hill and Baron, 2015), 
reflectivity attenuation (Gou et al., 2019), non-me-
teorological echoes (Dufton and Collier, 2015), and 
anomalous propagation (Zhang et al., 2019).

Using radar information for environmental and 
hydrological applications is a topic of great current 
interest. Since droplet size distributions in different 
storm events are unknown and vary in time and space, 
the relationship between reflectivity data Z and rain-
fall intensity R (Z/R) is not unique. There are several 
average empirical Z/R relationships that radars use 
as default, and the most used expression is based on 
the empirical study of Marshall and Palmer (1948). 
However, several researchers and practitioners have 
developed methodologies that improve those default 
relationships between reflectivity data Z and rainfall 
intensity R. The objective is to transform radar re-
flectivity (mm6 m–3) into rainfall intensity (mm h–1), 
adjusting the parameters A and b in a power-law Z/R 
relation (Z = ARb). This process is commonly known 
as hydrological radar calibration. 

Calheiros and Zawadzki (1987) applied a simple 
methodology, called the Traditional Matching Meth-
od (TMM), that determines the Z/R relationship using 
regression analysis between two synchronous R and 
Z data sets in the pixel containing the calibration rain 
gauge. One disadvantage of this method is that perfect 
synchronization is only achievable in the ground at 
the closest distance. The same authors (Calheiros 
and Zawadzki, 1987) also applied the Probability 
Matching Method (PMM) to compensate for TMM’s 
drawbacks. The PMM compares the non-synchro-
nous Z and R pairs that have the same cumulative 
density function.

Window-based methods have proven to be effec-
tive, because they allow achieving an optimal Z/R 
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relation by looking for the closest R to Z value with-
in a mesh (window) of different spatial and temporal 
dimensions. Rosenfeld et al. (1994) developed the 
Window Probability Matching Method (WPMM) 
to overcome PMM weaknesses by matching Z and 
R pairs in small space-time windows to account for 
collocation and timing errors. The WPMM provided 
significantly better results when estimating rain in-
tensity. An advantage of PMM and WPMM is that 
there are no concurrent requirements for the Z and 
R data sets. On the other hand, the disadvantages 
are that these techniques do not represent the actual 
physical rain process nor use a joint probability for 
Z and R.

Piman et al. (2007) developed a window-based 
method, called Window Correlation Matching 
Method (WCMM), to account for collocation and 
timing errors. They compared the results with those 
of the TMM and the WPMM for different scenarios 
of space-time window sizes, getting the best results 
using a space window of 7 × 7 km and a time lag of 
–5 min. The results of the WCMM improved those of 
the TMM and the PMM, which were overestimated 
and underestimated, respectively. Yet, for the case 
study, the WCMM produced a slightly higher rainfall 
estimation than other methods. However, these au-
thors did not consider any specific criterion to select 
an appropriate window size.

The adjustment of the Z/R relation has been 
addressed by Alfieri et al. (2010) in the northeast of 
Italy, readjusting the parameters of the power-law at 
each time step to find the optimal Z/R relation. The 
analysis was done for distances less than 25 km from 
the radar site, comparing rainfall and radar data for 
19 rain events. The adjusted Z/R relation produced 
a 28% reduction of the standard error using a time 
window of 2 to 5 h compared to the most accurate 
fixed Z/R relation found in the literature. However, 
this method did not account for a calibration area 
away from the radar, nor space windows, only the 
temporal window. 

Ramli and Tahir (2013) in Malaysia developed 
new Z/R ratios for a Doppler radar using an optimal 
reflectivity and rain curve for different rainfall types 
based on their intensity, but this method did not 
include errors of location or timing. More recently, 
Ayat et al. (2018) developed the Region Probability 
Matching Method (RPMM) to calibrate the Amir-

Abad weather radar located in northern Iran. This 
method overcame the applicability limitations of 
previous methods in regions with scattered moni-
toring, light rains, and poor space-time resolutions. 
Using 6-h records from 18 synoptic stations and 15 
min frequency radar data records, they compared 
Z/R pairs over the entire radar domain and used the 
correlation coefficient of a linear model as the cri-
terion to adjust the parameters A and b. The results 
indicate that RPMM was better than TMM; however, 
this method did not use a power-law Z/R relationship.

In the present study, a new algorithm for a win-
dow-based method to find the optimal A and b pow-
er-law parameters was developed to ensure the best 
Z/R relationship. It was tested in the lower Grijalva 
river basin located between the Mexican states of 
Tabasco and Chiapas and compared with the perfor-
mance of the Marshall and Palmer relation, which is 
the default method to calculate rainfall intensity in 
the study area. The region covered in this study is 
affected by extreme hydrometeorological events that 
put the population in constant risk (Pedrozo-Acuña 
et al., 2012), an ideally suited area to develop flood 
risk management strategies. The main objective of 
this work is to improve rainfall estimates from the 
radar installed in the town of Sabancuy, Campeche 
by finding appropriate local Z/R relations that would 
increase the reliability of weather-radar rainfall 
estimations, making them suitable for the critical 
hydrological applications needed.

2. Study area and data
The Grijalva river originates in Guatemalan moun-
tains and receives different names along its course. 
Traversing the Mexican states of Chiapas and 
Tabasco, it flows into the Gulf of Mexico. The Gri-
jalva basin is one of the largest in Mexico, and it is 
divided into three sub-basins: upper, middle, and 
lower (Hinojosa-Corona et al., 2011). The latter, 
also called lower Grijalva river basin (LGRB), is 
within the Grijalva-Usumacinta hydrological region 
in southeastern Mexico, within the states of Chiapas 
and Tabasco (Fig. 1). The LGRB covers an area of 
23 544 km2 between the geographical coordinates 
16º 50’-18º 50’ N and 91º 40’-93º 40’ W, and its 
maximum elevation is 2892 masl. Elevations within 
the LGRB are lower than 0 masl, which corresponds 
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to extensive depressions that remain flooded with 
fresh water for most of the year (Zavala et al., 2016).

Based on its climate and terrain, the LGRB is 
subdivided into three regions: (1) highland zone, 
corresponding to the mountainous region of the 
basin with elevations ranging from 300 to 2892 
masl; (2) transition zone, with elevations ranging 
from 100 to 300 masl, and (3) lowland zone, with 
elevations from –20 to 100 masl (Velasco-Martínez 
et al., 2011). Rainfall is distributed unevenly both 
in space and time within these three sub-regions, 
whose climate diversity is present mainly at the 
highland zone, while it is more homogeneous at the 
lowland. The maximum rainfall in the LGRB occurs 
during September, being the transition zone the 
wettest region with more than 500 mm of monthly 
rainfall, while in the highland and lowland areas it 
is around 369 and 360 mm during the same month, 
respectively. On the other hand, in this basin the 
most frequent annual rainfall ranges from 1801 to 
2200 mm (Velasco-Martínez et al., 2011), which is 
a much larger value compared to the drier north-
ern regions (13-430 mm) or the Mexican national 
average (700 mm).

2.1 Radar and rain gauge data 
The National Weather Service (SMN, by its Spanish 
acronym) of Mexico operates a network of 13 weath-
er radars, most of them in southern Mexico. Two ra-
dars partially cover the LGRB, located in the towns 
of Sabancuy in Campeche and Mozotal in Chiapas. 
The latter is located at 2900 masl and only covers the 
upper part of the GLRB. The Sabancuy radar (Fig. 2), 
which covers all the physio-climatic regions of the 
basin, is located at 18º 58’ 20.784’’ N and 91º 10’ 
21.5904’’ W at only 17 masl (5 m of land plus a 12 
m tower). Installed in 2012, the Sabancuy radar is 
a dual-polarized Doppler type with a coaxial mag-
netron, operating in the type C-band (wavelength 
λ = 5 cm and frequency of 4-8 GHz). Dual polar-
ization means better estimation and hydrometeor 
classification (like hail and rain) in quantitative 
rainfall calculation.

Dual polarization type C-band radars are pref-
erable than single polarization type S-band radars 
(λ = 10 cm) because they are less expensive and 
bulky, they allow precise real-time correction of beam 
attenuation and they provide similar accuracy to sin-
gle-polarization type S-band radars. Table I presents 

Fig. 1. Spatial location, hydrography, urban areas, and topography of the lower Gri-
jalva river basin.
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some technical characteristics of the Sabancuy radar 
and the Marshall and Palmer (1948) relation, which 
is used as a default for this radar by the SMN. PPI 
images from the Sabancuy radar Z values were gen-
erated using volume data recorded every 15 min, with 
a resolution of 1 km in the radial direction and 1º in 
the azimuthal direction. The images were generated 
using measured reflectivity at a lower angle of 0.49º 
of the antenna elevation, which was done by applying 
the R open source library radar.IRIS developed by 
Hill and Baron (2015).

There is a reasonably good rain-gauge 24-h mon-
itoring network at the LGRB, but only a few of the 
stations are automatic. Not all of them have data for 
the selected period and some data gaps are present, 
further reducing the number of available rain gauges. 
Figure 2 shows the stations that record near real-time 
data (every 10 min), comprised of meteorological 
synoptic stations (ESIME, by its Spanish acronym) 
and automatic meteorological stations (EMA, by its 
Spanish acronym). Daily records and near-real-time 
data stations, as well as radar raw data, were provided 
by the SMN for a period that ranges from January 1, 
2016 to August 31, 2018. The rainfall information 
was provided in Microsoft Excel spreadsheets for 
10 selected near-real-time data rain gauge stations 
(Table II) within the Sabancuy radar range (Fig. 2).

3. Methodology
The developed algorithm is based on space and 
time windows (Piman et al., 2007) and it reduces 
collocation and timing errors present when radar 
calibration is carried out using rain gauges. The meth-
od consists of comparing pairs of radar reflectivity 
and rain-gauge rainfall intensity values (Z and Rg, 
respectively). The window refers to a mesh of cells 

Table I. Technical characteristics of the Sabancuy radar.

Type Coaxial magnetron 

Model Vaisala WRM200
Beam width < 1º
Operating frequency range 5.5-5.7 GHz
Peak power 250 kW
Average power max 300 W
Antenna diameter 4.5 m
Pulse amplitudes 0.5, 0.8, 1.0, 2.0 ms
PRF 200 to 2400 Hz
Receiver noise < 2 dB
Default Z/R model Z = 200R1.6
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that contains the reflectivity values from a radar ras-
ter image, where the central cell matches the spatial 
location of the calibration rain gauge. Rg point values 
are compared with Z values by forming pairs with 
Rz values calculated by means of a power regression 
equation (Z = ARz

b). Those Z values are measured 
at the calibration rain-gauge surrounding cells. The 
number of pairs depends on the size of the mesh (e.g., 
5 × 5 km2) (Fig. 3). The sought value of Z maximizes 
the coefficient of determination (r2) obtained by ad-
justing the parameters A and b of the power model. 
This process is done over the present and previous 
times of the measurements (e.g., 0, –10, or –20 min) 

considering errors caused mainly by the height of 
the beam radar measurement, raindrop evaporation, 
and wind speed. The spatial and temporal window 
dimensions must be large enough for better results.

The optimization algorithm was programmed in 
R language (Venables et al., 2019) and is applied re-
cursively at every state of the power-law parameters 
A and b to find the optimum. It is a search algorithm 
that consists of selecting the best solution and making 
it the current solution. In other words, it is applied 
consecutively for each parameter A and b, taking as 
an objective function the maximization of the corre-
sponding coefficient of determination (r2

Aj and r2
bj, 

respectively) that results from adjusting the power 
model for each parameter. Note that both parameters 
correspond to the same equation but are optimized 
separately but simultaneously optimized at each 
optimization iteration until the convergence of their 
respective r2. The coefficient of determination, also 
called multiple correlation coefficient, is defined as 
the proportion of variation explained by the regres-
sion model (Nagelkerke, 1991). The optimum state is 
reached when a convergence criterion is accomplished 
(r2

Aj = r2
bj). The optimization algorithm scheme of 

parameters A and b for the power-law is presented in 
Figure 4, where the specific steps to follow are:

1. Define non-zero Z and Rg pairs according to a 
selected space-time window.

2. Propose initial j0 state values of A and b (A0 and 
b0).

3. Generate a list of iteration values (Ai and bi), 
where i takes values between a range defined by 
the user (dependent of event type characteristics).
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Table II. Weather stations used in this study within the Sabancuy radar range and beam height.

Rain gauge name State Latitude Longitude Beam height (km) Range (km)

San Cristóbal de las Casas Chiapas 16º 45’ 36’’ 92º 37’ 48’’ 7.6 294
Villa Hermosa Tabasco 17º 58’ 48’’ 92º 55’ 48’’ 4.7 218
Palenque Chiapas 17º 30’ 00’’ 91º 54’ 00’’ 3.6 184
Centla Tabasco 18º 24’ 00’’ 92º 37’ 48’’ 3.1 167
Paraíso Tabasco 18º 25’ 23’’ 93º 09’ 20’’ 4.9 223
Cañón Usumacinta Tabasco 17º 17’ 23’’ 91º 13’ 44’’ 3.6 185
Isla del Carmen Campeche 18º 39’ 29’’ 91º 45’ 55’’ 0.9 72
Escárcega Campeche 18º 39’ 29’’ 91º 45’ 55’’ 0.7 60
Monclova Campeche 18º 39’2 9’’ 90º 49’ 15’’ 1.5 102
Montes Azules Chiapas 16º 48’ 43’’ 91º 31’ 29’’ 5.6 244
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4. Calculate RZ for each cell window using the cor-
responding Z values and the list of Ai or bi values.

5. Select the cell that contains the RZ value that is 
the closest to the Rg value.

6. Conform a new set of Z and R pairs, now using 
the corresponding RZ and Rg closest values.

7. Adjust the power model (linearizing with the 
log10 transformation) and choose the parameters 
Aiopt or biopt that maximize r2

Aj and r2
bj, respec-

tively, at each state (j0 = 0, j1 = 1, j2 = 2, …, jn = 
n) iteration.

8. After applying steps 4 to 7 for the initial values 
(A0 and b0) the first state is completed (j0). For 
subsequent j-states the initial A0 and b0 are re-
placed by the state optimal values ( and ). The 
final optimal A and b values are obtained when 
r2

Aj and r2
bj converge, otherwise steps 4 to 7 are 

repeated for consecutive states.

3.1 Performance metrics
The performance metrics (error measures) used to 
examine the resulting Z/R relations include the root 
mean square error (RMSE, mm) and its ratio with the 
observed rainfall root mean square standard deviation 
ratio (RSR) (Moriasi et al., 2007). RMSE values close 
to zero indicate a good fit between the rain gauge 
and radar data. RMSE penalizes large errors and it 
is more appropriate when the errors have a normal 
distribution (Chai and Draxler, 2014), while RSR is 

a standardized alternative that shows the degree of 
variation of the sample. A low RSR in combination 
with a small RMSE indicates a good correspondence 
between the two data sets (Singh et al., 2005). Other 
common metric for evaluating the difference (or 
error ei) between observed and estimated values is 
the mean error (ME, mm), which indicates the level 
of overestimation or underestimation of measured 
values; its optimum value is zero. The corresponding 
equations are as follows:

ME =
∑n

i=1 ei
n  (1)

RMSE =
∑n

i=1 (ei)2

n√
 (2)

RSR =
∑ni=1 (ei)2

∑ni=1 (Rgi – Rg)2√  (3)

where Rg is the mean of the rain-gauge rainfall in-
tensity observations.

The percentage difference in cumulative average 
precipitation (PDCA) is also calculated. Negative 
(positive) PDCA values indicate underestimation 
(overestimation) of the accumulated rain gauge data. 
It is calculated using the following equation: 

PDCA = × 100(ARz – ARg)
ARg  (5)
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where ARα, α = z or g, is the cumulative precipitation 
of the corresponding data source. The relation be-
tween radar and rain gauge data is not linear, and in 
general the power-law of the form Z = ARb gives the 
best fit of the data (Brase and Brase, 2009). Thus, to 
find the correlation between these two types of data, a 
power-type mathematical regression model should be 
adjusted (Newman, 2005). The power-law equation 
is linearized applying a logarithmic transformation: 
log Z = log A + b log R. 

It is possible to calculate the correlation expressed 
as the coefficient of determination (r2) from the adjust-
ed least-squares line. The correlation varies from 0 to 
1 and indicates the model goodness of fit. It defines 
the proportion of the variance of the measured rainfall 
that is explained by the regression model. Values of r2 > 
0.5 are considered acceptable, while r2 = 1 indicates a 
perfect correlation, but r2 = 0 reveals that the mean is a 
better predictor than the model, which is unacceptable. 
The equation for r2 between the radar rain estimates 
(E) and the rain gauge observed values (O) is given 
by the following equation:

r2 =
(n ∑ OiEi – ∑ Oi ∑ Ei)2

[(n ∑ Oi
2 – (∑ Oi)2][(n ∑ Ei

2 – (∑ Ei)2]
 (6)

It is also important to apply criteria to reasonably 
determine window dimensions of space and time. 
Calheiros and Zawadzki (1987) proposed a relation-
ship to compare different spatiotemporal distributions 
of these two types of data sources, assuming that the 
temporal resolution of rainfall data should be equiva-
lent to the spatial resolution of radar data. Taking into 
account rainfall statistical properties this relationship 
is given by the following equation:

1.3√Ar = vt  →  Ar = tv
1.3( ) (7)

where Ar is the area of the radar data, t is the temporal 
resolution of rain gauge data, and v is the translation 
speed of the precipitation cells. An alternative is to 
use the kinematic equation of semi-parabolic motion 
to find the distance at which a raindrop is advected by 
the wind. This expression is x = v t, so the distance (x 
in meters) is equal to the product of the wind speed 
(v in ms–1) in the time (t in seconds) that the falling 
raindrop takes to reach the ground.

4. Results and discussion
The methodology was tested in a total of seven 
storms, covering both stratiform and convective 
cases that occurred in winter and summer (Table III). 
In general, the stratiform-type storms have more 
compact spatial and temporal distributions com-
pared with convective ones. Radar calibration for 
each of the storm events is performed by means of 
near real-time stations with data records taken every 
10 min. Rainfall data values occur uneven at each 
position so that the number of Z/R pairs at each re-
cording time was variable. Note also that null records 
were removed, further reducing the number of Z/R 
pairs. Rain gauge stations installed on the towns of 
Villahermosa, Centla, Isla del Carmen, Paraíso, and 
Escárcega had a larger number of data for the period 
of interest. To compare both data sources at the same 
frequency with the largest number of pairs possible, 
the Sabancuy radar records were interpolated to a 
10 min frequency using the two adjacent temporal 
measurements.

Table III. Storm events analyzed.

Date Start
(LT) 

End
(LT)

Duration
(h)

Precipitation 
(mm)*

Mean intensity 
(mm/h)

Storm event 
type

01/02/2016 9: 30 23:00 13:30 86.00 6.37 Stratiform
20/07/2016 3:00 9:30 6:30 39 6.15 Convective
16/02/2017 8:30 12:00 3:30 21.00 6.00 Stratiform
29/01/2017 11:00 18:30 7:30 25.6 3.41 Stratiform
13/02/2018 5:00 7:45 2:45 28.00 10.18 Convective
14/02/2018 2:00 5:15 3:15 68.25 21.00 Convective
04/06/2018 20:45 0:00 3:15 48.40 14.89 Convective

*Maximum accumulated rainfall recorded in one specific rain gauge.
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For stratiform events, the iteration values were 
selected within the 0-100 range with increments of 
1 for parameter A, while for parameter b they were 
selected within the 0-5 range with increments of 0.1. 
For convective events, to get an appropriate curve 
shape, the iteration ranges were twice as large as for 
the stratiform case (0 to 200 for A and 0 to 10 for b) 
with the same increments as before for both param-
eters. The lists of iteration values are used initially 
in the optimization process, then the increments are 
reduced, and in consequence, the number of iteration 
values increased. 

Table IV shows the resulting r2 (= r2
A =r2

b) val-
ues and parameters A and b, for the stratiform event 
observed on 29/01/2017, for each spatiotemporal 
window tested. The corresponding results for the 
convective event observed on 20/07/2016 is shown 
in Table V. For the stratiform event (Table IV), an r2 
= 0.34 can be observed for the 3 × 3 km2 window 
time (0 min). 

Better values for r2 resulted at –10 min, which is 
evident from the 3 × 3 to 9 × 9 km2, where an r2 of 
0.9 was reached. Beyond –10 min, improvements 
are observed at –20 min with r2 = 0.96 for the 15 
× 15 km2 window, and –30 min for the 17 × 17 km 
window with r2 = 0.98, which is almost a perfect 
correlation. Correlations above 0.9 are considered 
excellent. Similar results were obtained by Piman et 
al. (2007), who reported an increase in the correlation 
value for both the time and space-time scales. This is 
to be expected, since the more pixels are considered 
the higher the chances of finding values Rz closer 
to Rg values.

The performance of the optimization algorithm for 
the convective storm event was different, resulting in 
parameter values larger than those for the stratiform 
event. One possible reason is that summer rainstorms 
generally occur as showers, and differences among 
measurements at climate stations are larger (Ducrocq 
et al., 2002), hence they are more difficult to estimate 

Table IV. Optimal parameter model results of the 29/01/2017 stratiform storm event.

Spatial 
window 
(km2)

Temporal window (min)

0 –10 –20 –30 –40

A b r2 A b r2 A b r2 A b r2 A b r2

3 × 3 10.6 1 0.34 6.0 2.4 0.37 2.0 2.9 0.22 1.0 3.9 0.23 1 3.5 0.11
5 × 5 6.7 1.74 0.53 11.0 1.7 0.62 6.0 1.8 0.37 2.0 2.9 0.25 1 3.6 0.21
7 × 7 11.9 1.39 0.71 11.0 1.6 0.8 12.0 1.4 0.6 3.0 2.7 0.4 2 2.8 0.38
9 × 9 19.3 1 0.85 17.8 1.1 0.9 14.1 1.2 0.76 19.0 1.3 0.55 19 1.6 0.58
15 × 15 22 1 0.95 11.0 1.1 0.96 8.0 1.3 0.96 13.0 0.9 0.93 20 0.7 0.9
17 × 17 31 0.5 0.97 17.0 0.8 0.97 6.0 1.3 0.96 14.0 0.6 0.98 25 0.6 0.96
19 × 19 35 0.4 0.99 14.0 0.8 0.98 13.0 0.7 0.99 14.0 0.4 0.99 29 0.4 0.99

Table V. Optimal parameter model results of the 20/07/2016 convective storm event.

Spatial 
window 
(km2)

Temporal window (min)

0 –10 –20 –30 –40

A b r2 A b r2 A b r2 A b r2 A b r2

3 × 3 7 3.4 0.22 5 3.6 0.21 3 4.2 0.17 1 4.5 0.11 1 4.9 0.1
5 × 5 24 2.8 0.27 12 3.4 0.39 6 3.8 0.3 3 4.2 0.21 3 4.1 0.2
7 × 7 63 2.4 0.37 24 3.6 0.37 10 4.7 0.18 1 5 0.06 1 6.5 0.05
9 × 9 36.3 2.56 0.43 30.2 2.71 0.63 19 3.1 0.48 8 3.5 0.38 7 3.4 0.34

15 × 15 74 2 0.64 65 2.4 0.72 34 2.8 0.44 12 3.8 0.24 3 4.8 0.176
17 × 17 68 1.9 0.82 55 2.2 0.84 25 2.7 0.7 15 2.9 0.58 9 3 0.52
19 × 19 72 1.8 0.86 71 1.9 0.88 34 2.3 0.76 15 2.6 0.63 10 2.8 0.56
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using smaller windows (Junker et al., 2002). The r2 
value improved when increasing the window size, 
but the number of stations used for calibration also 
had an impact. 

This result is similar to that obtained by Hakvoort 
et al. (1993), who noted that increasing the number 
of rain gauges improved the model adjustment, but 
not as much as their placement; however, they did 
not differentiate between types of events. On the 
other hand, Lane et al. (1998) emphasized that a 
low-density rain gauge network (with separations of 
5-20 km) could be sufficient to obtain a good precip-
itation estimate for stratiform events because these 
could occur homogeneously in space and time. That 
is not the case for convective events, because tempo-
ral Z rate changes are larger and storm cores could 
be undetected between rain gauges. In the –10 min 
temporal windows, an r2 improvement can be observed 
for all spatial windows except for 3 × 3 and 5 × 5 
km2 (Table V). Note that an r2 of 0.9 is not obtained, 
suggesting that further window expansion is required.

Once r2 values for each spatial and temporal win-
dow were obtained, the question is which of these 
should be chosen to get the final estimates. The ad-
equate window size was chosen using physical laws 
that answer the following question: Which is the 
maximum distance raindrops would be advected by 
the wind dragged a certain time period? Two alter-
natives were considered: (1) to apply the kinematic 
equation, and (2) to apply the equation proposed by 
Calheiros and Zawadzki (1987). The time t that a 
raindrop takes to reach the ground was defined as 
10 min, given the good r2 results obtained for this 
time-window, and a mean speed v of 25 km h–1 
(~ 7m s–1), calculated from the analyzed storms, was 
chosen. The kinematic equation, disregarding the 
weight of the drops, results in:

Distance = (7 m s–1) (600 s) = 4.2 km (8)

corresponding to a radius in which the raindrops 
could fall and suggesting the selection of a 9 × 9 km2 
space and a –10 min window, respectively.

Equation 9 shows the results  using Calheiros and 
Zawadzki (1987) method: 

Area = = 10.97 km20.166 h x 25 km h–1

1.3
 (9)

The result suggests using a window between 3 × 3 
and 4 × 4 km2. Care should be taken in selecting the 
wind speed, since for very strong storms this value 
would be much larger. For example, for tropical 
storms it would exceed 90 km h–1, and for hurricanes 
it would range between 120 to 300 km h–1. The ele-
vation error related to the Earth curvature should be 
considered as well, because for a distance of 200 km 
and an angle of 0.5º it will be 4 km (Gao et al., 2006).

Figure 5a-d show the results for the 9 × 9 km2 
space and the present time (zero) window (a and b for 
the stratiform storm, and c and d for the convective 
storm). The graphs show the maximum r2 curves for 
each A and b iteration value obtained with the opti-
mization algorithm. The curves corresponding to the 
convective event have a less pronounced downward 
slope and the optimal values are reached later than 
for the stratiform event. The differences in the mag-
nitude of the resulting A and b optimal parameters 
suggest their scale dependency. Similar results were 
found by Morin et al. (2003), who demonstrated that 
the increase in space and time scales for convective 
storms leads to an increase in the A and a reduction 
in the b parameters. 

In order to assess the benefit of the proposed op-
timization method, radar estimates were performed 
using both the A and b optimized parameters (OP) 
and the default Marshall and Palmer (MP) parame-
ters; then, both were compared. Figure 6a, c shows 
the comparison of both estimates with Rg data. 
Note that the MP model is unable to match the peak 
values. Conversely, estimates in Fig. 6c show bet-
ter correspondence with Rg, which may be due to 
homogeneity in the rainfall space distribution, with 
the exception of a few peaks at the end of the graph. 
Figure 6b, d shows the cumulative mean areal rainfall 
estimated by an increasing number of measured rain 
gauge values and the corresponding radar-estimated 
rainfall (when selecting only non-zero pairs) for both 
OP and MP, ordered by rain gauge station. Figure 6b 
shows some divergence at the curve center caused 
by high values that correspond to the Escárcega rain 
gauge station. 

Similar results were found by Craciun and Catrina 
(2016), who attributed differences at closer distances 
to the divergent distance of radar beam and gauges 
for a 0.5º elevatio, and the altitude of the lifting 
condensation level (which is below the radar beam at 
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long distances but higher at closer distances. Another 
possible reason for this radar overestimation is the 
remnant ground clutter echoes, and systematic and 
collecting data errors present at the rain gauge station 
are not ruled out. There is also a slight overestimation 
at the end of the curve at data pairs corresponding 
to the Villahermosa rain gauge station. Because this 
is the most distant station from the Sabancuy radar, 
errors are likely related to radar beam elevation, rain-
drop evaporation, signal attenuation, and systematic 
radar errors. The accumulated curve plot for the 
convective event (Fig. 6d) also shows a divergence 
in the center, but this is not very pronounced. The 
maximum separation occurs at the end of the curve 
due to the occurring peak values in this part. 

The corresponding PDCA values (Table VI) were 
–21 and 10% using the OP model for convective and 
stratiform events, respectively. The negative PDCA 
value for the convective event means that rain gauge 

values were mainly overestimated by the OP model; 
the opposite occurs for the stratiform events. The 
resultant PDCA for the MP model shows that values 
are underestimated for both events with –18.7 and 
–68.3%, respectively. The percentages obtained using 
the OP model in both storm events are considered 
acceptable given the recorded rainfall magnitudes, 
but the resulting PDCA using the MP model for the 
convective is also high.

Scattergrams in Figure 7a, b show the estimated 
radar rainfall data vs. calibration rain-gauge values 
(in millimeters). Although the optimization algorithm 
computes r2 using the power-law linearized equation, 
the purpose of these graphs is to compare rain gauge 
observed values with those estimated by the radar 
data. The scattergrams show that the power model 
gave better r2 values than the linear model, yet the 
r2 difference between both models was small (not 
shown). Figure 7b shows greater dispersion and a 
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Fig. 5. Parameters A and b vs. r2 curves for (a, b) stratiform and (c, d) convective storm events. The maximum value 
in each curve corresponds to the optimal parameters: A=19.3, b= 1 for the stratiform event, and A =36.3, b=2.56 for 
the convective event.
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smaller r2 values than Figure 7a (0.69 < 0.86), which 
indicates that the convective storm has a higher 
complexity than the stratiform one. Nevertheless, 
the convective storm accumulated curve seems to 
fit data better than the stratiform curve. One reason 
may be the scale differences of each event, since the 
total accumulated rain for the stratiform event does 
not exceed 50 mm, while in the convective event it 
was more than 140 mm. Additionally, there are more 
Z/R pairs with differences in the convective event, 
which result in a greater PDCA value.

The level of agreement for the rest of the storm 
events can be assessed using the Taylor diagram for 
the windows 3 × 3 to 15 × 15 km2 at time zero (Fig. 
8). The azimuth shows the correlation (r) between 
each tested window models and the observed data, 
while the radial distance measures the standard 
deviation (SD). The black hollow circle indicates 
correlation and standard deviation of the observed 

rain gauge data, and the other symbols indicate the 
tested window models. The closest the symbols are 
to the black hollow dot, the better the correspon-
dence between the different window models with 
the rain gauge data. 

The diagrams clearly show the advantage of 
using the optimized A and b parameters (filled 
symbols), instead of the default Marshall and 
Palmer parameters (hollow symbols). In almost all 
cases the filled symbols perform better than their 
hollow counterparts; this is more evident for the 
2016/02/01, 2017/01/29, and 2018/02/13-14 storm 
events. For the 2017/02/16 and 2018/06/04 events, 
results for both the OP and MP approaches show 
good correlations (> 0.7) are observed in both 
events, especially in 2017/02/16. The 2016/07/20 
storm event is the only one where MP results seems 
to be slightly better than those using OP parameters, 
but this difference is very subtle as can be seen in 
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Figure 6c, d. These results also contrast with others 
because for all models the results are far from the 
r = 0.9 correlation and 1 standard deviation.

Table VI summarizes all the calculated perfor-
mance metrics to assess the differences between 
storm events. Except for the 20/07/2016 event, RSRs 

were smaller than 0.5, indicating a satisfactory model 
at least at windows above 3 × 3 km2, while the RSR of 
0.6 is not reached for this event until the 15 × 15 km2 
window. On the other hand, the highest RMSE values 
resulted for the 20/07/2016 and 04/06/2018 con-
vective storms, which occurred during the summer. 

Table VI. Optimal parameters and performance metrics.

Date Window (km) A b RSR RMSE (mm) ME (mm) r2 PDCA (%)
01

/0
2/

20
16

St
ra

tif
or

m 3 × 3 3 2.3 0.70 0.99 2.78 0.50 –33.50
5 × 5 4 1.8 0.43 0.61 1.22 0.81 –10.38
7 × 7 4 1.7 0.36 0.52 1.42 0.86 –6.37
9 × 9 7 1.2 0.34 0.48 1.53 0.83 –3.09

15 × 15 8 0.8 0.36 0.52 2.97 0.86 –0.83

20
/0

7/
20

16
C

on
ve

ct
iv

e 3 × 3 7 3.4 0.88 1.42 2.39 0.22 –28.72
5 × 5 24 2.8 0.86 3.85 1.2E–16 0.27 –28.87
7 × 7 63 2.4 0.79 1.28 2.40 0.37 –28.03
9 × 9 36.3 2.56 0.75 1.22 5.91 0.43 –21.18

15 × 15 74 2 0.60 0.97 –8.18 0.64 –14.76

29
/0

1/
20

17
St

ra
tif

or
m 3 × 3 10.6 1 0.97 1.27 4.3E–17 0.34 107.87

5 × 5 6.7 1.74 0.73 0.96 1.89 0.53 –12.97
7 × 7 11.9 1.39 0.63 0.83 5.64 0.71 –15.16
9 × 9 19.3 1 0.47 0.62 –1.03 0.85 10.86

15 × 15 22 1 0.21 0.28 3.46 0.95 –5.38

16
/0

2/
20

17
St

ra
tif

or
m 3 × 3 17 2.1 0.46 1.34 1.70 0.77 –0.90

5 × 5 18 1.8 0.21 0.63 2.72 0.94 3.32
7 × 7 24 1.8 0.06 0.18 2.99 1.00 –8.53
9 × 9 16 1 0.10 0.29 –2.71 0.98 –1.45

15 × 15 66 0.8 0.03 0.09 –2.93 1.00 1.11

13
/0

2/
20

18
C

on
ve

ct
iv

e 3 × 3 179 1.2 0.38 1.27 8.31 0.84 –1.63
5 × 5 199 1.4 0.49 1.64 –3.74 0.74 26.16
7 × 7 192 1.1 0.06 0.21 –3.03 1.00 –31.89
9 × 9 280 1 0.04 0.14 –1.39 0.99 1.17

15 × 15 197 1.1 0.02 0.08 2.69 1.00 –0.33

14
/0

2/
20

18
C

on
ve

ct
iv

e 3 × 3 7 1.3 0.64 2.84 –1.33 0.57 18.58
5 × 5 18 1 0.29 1.32 0 0.90 7.92
7 × 7 15 1 0.18 0.79 1.66 0.97 –78.64
9 × 9 15 1 0.09 0.40 –5.41 0.99 0.08

15 × 15 20 0.6 0.04 0.19 –5.02 1.00 –0.38

04
/0

6/
20

18
C

on
ve

ct
iv

e 3 × 3 6 2.7 0.70 2.83 8.52 0.46 –3.77
5 × 5 13 2.4 0.62 2.52 –1.54 0.57 5.50
7 × 7 166 1.5 0.57 2.29 –7.97 0.65 –22.18
9 × 9 265 1 0.38 1.53 1.19 0.85 1.24

15 × 15 92 0.9 0.01 0.06 –1.61 0.99 –0.60

RSR: root mean square standard deviation ratio; RMSE: root mean square error; ME: mean error; PDCA: 
percentage difference in cumulative average precipitation.
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Fig. 8. Taylor diagrams for different space windows from 3 × 3 to 15 × 15 km2 at time zero for all storm events. 
The hollow symbols indicate results (of SD and r) calculated using the Marshall and Palmer default model (MP), 
while the filled symbols indicate results using the optimization approach (OP) model. Observed (Rg) values are 
represented with the black circle.
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Similarly, the 20/07/2016 event had the highest ME 
values for all windows, while the lower ME values 
were reached at larger space windows. The same 
event had the worst r2 values, where a medium 
correlation of r2 = 0.64 was reached until the 15 × 
15 km2 window; conversely, for the 16/02/2017, 
13/02/2018, and 14/02/2018 storms a perfect cor-
relation was obtained at the 7 × 7 km2 window. The 
last two events were convective, suggesting that the 
optimization method works better for this kind of 
storm. PDCA values were higher for the 20/07/2016 
and 29/01/2017 events, for the best case (15 × 15 km2 
window); for the rest of the events, this value was 
below 1.1% for the same window. In summary, the 
worst error metrics were obtained for the 20/07/2016 
event due to the presence of a few peak values or 
outliers, suggesting that the optimization works better 
with smooth data.

5. Conclusions
A new procedure for weather radar calibration was 
developed in this study and applied locally to op-
timize the power-law (Z = ARb) in convective and 
stratiform storms. The resulting radar estimates using 
the optimized model were compared to the default 
Marshall and Palmer model,  raindrop free fall. The 
method was tested in the lower Grijalva River basin 
in Mexico, which is prone to flood due to the abun-
dance of rivers and high rainfall, for which reliable 
precipitation data is essential. 

The optimal A and b parameters were larger 
for most of the convective storms (except for the 
14/02/2018 event) than for stratiform storms. This 
may be due to the magnitude of radar Z values, which 
depend on raindrop size and are larger for convective 
storms (which exhibit large spatial variability). The 
same was also true for events where calibration data 
presented large peak values.

Just a few high peak values or outliers in the event 
20/07/2016 decreased the performance of the optimi-
zation algorithm. Conversely, the results of estimates 
using the Marshall and Palmer model resulted in 
slightly better correspondence with observed data, 
because the calibration procedure is better in exclud-
ing those peak values. One possible reason for this 
is that MP parameters were calculated by averaging 
values from many storm events, so it makes sense 

that the estimates tend to converge to the mean, not 
accurately representing peak values.

In the WCMM method, the best Z/R relation 
was found based on a user defined tolerance of the 
Pearson correlation coefficient (r). How good is the 
agreement between Z and the radar data depends 
on this tolerance value. The advantage of the pro-
posed approach is that it guarantees maximum Z/R 
relationship based directly on the maximization of 
the determination coefficient (r2) between the Z/R. 
This maximum relationship can be verified with the 
correlation curves (r2 vs. parameters A or b) provid-
ed by the method, and it is easy to identify which 
parameters are more convenient.

In window-based calibration methods it is import-
ant to establish some spatial range in which raindrops 
would fall due to horizontal wind advection. This jus-
tifies the selection of a maximum window dimension, 
considering important factors such as wind speed, 
time of raindrop fall, and the elevation error produced 
by the curvature of the Earth. The equations used in 
this work are good alternatives. 

One limitation encountered in the study area is the 
scarce number of automatic rain gauges that can be 
used for calibration. This may affect the calibration by 
not detecting convective cores, so it is recommended 
to test the algorithm in areas with denser rain gauge 
networks. It is also important to note that data of the 
Sabancuy radar have significant uncertainties, even 
though it is one of the most modern in the country. In 
this work we corrected for the anomalous propagation 
and false echoes. However, the raw information could 
be improved further, correcting for the bright band, 
the VPR, attenuation, self-consistency, and calibrat-
ing reflectivity. Doing this before estimating the Z-R 
ratio could significantly improve the performance 
of the algorithm, particularly in convective events.
The results indicate that the window-based algorithm 
developed in this study can be used in the local hydro-
logical calibration of the radar installed at Sabancuy, 
and in other radars with similar characteristics. Further-
more, the estimates obtained using the optimized A and 
b parameters with the proposed algorithm constitute 
and improvement over the default Marshall and Palmer 
Z/R relationship when applied to the LGRB. These new 
estimates could be used to enhance information pro-
duced by other data sources, as an input for hydrologic 
models to evaluate potential flood events in the LGRB.
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