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RESUMEN

Los datos precisos de precipitación son esenciales para cualquier estudio hidrometeorológico, en particular para 
la calibración y simulación de modelos hidrológicos. En este artículo evaluamos la precipitación de dos productos 
diferentes de reanálisis (ERA5 y GLDAS) y dos productos de precipitación basados ​​en satélites (TRMM 3B42 
y CHIRPS) sobre las cuencas del río La Sierra en el sur de México, a escalas de tiempo regionales y diarias, 
de 2008 a 2010. Comparamos los datos de precipitación en malla con las mediciones de precipitación in situ 
en cada estación de medición, así como la precipitación media espacial (PME) sobre las cuencas en el área de 
estudio para los diferentes productos. El coeficiente de correlación de Pearson, la raíz del error cuadrático medio 
y las métricas de sesgo multiplicativo sugieren que CHIRPS y ERA5 son los productos de precipitación de 
mayor calidad en el área de estudio. CHIRPS tiene un mejor desempeño en la comparación de malla a punto, 
estimando mejor los eventos de precipitación de 10-50 mm, por encima de 100 mm, y para todos los valores sin 
umbral. ERA5 tiene un mejor desempeño para precipitaciones de 0-10 y 50-100 mm. Estos dos conjuntos de 
datos también tienen un mejor rendimiento en la representación de la variabilidad espacial de la lluvia de acuerdo 
con la precipitación media anual y el análisis de PME, mostrando valores de los estadísticos cercanos entre sí.

ABSTRACT

Accurate precipitation data is essential for any hydrometeorological study, particularly for calibration and 
simulation of hydrological models. In this paper, we evaluate the precipitation of two different reanalysis 
products (the ERA5 and GLDAS), and two satellite-based precipitation products (TRMM 3B42 and CHIRPS) 
over the La Sierra river basins in Southern Mexico, on regional and daily time scales, from 2008 to 2010. We 
compare the collocated gridded precipitation data against in-situ precipitation measurements in each gauge 
station, as well as the mean areal precipitation (MAP) over the catchments in the study area for the different 
products. The Pearson correlation coefficient, the root mean square error, and the multiplicative bias metrics 
suggest that CHIRPS and ERA5 are the highest quality precipitation products over the study area. CHIRPS 
performs better on the grid to point comparison, estimating better precipitation events from 10-50 mm, 
above 100 mm, and for all the values without threshold. ERA5 does better for precipitation from 0-10 and 
50-100 mm. These two datasets also have better performance on representing the spatial rainfall variability 
according to the mean annual precipitation and MAP analysis, showing statistical values close to each other.

Keywords: precipitation assessment, reanalysis, satellite.
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1.	 Introduction
“If you can’t measure it, you can’t improve it” (Peter 
Drucker). This statement is valid in every aspect of 
science and business. In hydrology in particular, 
measurements are not always sufficiently available 
or accurate. Nonetheless, precise precipitation mea-
surements and estimates are essential for resource 
quantification studies, hydrological and meteoro-
logical modeling, decision making, and for disaster 
prevention in extreme weather events (Larson and 
Peck, 1974; Habib et al., 2001).
Ground measurements are often scarce or have low 
temporal resolution. Additionally, ground measure-
ment devices fail or are destroyed during extreme 
weather events, such as tropical cyclones, resulting 
in lack of data during these high-impact events. 
Another problem is that these devices take point 
measurements whose values need to be interpolated 
and/or extrapolated to provide estimates in areas 
with no in-situ measurements (Ciach, 2003; Upton 
and Rahimi, 2003; Ly et al., 2013). Radar-derived 
rainfall provides spatial estimates at high spatial and 
temporal resolutions with larger areal coverage if they 
are properly calibrated and maintained. However, 
radar usage is limited in mountainous regions (Borga, 
2002; Villarini and Krajewski, 2010; Nanding et al., 
2015; Rico-Ramírez et al., 2015). This leads to the 
convenience of complementary data sources, such as 
satellite-based global climate information and numer-
ical weather prediction (NWP) products, which are 
not limited by topography or device fragility.

The main advantages of satellite-derived rainfall 
estimates are their high spatial resolution, coverage, 
and near real-time availability (Paredes-Trejo et 
al., 2016). These products can be divided into three 
groups (Coning, 2013): (1) Single satellite source 
data sets such as the GOES precipitation index 
(GPI; Arkin et al., 1994) and The Hamburg Ocean 
Atmosphere Parameters and Fluxes from Satellite 
data record (HOAPS; Andersson et al., 2010); (2) 
satellite combination data sets such as the Climate 
Precipitation Center (CPC) Morphing Technique 
(CMORPH; Joyce et al., 2004) and the Global Pre-
cipitation Measurement Mission (GMP; Hou et al., 
2014); and (3) a combination of data sets with gauge 
data (these data sets are the products of input data 
from more than one sensor type, including satellites 
and rain gauges) like PERSIANN (Hsu et al., 1997), 

Global Precipitation Climatology Project (GPCP; Ad-
ler et al., 2003), TRMM Multi-Satellite Precipitation 
Analysis (TMPA) Rainfall Estimate Product 3B42 
(TRMM 3B42; Huffman et al., 2007), and Climate 
Hazards Group InfraRed Precipitation with Station 
data (CHIRPS; Funk et al., 2015). A broader list of 
available datasets can be found at http://www.isac.
cnr.it/~ipwg/data/datasets.html. 

Alternatively, reanalyses generated by different 
national or regional agencies provide multivariate, 
spatially complete, and coherent records of the glob-
al atmospheric circulation. Some examples are the 
Global Land Data Assimilation System (GLDAS; 
Rodell et al., 2004), North American Land Data As-
similation System (NLDAS; Mitchell et al. 2004; Xia 
et al., 2012), Modern-Era Retrospective Analysis for 
Research and Applications (MERRA; Rienecker et 
al., 2011), and ERA5 (Hersbach et al., 2018). These 
reanalysis datasets are produced via data assimilation, 
a process that relies on observations and model-based 
forecasts to improve model output (Parker, 2016).

The successful performance of any hydrological 
application is largely determined by the quality of 
precipitation input data. Thus, when using these 
precipitation products, it is essential to first evaluate 
their quality, as has been done recently in different 
regions (Nkiaka et al., 2017; Albuquerque et al., 
2018; Ghodichore et al., 2018; Wang et al., 2019). 
Some studies in Mexico have been done to assess 
the quality of satellite and NWP products such as 
Real-Rangel et al. (2017), who evaluated GLDAS-1, 
GLDAS-2, MERRA-2 precipitation estimates over 
Mexico against five climatological stations finding 
that MERRA-2 was the best fit followed by GL-
DAS-2 and GLDAS-1.

Some efforts have been done to estimate rainfall 
in Mexico using satellite platforms. One of the first 
products was developed by adapting Adler and Ne-
gri’s technique (1988) to develop the estimator known 
as EPPrePMex hydroestimator (Sánchez-Sesma and 
Sosa-Chiñas, 2007). This was the first real-time rain-
fall estimator calibrated for the Mexican territory. It 
showed an overestimation tendency, but the estima-
tion was better for convective storms. 

Yucel et al. (2009) used the NOAA/NESDIS 
hydroestimator to evaluate convective rainfall for 
northwest Mexico with observed surface rainfall 
data collected during the North American Monsoon 
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Experiment for the years 2002 and 2003. Results, 
though encouraging, showed overestimation in the 
daily accumulations for both topography and no 
topography considerations, despite that rain gauges 
and the GOES imagery depicted the diurnal variation 
very well. Mendoza (2019) used the precipitation rate 
estimated directly from the GOES-16 and showed 
overestimation for most of the country. The method 
of precipitation rate estimation is the one proposed 
by Kuligowsky (2002), whose calibration depends on 
a low orbiting satellite SSM/I, and it can be adjusted 
nearly in real-time via linear regression. The GOES-
16 algorithm for precipitation rate estimation also 
requires local adjustments because, as mentioned 
before, it depends on the SSM/I.

There are many studies on the quality of satel-
lite-derived precipitation, like Perdigón-Morales 
et al. (2017), who analyzed duration and intensity 
of precipitation estimates from CHIRPS over the 
midsummer drought (MSD) in Mexico. Results 
indicated that CHIRPS provided a more detailed 
spatial representation than had ever been obtained 
before. Bruster-Flores et al. (2019) assessed the 
performance of the CMORPH product with cor-
rected bias (CMORPH-CRT) in 14 sites in Mexico 
covering different climates and based on weather 
automatic stations. The evaluation was performed 
on two temporal scales, 30 min and daily based on 
two approaches: categorical metrics and statistical 
indicators. Results indicated that the CMORPH-
CRT product overestimates the number of precipita-
tion events in most cases showing weak to moderate 
correlations. Mayor et al. (2017) evaluated the pre-
cipitation product of the Integrated Multi-Satellite 
Retrievals for Global Precipitation Measurement 
(IMERG) over Mexico on hourly, daily and seasonal 
time scales for cumulative precipitation using 99 
automatic meteorological stations and continuous 
and categorical statistics. The results indicate that 
hourly precipitation performance is quite poor with 
correlation values of 0.18, while a better perfor-
mance was found at daily and seasonal time scales. 

The present study evaluates the precipitation 
from two different reanalysis products (ERA5 and 
GLDAS), and two satellite-based precipitation 
products (TRMM 3B42 and CHIRPS) at storm-scale 
(1-10 km) over the La Sierra river basins located 
in southern Mexico, characterized by a high flood 

frequency occurrence and frequently hit by extreme 
meteorological events. The Sabancuy radar is avail-
able in the area; however, despite the advantages 
previously mentioned, two factors limit its use in the 
study area: it does not cover the area entirely, and the 
region contains a mountainous part. 

The main difference between the previous studies 
in Mexico and this one is that previous analyses were 
developed at coarser scales considering selected sta-
tions over Mexican regions, or in the case of Mendoza 
(2019) over the Nayarit state, while the objective 
of the present study is to develop the analysis at a 
watershed scale. The use of these kinds of datasets 
is vital in areas where in-situ observations are scarce 
for calibration of hydrological models, which are 
implemented at the watershed scale. Additionally, 
the present study covers both, reanalysis and satel-
lite-based precipitation products, and the evaluation 
is carried out based on statistical indicators and not 
categorical metrics on a daily time scale. This study 
will contribute to the evaluation of different precipi-
tation datasets at a scale that is normally used to drive 
hydrological models, offering a contribution to the 
hydrometeorological community and hydrological 
model users.

This paper is organized as follows: section 2 
describes the study area, sources of data and meth-
odology used. Results and discussion are provided 
in section 3 and section 4 provides conclusion and 
future recommendation.

2.	 Data and methods
2.1 Study area 
The area of interest is shown in Figure 1 where the 
red rectangle represents the domain of analysis, 
which encompasses La Sierra river basin and its 
contribution from Teapa river, from now on called 
La Sierra river basins, located between the states of 
Tabasco and Chiapas, Mexico. The domain area is 
21 528 km2 while the basins of interest are 4573 km2 
in total. La Sierra river is one of the three main 
rivers contributing to the Grijalva river flow, one of 
the largest rivers in Mexico which crosses the city 
of Villahermosa, Tabasco and drains into the Gulf 
of Mexico (GOM). This zone is characterized by a 
high flood frequency occurrence and it is frequently 
hit by extreme meteorological events.
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The upper part of the study area, within the state 
of Chiapas, is shaped by mountainous regions that 
comprise the Sierra de Chiapas, with elevations 
around 4000 masl. These mountains intercept the 
moisture carried by winds from the GOM, which 
favors a humid climate with rains all year-round. 
In contrast, plains dominate the lower part of the 
state of Tabasco, as part of the coastal plain of the 
southern GOM with elevations of a few dozen masl 
(CONAGUA, 2013, 2015) (Fig. 1).

Precipitation is analyzed from 2008 to 2010. This 
period encompasses important meteorological events 
such as tropical cyclones Karl and Matthew, along 
with the presence of the Intertropical Convergence 
Zone in the higher Grijalva River basin during 40 
days in 2010, with an accumulated precipitation of 
1572 mm in such period (Arreguín-Cortés et al., 
2014). Such intense precipitation event caused flood 
danger in the city of Villahermosa and important 
floods in the floodplain.

The number labels shown in Figure 1 are intended 
to identify each of the basins within the study area and 
facilitate the interpretation of results in the following 
sections. Each basin corresponds to the catchment 
area of the hydrometric stations shown in Table I. 

Note that there are zones with no rain gauges, which 
could affect the results when estimating mean areal 
precipitation (gauge interpolated).

2.2 Data sources
This subsection describes the data sources used and 
their general characteristics. Global free sources of 
information, like reanalysis or satellite data, are used 
in Mexico to derive adequate hydroclimatic variables 
needed in the simulation of hydrological processes 
and water balance studies (Real-Rangel et al., 2017). 
This kind of data is important in Mexico and other 
developing countries where in-situ observations are 
scarce.

Weather station
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Fig. 1. La Sierra river basins location and spatial distribution of weather stations over 
the study area.

Table I. Basins ID and area.

Basin name Basin ID Area (km2)

Oxolotán 1 2792.58
Tapijulapa 2 280.37
Puyacatengo 3 127.89
Pueblo Nuevo 4 1372.28
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2.2.1 In-situ observations
The National Weather Service of Mexico (SMN, by 
its Spanish acronym) oversees the gathering, con-
centrating, reviewing and disseminating of climate 
information using the CLICOM (computerized 
climate) computer system developed by the World 
Meteorological Organization (WMO) in the mid-
1980s. This database contains data from more than 
5000 stations distributed throughout the country. It 
offers daily data, reported every 24 h at 8:00 LT for 
the precipitation, evaporation and maximum and 
minimum temperature for each location (https://
smn.conagua.gob.mx/). Regarding precipitation, the 
measurements are done by means of tipping bucket 
gauges and the SMN performs a first quality control 
over the data identifying missing values, reviewed, 
corrected and doubtful data.

The in-situ precipitation data used in this study 
is taken from this database. The information can 
be downloaded from the SMN portal (https://smn.
conagua.gob.mx/es/climatologia/informacion-cli-
matologica/informacion-estadistica-climatologica) 
for short periods of time, while requests of longer 
periods need to be solicited directly to the SMN. After 
an exploratory data analysis, it was concluded that for 
the analysis period, 32 climatological stations within 
the study area were acceptable based on continuity 
and statistical dispersion of the data. Their locations 
are shown in Figure 1. 

It is important to note that since the SMN is the 
main source of land climatological data in Mexico, a 
number of the datasets used in this study might have 
incorporated some of this data in the bias correction 
of their precipitation estimation, as it will be men-
tioned in the following sections.

2.2.2 Reanalysis precipitation datasets
2.2.2.1 GLDAS
GLDAS is a global, high-resolution, offline (un-
coupled to the atmosphere) terrestrial modeling 
system that incorporates satellite and ground-based 
observations, using land surface modeling and data 
assimilation techniques, to produce optimal fields 
of land surface states and fluxes in near-real time 
(Rodell et al., 2004). 

GLDAS offers land surface model simulations 
of Noah (Ek et al., 2003), Common Land Model 
(CLM; Dai et al., 2003), Variable Infiltration Capacity 

Model (VIC; Liang et al., 1994) and Mosaic (Koster 
and Suárez, 1996) available in a 3-h temporal reso-
lution, 1º and 0.25º spatial resolution from 1979 to 
present. For the present study, the 0.25º resolution 
V2.1 data was used on the analysis period of 2008 
to 2010, which is available at https://disc.gsfc.nasa.
gov/datasets/GLDAS_NOAH025_3H_V2.1/summa-
ry?keywords=GLDAS_VIC10_3H.

Previous studies have analyzed the performance 
of this dataset, such as Real-Rangel et al. (2017), 
who evaluated precipitation and streamflow vari-
ables on GLDAS v. 1 and 2 and MERRA-2 over 
Mexico, assessing absolute values and its variability. 
The results on precipitation values considering five 
climatological stations, showed that MERRA-2 was 
the best fit with ground observations closely followed 
by GLDAS-2, whereas GLDAS-1 values were not 
acceptable. All the products showed poorer perfor-
mance in reproducing precipitation variability than 
absolute magnitude. In particular, the results suggest 
that mid to long-term variability are reproduced better 
than short-term fluctuations (one month).

2.2.2.2 ERA5
ERA5 is the latest atmosphere, ocean waves and 
land reanalysis of the meteorological reanalysis 
project European Centre for Medium-Range Weather 
Forecasts (ECMWF). It replaces the ERA-Interim 
reanalysis that was started in 2006 (spanning 1979 
onwards) and encompasses the period covered by 
ERA-40. ERA5 is based on 4D-Var data assimilation 
using Cycle 41r2 of the ECMWF’s Integrated Fore-
casting System (IFS) (Hersbach et al., 2018). This 
dataset provides hourly output for its variables and 
three-hourly output for its uncertainty estimations. 
It covers the Earth on a 30 km grid resolution and 
uses 137 levels from surface up to a height of 80 km. 
The ERA5 hourly data on single levels from 2008 
to 2010 are used in this study, which is available at 
Copernicus Climate Change Service Climate Data 
Store (CDS) https://cds.climate.copernicus.eu/cd-
sapp#!/home.

2.2.3 Satellite datasets
2.2.3.1 TRMM 3B42
The Tropical Rainfall Measuring Mission (TRMM) is 
a joint mission between NASA and the Japan Aero-
space Exploration Agency (JAXA) to study rainfall 

https://en.wikipedia.org/wiki/Meteorological_reanalysis
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for weather and climate research. It was launched in 
November 1997 and ended collecting data on April 
15, 2015.

The TRMM 3B42 product v. 7 combines precip-
itation of four passive microwave (PMW) sensors, 
namely TRMM Microwave Imager (TMI); Special 
Sensor Microwave/Imager (SSM/I) F13, F14, and F15; 
Advanced Microwave Scanning Radiometer-EOS 
(AMSR-E); and Advanced Microwave Sounding 
Unit-B (AMSU-B). These data are merged to produce 
a combined satellite rainfall estimate every 3 h, which 
is then summed to a monthly scale to be recalibrated 
using monthly precipitation gauge analysis. These two 
merged products, satellite rainfall estimates (S) and 
gauge data (G), provide the final three-hourly 0.25º 
× 0.25º quasi-global (50º N-S) gridded SG-rainfall 
database (Huffman et al., 2007; MacRitchie, 2017). 
The data used in this study was obtained from the 
Greenbelt, MD, Goddard Earth Sciences Data and 
Information Services Center (GES DISC) (https://doi.
org/10.5067/TRMM/TMPA/3H/7).

Some studies have been done in Mexico using 
this dataset. Aurea et al. (2016) evaluated the stan-
dardized precipitation index (SPI) during the period 
of 1998 to 2013 using the TRMM 3B42 product and 
compared it against the rain gauge-based SPI getting 
low to medium correlations but still being able to 
capture the most relevant droughts at national scale. 
Gochis et al. (2009) assessed the performance of 
five remotely sensed precipitation products in their 
ability to represent the statistical characteristics of 
the North American Monsoon (NAM) over northwest 
Mexico and southwest US during 2004. Additionally, 
a comparison between operationally gauge-corrected 
(TRMM 3B42) and uncorrected (TMPA real time 
product, TRMM_RT) quantitative precipitation es-
timates (QPE) products was also made, resulting on 
TRMM 3B42 modestly having superior skill scores 

and the lowest false alarm ratios compared with the 
other non-corrected products.

2.2.3.2 CHIRPS
The CHIRPS quasi-global (50º S-50º N) dataset was 
developed to support the United States Agency for 
International Development Famine Early Warning 
Systems Network (FEWS-NET) (Funk et al., 2015). 
CHIRPS uses the Tropical Rainfall Measuring Mis-
sion Multi-satellite Precipitation Analysis version 
7 (TMPA 3B42 v7) to calibrate global cold cloud 
duration (CCD) rainfall estimates. The station data 
incorporation is done in two phases. The first one 
yields a 2-day latency preliminary rainfall product 
by merging sparse World Meteorological Organi-
zation’s Global Telecommunication System (GTS) 
gauge data and data from stations in Mexico with 
CCD-derived rainfall estimates at every pentad. In 
the second phase, the best available monthly (and 
pentadal) station data are combined with monthly 
(and pentadal) high-resolution CCD-based rainfall 
estimates to produce the final product with a ~3-week 
latency. The final product yields into a high resolution 
(0.05º), daily, pentadal, and monthly precipitation 
dataset available at ftp://ftp.chg.ucsb.edu/pub/org/
chg/products/CHIRPS-2.0/

Perdigón-Morales et al. (2017) evaluated the 
performance of this product in estimating the du-
ration and intensity of the MSD in Mexico for the 
1981-2010 period. As a result, CHIRPS provided a 
more detailed spatial representation of the MSD than 
had been obtained before. Therefore, CHIRPS data, 
interpolated to the geographical points of the SMN 
climatological stations, is acceptable in reproducing 
the climatological values of the monthly precipitation 
accumulations in Mexico. Table II shows a summary 
of characteristics for each one of the products used 
in this study.

Table II. Main dataset specifications.

Dataset GLDAS ERA5 TRMM 3B42 CHIRPS

Spatial resolution 0.25º × 0.25º 0.25º × 0.25º 0.25º × 0.25º 0.05º × 0.05º
Precipitation units kg/m2/s kg/m2/s mm/h mm
Temporal resolution 3 hours Hourly 3 hours Daily
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2.3 Evaluation methodology
Since in-situ precipitation observations are only 
available daily, the evaluation in this study is per-
formed on a daily time scale. Therefore, the sub-daily 
products were aggregated in a daily time scale. Four 
main steps were followed to compare the reanalysis 
and satellite precipitation products against in-situ rain 
gauge measurements:

Step 1. All gridded datasets were re-gridded to a 
1-km2 resolution using bilinear interpolation through 
NCAR command language (NCL) scripts that utilize 
the Earth System Modeling Framework (ESMF) 
re-gridding functions. The 1-km2 grid is the spatial 
grid used in the hydrological model domain. This 
resolution was chosen because it is the minimum 
resolution necessary to represent adequately the 
topographic features of the study region and is widely 
used in other hydrologic studies, for example in the 
operational U.S. National Water Model (https://water.
noaa.gov/about/nwm).

Step 2. In-situ rainfall measurements are available 
at a daily time scale, reporting at 8:00 LT. Therefore, 
all other sub-daily products were accumulated from 
9:00 LT on that day to 8:00 LT on the following day 
to calculate daily rainfall.

Step 3. Two main approaches were used to compare 
precipitation estimates against in-situ observations: (1) 
point to grid comparison of the in-situ observed rainfall 
against the precipitation estimates from the collocated 
1-km2 pixel; and (2) a comparison of the mean areal 
precipitation (MAP) values of the gridded precipitation 
against the MAP values of the in-situ observations over 
the watersheds. For the gridded products, MAP is the 
spatially averaged precipitation over each watershed 
numbered in Figure 1, considering the pixels within 
each of them. For the in-situ precipitation observation, 
MAP values are calculated using Thiessen polygons. 
This method is commonly used in hydrology to assign 
an influence area to each ground gauge location by 
bisecting lines connecting the gauges, thus forming 
polygons to estimate average precipitation in a basin 
(Raudkivi, 1979).

Step 4. Four different metrics were used to eval-
uate the agreement between estimated and observed 
precipitation values: Pearson correlation coefficient 
(Eq. 1), mean values for each station over all days, 
multiplicative bias (Eq. 2), and root mean square error 
(RMSE) (Eq. 3). To evaluate the performance of each 

dataset for events with different magnitudes these 
metrics were calculated for the following thresholds: 
0-10, 10-50, 50-100, and above 100 mm, as well 
as for all the precipitation values (unconditional 
statistics). These thresholds were selected based on 
the potential damage degree that can be produced: 
minimum, low, high, and very high.

The Pearson correlation coefficient (rxy) is the 
ratio between the sample covariance Sxy and the 
product of the standard deviations from the observed 
and estimated values, Sx and Sy, respectively, for each 
station over all days (Eq. [1]), where the superscript 
j indicates the jth station and n is the total number of 
precipitation data pairs for that station.

rxy =
Sxy

,  

j
j

Sxy
∑

n – 1 n – 1= =j Sx
j ,  

=Sy
j

n
i=1

Sx
j Sy

j

(xi
j – xj)(yi

j – yj) ∑ n
i=1 (xi

j – xj)2

n – 1
∑ n

i=1 (yi
j – yj)2

	(1)

The correlation coefficient allows to measure the 
association between two variables, in this case the 
daily observed and estimated precipitation. It can take 
a range of values from –1 to +1, where ±1 indicates a 
perfect correlation between the two variables. A value 
greater than zero indicates a positive association, less 
than zero a negative association and equal to zero, 
no association.

The multiplicative bias (MultiBias) is the ratio be-
tween the mean of the precipitation estimate (Fi

j) for 
each station over all days to the corresponding mean 
of the observed precipitation (Oi

j). It is represented by 
Eq. (2), where the superscript j indicates the jth sta-
tion and N the total number of days of precipitation. 
Therefore, a value higher than 1 means the model is 
overestimating the precipitation, while values bellow 
1 indicate precipitation underestimation.

MultiBias 
∑

=
N1

N i=1 Fi
j 

∑ N1
N i=1 Oi

j 
	 (2)

The root mean square error (RMSE) is the square 
root of the square differences between the estimated 
and observed precipitation for each station over all 
days. The perfect score is zero. 

RMSE N√
∑

=
N
i=1 (Fi

j – Oi
j)2 	 (3)
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3.	 Results
The comparison of different rainfall products versus 
the in-situ measurements are provided in this sec-
tion. As mentioned in section 2.3, all products were 
re-gridded to 1-km grids for the use in the hydrolog-
ical model, and all the metrics are calculated based 
on the re-gridded data. Figure 2 shows the mean 
annual precipitation over the analysis period for each 
dataset in their native spatial resolution (Table II). 
There is a reasonable agreement between the spatial 
pattern of CHIRPS and ERA5. However, there is not 
much spatial variability in GLDAS and TRMM, and 
GLDAS seems pretty uniform in space. In terms of 
the overall precipitation intensity, CHIRPS, ERA5 
and GLDAS are on the same order, while TRMM 
has significantly lower values compared to the other 
three products. The colored dots in Figure 2 show 

the in-situ mean annual precipitation intensity at 
the meteorological stations. Note from this plot that 
TRMM has significantly lower values in most of 
the domain compared to the mean annual observed 
rainfall over the study period. Also, GLDAS does not 
have the required spatial variability, and the estimated 
rainfall is almost uniform everywhere; therefore, the 
measured rainfall is overestimated at some locations 
while underestimated at others.

3.1 Point to grid comparison
Figure 3 shows a heat map of the estimated daily rain-
fall from CHIRPS, ERA5, GLDAS and TRMM 3B42 
vs. the observed daily rainfall at 32 meteorological 
stations. Each point corresponds to the precipitation 
registered in one day during the analysis period for 
each station within the domain, therefore, all the 
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values registered for each station are plotted for each 
dataset, including days where the registered precip-
itation was zero. It also shows that TRMM 3B42 
and GLDAS have a negative bias, which means that 
they tend to underestimate the precipitation values. 
ERA5 shows a slightly better performance. It does 
underestimate the intense precipitation events, but 
the degree of underestimation is lower than that of 
TRMM 3B42 and GLDAS. CHIRPS shows the best 
behavior of the compared datasets and less systematic 
underestimation. However, it has a large data scatter 
and a tendency to overestimate small rainfall events. 

Figure 4 shows the mean daily precipitation esti-
mates for each rainfall product over all the analysis 
period against the mean observed rainfall at the 
gauge location for each station. Points around the 
1:1 line indicate agreement between the mean of the 
precipitation estimate at the gauge locations with 
observation. Again, CHIRPS estimates show the best 
behavior, followed by ERA5. In the case of GLDAS, 
it is producing the same amount of rainfall on most 
of the gauges, as expected given the uniformity of 
GLDAS that was shown in Figure 2 over the region 
of study. GLDAS overestimates for low rainfall 
amounts and underestimates for high mean rainfall 
values. The mean of the precipitation at all the gauges 
were underestimated by TRMM indicating that this 

product has high negative biases in the precipitation 
and will not be a very useful dataset when the total 
volume of the water on a watershed is of importance. 

The point to grid comparison was also evaluated 
through statistics summarized in box-plot diagrams. 
Figure 5 shows mean estimated precipitation at the 
station locations, Pearson correlation coefficient, 
RMSE and multiplicative bias calculated based on 
the estimated rainfall for each dataset against the 
observed rainfall for all stations within the study area. 

The closest median of the mean precipitation is 
estimated by CHIRPS, followed by ERA5 and GL-
DAS, both overestimating its value, while TRMM 
3B42 tends to underestimate it. CHIRPS has a more 
disperse distribution, positively skewed, that is the 
closest to the distribution in the observed values. On 
the other hand, even if it tends to slightly overesti-
mate the median, ERA5 has less variability showing 
a tighter distribution and less skewed in comparison 
with CHIRPS and the observed values.

CHIRPS is the least biased dataset in terms of 
multiplicative bias, with a median close to 1, which 
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indicates that the mean of the observed and estimat-
ed precipitation are very close to each other, and it 
also shows a very tight distribution. On the other 
hand, close to 50% of the values in both ERA5 and 
GLDAS datasets are above 1, indicating they tend 
to overestimate and underestimate precipitation in 
almost the same amount. According to the previous 
results, they tend to underestimate high precipitation 
values and overestimate the low ones. On the other 
hand, TRMM 3B42 consistently underestimates it 
in all cases.

CHIRPS has the highest median of the Pearson 
correlation coefficient showing a tight distribution 
of correlations. It is followed by ERA5 with around 
12% of the correlation values above the ones ob-
tained by CHIRPS and TRMM 3B42. GLDAS and 
TRMM 3B42 have a median value close to the one 
obtained by ERA5; however, GLDAS has a very tight 
distribution with correlation values not as high as the 
rest of the datasets and TRMM 3B42 has the highest 
dispersion in comparison to the rest of the datasets.

Finally, according to the RMSE the median val-
ue is almost the same for all the datasets; however, 

ERA5 has the tighter distribution with the lowest 
RMSE values. This is followed by CHIRPS which 
has around 25% values lower than the ones obtained 
by ERA5 but with a more disperse distribution 
positively skewed. On the other hand, GLDAS and 
TRMM 3B42 have a disperse distribution in com-
parison to ERA5 with high RMSE values including 
the outliers.

Conditional statistics for precipitation in different 
threshold values are shown in Figure 6. Multiplicative 
bias is larger than 1 for precipitation events in the 
range of 0-10 mm for all the datasets except TRMM 
3B42 and smaller than 1 for the rest of the precip-
itation ranges, which means that low precipitation 
values are overestimated by all the datasets except 
TRMM 3B42 and high precipitation values tend to 
be underestimated by all the datasets.

The correlation coefficient values diminish as 
the rainfall depth increases and turn to negative cor-
relation at many stations for rainfall values greater 
than 100 mm. Regarding the Pearson correlation 
coefficient, ERA5 has the highest value for events 
in the ranges of 0-10 mm and of 50-100 mm, while 
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CHIRPS has higher correlations than ERA5 in 
ranges of 10-50 mm, above 100 mm, and for all the 
precipitation events. These two datasets have higher 
correlation values followed by GLDAS. All datasets 
show a broad distribution of correlation values for 
precipitation events above 100 mm, highlighting the 
large variability on the estimates of high precipitation 
events.

Finally, the RMSE values show errors in all 
datasets are greater for larger precipitation values 

which is expected since RMSE is dependent on the 
precipitation values. TRMM 3B42 has the smallest 
RMSE value for low precipitation events in a range of 
0-10 mm, followed by CHIRPS, ERA5 and GLDAS. 
On the other hand, GLDAS has the lowest errors for 
events between 10-50 mm but it is closely followed 
by ERA5 and CHIRPS. CHIRPS has slightly lower 
errors on higher events in the ranges 50-100 mm and 
above 100 mm.

3.2 Mean areal precipitation
Accuracy of the total rainfall over the watershed 
area is an important factor in hydrological modeling. 
If precipitation was misplaced in the point to grid 
analysis, then the errors would be larger and that 
is why some studies use a neighborhood approach 
when verifying the precipitation estimates and 
forecasts (Schwartz, 2016). We acknowledge that 
the spatial rainfall pattern will play an important 
role in the streamflow timing; however, the bias in 
the streamflow is more dependent on the accuracy 
of the mean areal precipitation over the watershed 
than on the spatial pattern. Therefore, we compared 
the estimated and observed mean areal precipitation 
over the four watersheds in the study area. The same 
metric as the point to grid comparison is used here. 
The distribution of the daily mean areal precipitation 
for each dataset and watershed is shown in Figure 7 
through scatter plots, while the obtained metrics are 
summarized in Table III.

Results of Table III indicate that in basin number 
1, the mean of the daily MAP obtained is better rep-
resented by GLDAS; however, ERA5 has the highest 
correlations. The rest of the datasets show very close 
correlation coefficients while TRMM 3B42 has the 
lowest RMSE. As it is shown in the scatter plots, 
CHIRPS is the dataset with the lowest dispersion; 
however, it tends to overestimate zones with low 
rainfall in high amounts. In contrast, ERA5 tends 
to do the opposite in a few zones with high rainfall. 
Based on the mean annual precipitation shown in 
Figure 2, rainfall in basin 1 had the lowest precipita-
tion amounts and least variability in comparison with 
the rest of the basins; therefore, GLDAS and TRMM 
3B42 show medium performances. Overall, ERA5 
and GLDAS show the best performances.

On the other hand, ERA5 has the best performance 
for basins 2 and 3 according to the correlation, RMSE 
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and mean values, with the exception that mean val-
ues are better represented by CHIRPS over basin 2. 
The last can be seen also in the scatter plots where 
ERA5 shows the more consistent distribution and 
less scattered.

It is CHIRPS in the case of basin 4 which has the 
best performance in comparison with the rest of the 
datasets based on the statistics and the scatter plots. 

According to the analyses done, ERA5 and CHIRPS 
are superior in representing the spatial rainfall vari-
ability for basins 2 to 4.

3.3 Discussion
The results presented indicate that the overall per-
formance of the analyzed datasets is in the following 
decreasing order: CHIRPS, ERA5, GLDAS, and 

Fig. 7. Scatter plot of mean areal estimated and mean observed precipitation for each dataset. The number labels 
represent each basin in the study area.
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TRMM 3B42, with similar performances between 
ERA5 and CHIRPS.

The poor performance of TRMM 3B42 stands 
out compared to the rest of the products, especially 
compared to CHIRPS since both are satellite-based 
precipitation products. Bharti and Singh (2015) found 
that the TRMM precipitation product overestimates 
precipitation at elevations in ranges less than 3000 
masl but severely underestimates it at higher eleva-
tions in the Himalaya region. Similar results were 
found by Ávila-Carrasco et al. (2018), who evaluated 
the TRMM 3B43V7 product on the Santiago River 
basin in Mexico for the 1998-2010 period through its 
comparison to a gridded precipitation database con-
structed from interpolation of 85 rain gauges using 
kriging. They found that the TRMM 3B43V7 product 
tends to underestimate precipitation in the coastal 
and mountainous regions and tends to overestimate 
it in the driest parts of the study area. Similarly, our 
results suggest that the poor performance of TRMM 
3B42 could be due to the orographic complexities 
of the study area, since the upper part of the basin 
is predominantly mountainous while plains are 
more common on the lower part. Also, the quality 

and quantity of in-situ observations used for bias 
correction may have a role in the performance of 
TRMM 3B42.

Another source of bias originates from the type 
of typical clouds that vary in space. Precipitation 
produced by shallow orographic systems can be 
underestimated by microwave radiometer algorithms 
(Shige et al., 2013; Mayor et al., 2017). The better 
performance of CHIRPS against TRMM 3B42 could 
be the result of two main differences between the two 
products. First, CHIRPS is based on TRMM 3B42 to 
calibrate global CCD rainfall estimates considering 
information from multiple agencies including data 
from stations in Mexico, Central, and South Amer-
ica (see section 2.2.5). And second, despite having 
a coarser temporal resolution than the rest of the 
products, it has the highest spatial resolution, allow-
ing for a better spatial representation of phenomena 
at higher scales.

ERA5 also shows a reasonable performance 
comparable to CHIRPS. ERA5 is a new product 
(2016) that replaces ERA-Interim and benefits from 
a decade of developments in model physics, core 
dynamics, and data assimilation techniques (4D-Var 

Table III. Mean areal precipitation statistics for each basin and dataset (the best metric value is indicated 
in gray).

Basin Mean 
observed (mm)

Source Mean model 
(mm)

Pearson 
correlation

RMSE (mm) MultiBias

1 5.922 CHIRPS 7.059 0.391 14.548 1.192
ERA5 5.377 0.476 9.378 0.908

GLDAS 6.092 0.397 10.514 1.029
TRMM 2.201 0.396 9.255 0.373

2 9.115 CHIRPS 7.993 0.511 18.374 0.877
ERA5 7.459 0.633 15.268 0.818

GLDAS 6.241 0.333 19.014 0.685
TRMM 2.191 0.559 18.827 0.240

3 9.383 CHIRPS 7.256 0.516 18.869 0.773
ERA5 7.962 0.531 18.285 0.849

GLDAS 6.207 0.327 20.728 0.662
TRMM 2.026 0.462 21.237 0.216

4 8.044 CHIRPS 6.418 0.621 11.731 0.798
ERA5 6.520 0.595 11.761 0.810

GLDAS 6.031 0.408 13.708 0.750
TRMM 1.890 0.527 14.252 0.236

RMSE: root mean square error.
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as mentioned in section 2.2.3), assimilating around 
24 millions of observations per day including satel-
lite-radiances and ground-based radar observations 
(Hersbach et al., 2018). The temporal resolution also 
plays an essential role in performance, as shown in 
Table III. ERA5’s hourly temporal resolution is an 
advantage over the rest of the datasets, since it allows 
a much-refined view of the evolution of weather 
systems and could particularly play an important 
role during intense flash flooding events which last 
on the order of hours or less. GLDAS showed a poor 
performance compared to ERA5 and CHIRPS; an 
important characteristic that might play a role in the 
results is that it does not model atmospheric fields 
explicitly, hence it does not represent the physics 
behind precipitation processes, but instead relies on 
land surface models forced by observation-based 
meteorological fields using data assimilation tech-
niques to incorporate observations of land surface 
states to curb unrealistic model states (Rodell et 
al., 2004). Therefore, its performance is related to 
the observations used for bias correction and could 
result in poor estimates in the case of low-quality 
observational data

The uneven gauge distribution might have also 
caused a possible distortion of the results due to a 
misrepresentation of the MAP on the true precipi-
tation field. 

4.	 Conclusions
The objective of this study was to evaluate reanalysis 
and satellite-based precipitation at a regional scale 
over the La Sierra river basins located in southern 
Mexico. The analyzed products were GLDAS, ERA5, 
TRMM 3B42, and CHIRPS over a 3-year period 
from 2008 to 2010, comparing in-situ observed 
rainfall vs. precipitation estimated by each product. 
The comparisons were done on point to grid com-
parison of the in-situ observed rainfall against the 
precipitation estimates from the collocated 1-km 
pixel and a comparison of the MAP values of the 
gridded precipitation against the MAP values of the 
in-situ observations.

The relevant findings for the study area were:

	- According to the point to grid comparison, 
CHIRPS showed the best performance among 

the four products in representing the mean dai-
ly values over the analysis period and the best 
non-conditional statistics, showing the highest 
correlation, lowest RMSE and multiplicative bias 
values, closely followed by ERA5. 

	- GLDAS and TRMM 3B42 tend to underestimate 
daily precipitation values.

	- According to the conditioned statistics, all the 
datasets show a broad spectrum of correlation 
values for precipitation events above 100 mm, 
highlighting the large variability in estimates of 
high precipitation events.

	- All the products are highly biased on low precip-
itation events, which means that all the datasets 
tend to overestimate low precipitation events 
(except TRMM 3B42), and they tend to under-
estimate high precipitation events.

	- ERA5 has the highest correlation values for events 
in the ranges of 0-10 mm and 50-100 mm, while 
CHIRPS has higher correlations than ERA5 in 
ranges of 10-50 mm, above 100 mm, and for all 
the precipitation events without condition. These 
two datasets are followed by GLDAS.

	- ERA5 and CHIRPS are the datasets with the 
best capability to represent the spatial rainfall 
variability according to the mean annual precipi-
tation and mean areal precipitation analysis over 
the study area.

We conclude that CHIRPS is a convenient product 
if the application requires only precipitation data, 
whereas ERA5 is appropriate when other atmospheric 
variables are required, for instance if the dataset is 
used to force hydrological models.

It is important to highlight that the results are 
particular to the current analysis and study area, and 
considering the limited number of products explored, 
other datasets might show better results. Lastly, 
the methodology shown in this study could lay the 
foundation for an analysis of different atmospheric 
regimes in the future.
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