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ABSTRACT 

Compatible, implicit, balanced and absolutely stable difference schemes of the second 
order aproximation in space and time are suggested for solving the main and adjoint 
pollutant transport equations in a limited area when there is a pollutant flux through 
the open lateral and top boundaries. 

The differential operators of both the main and adjoint problems are positive defi- 
nite, positive semidefinite or skew symmetric depending on the boundary conditions 
and the model parameters. The split l d i m  operators as well as the unsplit and split 
finitedifference operators have same properties. It enables us to apply the splitting-up 
method for constructing affordable implicit numerical schemes for the main and 
adjoint 3dim problems. 

RESUMEN 

Se sugieren esquemas en diferencias finitas para resolver las ecuaciones de contami- 
nación, principal y adjunta, en un área limitada en el caso de la existencia de un flujo 
contaminado a través de las fronteras lateral y superior abiertas. Estos esquemas son 
compatibles, implícitos, balanceados, absolutamente estables y de segundo orden de 
aproximación en espacio y tiempo. 

Los operadores diferenciales de ambos problemas, el principal y el adjunto, son 
positivo definido, positivo semidefinido y asimétrico, dependiendo de las condiciones 
de frontera y de los parámetros del modelo. Los operadores separados, diferenciales y 
en diferencias finitas, son de ldimensión con las mismas propiedades del operador 
original. Esto permite aplicar el método de  separación para construir esquemas 
numéricos implícitos para problemas de Mimensiones, el principal y el adjunto, que 
son económicos. 

INTRODUCTION 

Assuming that the wind, or current, velocities are 
known as a result of the solution of the correspon- 
ding dynamic model (Sawai 1978, Marchuk et al. 
1979, Beniston 1987, Jauregui 1988, Buendia et 
al. 1992) the pollutant transport equation can be 
applied in a limited area to many interesting and 
important problems: 

1) optimal allocation of new industrial plants in 
a given region with the aim to minimize the pollu- 

tion concentration in certain ecologically signifi- 
cant zones (Marchuk 1986) ; 

2) optimization of emissions from operating 
industrial plants (Marchuk 1982a, Penenko and 
Raputa 1983) ; 

3) determination (on a basis of the air quality 
monitoring data) of the current leve1 of pollutions 
coming from the industrial plants with the aim to 
identify the plant violating permissible sanitary 
norms (Penenko and Raputa 1982); 

4) evaluation of the role of the emissions com- 
ing from the vehicle traffic including in the model 
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the linear pollution sources located along the 
main roadways (Heigorn et al. 1991, Sliggers 1992); 

5) estimation of the oil pollution in various eco- 
logically significant oceanic (sea) zones in case of 
the tanker wreck (Skiba 1993) ; 

6) evaluation of the sea water desalination in 
ecologically significant zones when the fresh water 
is coming from a river estuary. 

The above-listed problems can be studied by 
using the main and adjoint pollutant transport 
equations. The aim of this work is to formulate 
well posed main and adjoint pollutant transport 
problems in a limited area and construct balanced 
difference schemes. Moreover, the schemes for 
main and adjoint problems must be compatible, 
i.e. the finite-difference operators of these sche- 
mes must satisfy the Lagrange identity. 

As it was pointed out by Forester (1977), Rood 
(1987), Dyrnnikov and Aioyan (1990), Allen et al. 
(1991), Smolarkiewicz (1991), Williamson (1992) 
and others, the most desirable transport scheme 
should be stable, balanced, transportive, monoto- 
nic, computationally affordable and of high order 
approximation. In addition, in case of limited area 
models when there is a pollutant flux through the 
boundaries, correct choice of the boundary condi- 
tions is also very important to obtain well posed 
problem in both the mathematical and physical 
sense. Indeed, typically al1 the absolutely stable 
schemes are implicit. In a multi-dimensional case, 
solving the implicit scheme is very costly. Geomet- 
ric splitting of the original multidimensional 
problem into a few one-dimensional problems, 
greatly simplifies the numerical algorithm. Howev- 
er, application of the splitting-up method can be 
justified only when al1 the split operators are non- 
negative. This property crucially depends on the 
choice of the boundary conditions. Thus construc- 
tion of such operators for limited area models with 
the open boundaries is not trivial. In this work 
Marchuk's idea (Marchuk 1986) was applied not 
only to the lateral but also to the open top bound- 
ary. It allows to avoid putting the artificial condi- 
tion w = O at the top of the domain where w is the 
vertical velocity component. 

The schemes suggested are compatible, balan- 

ced, implicit, absolutely stable to initial perturba- 
tions and of second order approximation in time 
and space. The splitting-up method (Yanenko 
1971, Marchuk 198213) is used to obtain a solution 
of the original complex threedimensional problem 
by solving a set of the simple onedimensional split 
problems. The original and split operators of the 
main and adjoint pollutant transport equations are 
positive semidefinite both in the differential and 
difference form. Note that the same schemes can 
be applied to the thermodynamic models of the 
atmosphere and/or ocean in limited area (Adem 
1991, Marchuk and Skiba 1992, Robertson 1992). 

THE POLLUTANT TRANSPORT PROBLEM 

Let us consider a Sdimensional 'cylindric' domain 
D with the boundary Q = SU SolJ S, being the 
union of the cylinder lateral surface S, the base So 
at z=0, and top cover S, at z=H (Fig. 1).  

The transport diffusion equation 

& + ~ - ~ $ + o + = h u & + V . p V + + i ~ ~  (t) 6( r - r i ) ( l )  
at az az i=l 

for the pollutant $(r, t) in the domain D and time 
interval (0,T) is the common basis for most air 
quality models. Here r=(x, y, z); u and p are the dif- 
fusion coefficients; V is the 2-dimensional gradient 
in (x, y) -direction; o characterizes decreasing of 
$(r, t) because of different chemical processes; 
Qi(t) is the emission power of the ith pollution 
source located in the point ri (i=l, ..., N); 6(r) is the 
Dirac mass at the point r; and U(r, t) = {u, v, w} is 
the wind (or current) velocity vector satisfying the 
continuity equation 

where div ( S )  is the Sdimensional divergence oper- 
ator. Let Un be the projection of the wind velocity 
component  on the outward normal n to the  
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Fig. 1.  The limited domain D. The boiindary points A, B and C 
belong to the surfaces S, S+ and SA respectively; Un is the normal 
component of the velocity vector U to the boiindary surface. 

boundary R, besides, U,= O (or w=O) on So. Then, 
given the horizontal components u(r, t) and v(r, t) 
of the velocity U in D, its vertical component w is 
determined as 

or y = Const, the normal component U, always 
coincides on S with either f u  or dx where u and v 
are the components of the velocity vector U. 

As the initial and boundary conditions for Eq. 
(1) in the time interval (O, T) and domain D we 
take 

where a20 is a known function defining the inter- 
action of the pollutant with the underlyng surface 

Hence, typically, w(x y, H) # O on the top surface (for example, the pollutant settlement velocity). 
S,, and there is a pollution flux from the inside of Note that the ground leve1 emission sources from 
D through SH. Thus our boundary condition on S, vehicle traffic can be included in the model 
are different from the Marchuk (1986) condition through replacing (7) by 
w(x y, H) = O which can be satisfied only in a spe- 
cial case. M 

Let us divide the lateral boundary S into two u a$ = a$ - Z Ri (t) 6 (x - xi) 6 (y - yi) on So (7') 
parts: the part S+ where U, 2 O and the pollutants az i=l 

are hlown out by the wind from the inside of the 
domain D, and the part S- where U, I, O and the where (xi, yi) are the grid points belonging to the 
wind (or the current) is directed from the outside main roads. 
to the inside of D (see Fig. 1). Similarly, let S: and The boundary conditions (5) and (8) mean 
S; denote the parts of S, where U, = w 2 O and that there is no pollutant flux from- the outside of 

U, w I O respectively (Fig. 1). Since the bound- the domain D on the part S-U S i  of the boundary 
ary S consists only of parts of the surfaces x = Const R, whereas the conditions (6) and (9) suppose 
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that the turbulent flux of pollutants on the part S+ + j ~ r $ ~ d Q + ' {  j U,$2dQ- j U,$2 dQJ>O 
s o  2 *U S& S-U S i  

U S: of Q is negligible as compared to the advec- 
tive pollutant flux by the wind U from the inside to (14) 

the outside of the domain D. 

INTEGRAL PROPERTIES OF THE TRANSPORT 

PROBLEM SOLUTIONS 

Let 

where dQ is the infinitesimal element of the corre- 
sponding part of the boundary surface Q. Note 
that the last integral in (14) is non-negative since 
U, I O on the surface S-U Si .  Moreover, A is posi- 
tive definite (A > O) if at least one of the next three 
conditions is satisfied: a O, o i O or U, S 0. 
Beside, in the nondissipative case (p E u o = 0) 
when, in addition, U, = O on S U S, and a E 0, the 

(1 0) operator A is skew symmetric: 

be the norm of the function $(r) and let H be a 
Hilbert space of al1 such functions whose norm Integrati% (l) Over leads to the equa- 
(10) is finite. We define the scalar product tion 

for any functions $(r) and g (r) from H. The differ- 
ential operator of Eq. (1 ) which can be written as 

By Eq. (16), rise in the pollution concentration lev- 

(12) el within the domain D takes place because of the 
presence of the sources Qi. At the same time, this 
leve1 is decreased because of different chemical 
processes in D, interaction of the pollutants with 

due to (2) is defined for al1 sufficiently smooth the ~ n d e r l ~ i n g  surface So7 and the ~ollutant  flux 

functions +(r )  of H satisfying the conditions from the inside of D through the boundary sur- 

(5)-(9). We now show that face S+ U S&. 
Let us consider the scalar product (1 1) of Eq. 

(A+, $1 2 0 (13) (1) written as 

for al1 such functions a, i.e., A is positive semidefi- 
nite: A 2 0. Indeed, integrating by parts and using 
the Green formula and (5)-(9) lead to 

do +A$ = Z Qi (t) 6 (r -ri) 
at i=l 

(A$,+) = j + ~ $ d r = I  [o$l+u d @ ) 2 + p ~ ~ $ ~ 2 ]  dr 
$2 

with the solution $. Then taking into account (13), 
D D we obtain 
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Thus the normll+ (r, t)ll of the solution will not 
grow with time if al1 the sources Qi(t) are zero 
( i= l ,  ..., N), and hence, the problem ( l ) ,  (2) ,  
(4)-(9) is well posed in Hadamard's sense, i.e., the 
solution +(r,  t) is stable to initial perturbations. 
Note that Il+(r, t) 11 will be conserved if the operator 
A is skew symmetric and will tend to zero if A is 
strictly positive. In particular, when o i O, a = 0, 
and Un = O on S Z ,  the operator A is positive semi- 
definite, and @(r, t) tends to the constant (mes 
D)-'12 6 @O (r) d r  where mes D is the volume of 
D, and @O (r) is given by (4). 

THE ADJOINT TRANSPORT PROBLEM 

Using the Lagrange identity 

let us introduce the adjoint operator 

defined for al1 sufficiently smooth functions g(r) of 
H satisfying the conditions 

As the adjoint problem in the domain D and in the 
time interval (O, T) we consider the equation 

with the forcing P(r, t), the initial condition 

and the boundary conditions (21)-(25). 
Similar to (14), it can be shown that the adjoint 

operator (20) is also positive semidefinite: 

If P(r, t) = 0, and the equation (26) is solved from 
t=T to t=O, then the adjoint solution norm Ilg(r, t)ll 
goes down in the same way as the solution of the 
main equation (1). Besides, if A* > O and T + = 
then 

Thus the adjoint problem (21)-(27) is well posed 
in the Hadamard sense only if it is solved in the 
opposite time direction. That is why the initial con- 
dition (27) is put at t=T. 
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Integrating (26) over D leads to the adjoint bal- 
ance equation 

Note that Un I O in the last integral of (30). 
Let P(r, t) = O and Qi (t) O for al1 i=1, ..., N. 

Then the substitution t'=T-t shows that Eq. (26) 
differs from Eq. (1) only by the sign of the velocity 
U. Hence, the part S+ of the boundary S in the 
main problem (1)-(9) serves as S- in the adjoint 
problem and vice versa. That is why the conditions 
(5) and (6) are transformed to (21) and (22). 
These comments refer equally to the conditions 
(8), (9) and (24), (25). It also explains the differ- 
ence between the last terms of the balance equa- 
tions (16) and (30). 

PRINCIPAL RELATION BETWEEN SOLUTIONS 

OF THE MAIN AND ADJOINT TRANSPORT 

PROBLEMS 

Let us multiply Eq. (1) and Eq. (26) by g and @ 
respectively, integrate them over the domain D 
and time interval (O,T), and subtract the results 
one from another. Then taking into account the 
Green formula and the conditions (4)-(9) ,  
(21)-(25) and (27) give the identity 

N T 

h(W =E 1 g (ri, t) (t) d t+  1 g(r, O) @O (r) dr 
i=l o D 

(31) 

where 

The formulas (31) and (32) are dual and relate 
the basic and adjoint solutions. They allow to 
determine the pollution concentration level Jp(@) 
in the domain D in two diierent ways. Unlike the for- 
mula (32) that uses the solution @(r, t) of the main 
pollution transport problem (1)-(9), the formula 
(31) uses the solution g(r, t) of the adjoint prob- 
lem (21)-(27). It is the main formula for estimat- 
ing the average pollution concentration within the 
interval (O, T) in some ecologically important zo- 
nes located in the domain D (Penenko and Raputa 
1982, Marchuk 1986, Skiba 1993). 

The right-hand side of (31) explicitly demon- 
strates the role of the input data Q(t) and cPO(r) in 
forming J,(@). Therefore this formula is especially 
efficient when many experiments should be carried 
out to estimate the sensitivity (or variability) of the 
functional Jp(@) to various values Q(t) and cPO(r). 
Indeed, in the case, for using (32) one need to solve 
Eq. (1) repetitively for each particular pair of the 
functions Qi (t) and cPO (r) . Hence, i t is more econo- 
mica1 to solve Eq. (26) only once, and then use (31). 

We now consider one example. Let De = o x lo, 
zo] be an ecologically important zone in D wnere 
o c So and o < zo < H, and our aim is to estimate 
the average level of the pollution concentration in 
the zone De within the time subinterval [T-z, TI: 

where b(r, t) is a positive weight function normal- 
ized by 

We choose the adjoint forcing P(ry t) as 

b(r, t) if r E De and t E [T-2, TI 
P(r, .t) = 

O, otherwise 
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Then the right-hand side of the formula (31) with 
the adjoint solution g(r, t) calculated for the forcing 
(35), gives us the estimate of Jb($). Note that if A*>O 
and the time interval [O, T-T] is sufficiently large 
then, due to (29), the formula (31) can be simpli- 
fied by ignoring the role of the initial value Q>O(r): 

It is important to emphasize that finite differ- 
ence approximations of the main and adjoint 
operators also must be compatible in the sense of 
validity of the Lagrange identity (see the formula 
(55) below). Only then the analogy of the formu- 
las (31) and (32) can be obtained for main and 
adjoint finite-difference problems. 

NUMERICAL SCHEME FOR THE MAIN POLLUTANT 

TRANSPORT EQUATION 

Using (2) the equation (1) can be written as 

where 

N 
F(r, t) = E  Q, (t) 6 (r-ri) 

i=l 

and the operator (12) is represented as a sum of 
three operators 

It is shown in Appendix A that 

if the boundary conditions (5)-(9) are taken into 
account (see Appendix A). Then the splitting 
method (Birkhoff and Varga 1959, Douglas and 
Rachford 1956, Yanenko 1971, Marchuk 1982b) 
can be applied for solving (39) within each small 
time interval (tl, t2) : the equations 

(i=l, 2, 3) are successively solved in (tl, t2) with 
F1=O, F2=0 and F3=F, and the initial conditions 
$ l ( t l )  = $ ( t l )  and $i(tl) = $i-l(t2) for i=2, 3. 
Then, eventually, $(t2) $3 (t2). 

Note that the operator A also can be split by 
separating the advective and turbulent physical 
processes (Marchuk 1986, Salerno et al. 1992). 

The net functions Bijk = $(xi,yj,zk), uijk = 
u(~i-l/~9~j,zk), Vgk ' ~ ( ~ i ' i j - ~ / ~ , z k )  Wjjk w(xi,yj,zk- 
1/2), Pk - P ( z ~ )  and ~ i j k  ~ ( x i , ~ ~ , z k . ~ / ~ )  are 
defined on different grids (Fig. 2). For the sake of 
simplicity it is supposed in this section that the 
horizontal turbulent coefficient p(z) is indepen- 
dent of x and y. The boundary nodes of the grid 
domain coincide with the boundary nodes of ugk, 
vijk or wjk (Fig. 3). We take 
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Fig. 2. Location of the grid fiiiictions iii the case p=p(z) at each 
horizontal leve1 k=lonst (a), aiid along each vertical line i=Const, 
j=Const (b). 

a) ab. 

@Lj+L 

It is knowii that the form 14 2~ + u a$ is approxi- 
2 a ax 

mated in the point(xi, yj, zk) wth the second order 

by 
tui+1 jkei+l jk - ~ijk@i-1 jk)/2h 

y 11 

U . .  
A , V - 

y 
Therefore, the operators A, are approximated by 
the matrices ~h defined as (Skiba 1978) 

'$ti 

ui+.i,i 
-3.$ r +: *i 

'+i# 

11 v.. v 

4 p  @. LJ-A 

Fig. 3. Location of the grid nodes immediately adjacent to the 
boundary points xl12 and x ~ , , ~  on the line j=Const, k=Const. 

b) A '  

as the difference form of the continuity equation 
(2). Further, let us rewrite (39)-(41) as 

" 

SPdx " - ' d i K  - 1- " 
O 

1 
" :: - 

I i  f I 

U U 
k 1- % 

@g,K+i 

Y.. <' W g , r + ~  y,. 

+,N 

w,, 7 "g N 
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We now show how to approximate the bound- 
ary conditions. Consider, for example, a line along 
the axis x defined by y. = Const, zk = Const, and let 

J 
(xlI2, yj, zk) and (x~-, ,~, y., z ) be the left and the 

J k  
right boundary points on this line respectively. 
Then (xi, yj, zk) where i= l ,  ..., 1-1, are interna1 
points of the grid domain. Due to (5),  (6),  two 
types of the boundary conditions are possible. If 
uljk = u(x,/,, yj, zk) 2 O then Un = - uljk 5 O and 
the boundary point zk) belongs to the boun- 
dary S-. Besides, 
Ax,theboundary 

And if ugk = u(x,,,, yj, zk) 5 O then Un = -uljk 2 O 
and the point ( x , / ~ ,  3, zk) belongs to S+. Therefore 
the boundary condition (6) is approximated as 

and hence, < O l a k  = <Oojk. Thus the term - u ~ ~ ~ < O ~ ~ ~  
J 

in the operator (44) for i=l should be writteri as 
-uljk<Oljk to exclude the externa1 point (xo, yj, 
zk) from the consideration. 

Further, if urjk = u ( x ~ - ~ / ~ ,  yj, zk) 5 O, then Un = 

u1jk 5 Oand the boundary point ( x ~ - ~ / ~ ,  yj, zk) 
belongs to S-. Besides, 

and hence, the boundary condition (5) is approxi- 
mated as 

Finally, if u1.k = U ( X ~ - , / ~ ,  y., zk) 2 O then the 
J 

boundary point (xI-,,,, y. zkkj belongs to S+, and J' 
(6) is reduced to 

The boundary conditions for other lines along the 
axes x, y or z are approximated in the same way. Of 
course, number of inner grid points can vary for 
different lines. Thus, not  only the differential 
equation ( l ) ,  but also the houndary conditions 
(5)-(9) are approximated with the second order 
in the geometric variables. Taking into account 
(47) -(50) leads to 

where <Or is the transpose of the vector <O with the 
h components {<O. 1. Thus each matrix A, is posi- 

!Jk 
tive semidefinite and the finite-difference approxi- 
mations conserve the important properties (42) of 
the differential operators Am. Therefore numeri- 
cal algorithm can be constructed on the basis of 
the splitting method (Birkhoff and Varga 1959, 
Douglas and  Rachford 1956, Yanenko 1971, 
Marchuk 198213). 

h Since the matrices A, are noncommutative: 
h h  h h  A, Al f Al A,, the symmetrized variant of the 

splitting method suggested by Marchuk (1982h) is 
here applied to obtain the numerical scheme of 
the second order approximation in time. At each 
fractional time step, the Crank-Nicolson scheme is 
used to approximate the 1-dimensional split prob- 
lems in time. Within each double time step inter- 
val 1, n (b-l,tn+l) the resulting numerical scheme 
has the form 
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Since OTO = llO11* (11O11 is the Euclidean norm) and 
O [n- $ - O [n-1] = - ' Ah ( O [n- 2] + O [n-11) the inequalities like (54) are valid for al1 the equa- 

3 2 1 3 tions (52) with F[n] = 0, the numerical scheme 
(52) is stable to initial perturbations for any time 
step T. 

1 2 h 1 2 O[n-;]-O[n-3]= -= A (Oln--1 +O[n-3]) 
2 2 3 

Let us multiply each equation (52) from the left 
by the row vector VT which has the same dimen- 
sion as O, and equal components AxAyAz. Summing 
al1 the results obtained gives a finite- difference 
version of the balance equation (16). It shows that 
the difference scheme (52) is balanced. 

NUMERICAL SCHEME FOR THE ADJOINT 

POLLUTANT TRANSPORT EQUATION 

Application of the Lagrange identity 

where @[n] is the column vector with the compo- 
nents Oijk ( h ) ;  2 'h-h-1 is the scheme time step; (for real vectors and matrices) to A$ results in 

is the forcing approximation, and O[n+ p/3] with 
the fractional indices p/3 are the auxiliary func- 
tions (n= l ,  3, 5 ,...; p = f l ,  f 2 ) .  Within 1, the 
scheme (52) is solved under the initial condition 
O[n-1] = Then the final solution O[n+l] 
in 1, is taken as the initial condition for the next 
interval In+l and so on. The initial vector @[O] 
has the components O0 (3, yj, zk) (see (4)). 

Multiplying the first equation (52) from the left 
by the vector { O[n+] + O[n-1] and taking into 
account (51 ) lead to 
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for any inner grid point (xi, y., zk). Here G-• = 

r' !J k 
g(xi,y.,zk). Thus the formu as (44)-(46) and 
(56)-b8) for the main and adjoint matrices differ 
only by the opposite signs of the velocity compo- 
nents u, v and w. The adjoint problem boundary 
conditions corresponding to (47)-(50) are 

where G[n] is the vector with the components 
g (xi, 3, zk, h) , and P[n] approximates the adjoint 
equation forcing. Since 

G[n-l]GT [n-1] I G[n+l]GT [n+l] 

pk(GJjk-G1-l jk)/aw+uljk(G~-l ~ k + ~ I j k ) / *  ' O (62) for al1 n and P [n] = 0, the scheme (64) as well as 
the scheme (52) is stable to initial perturbations 
for any step T. It is easy to show that (64) is the bal- 

respectively. It is easily checked that ( ~ h , ) '  and anced scheme approximating (30). 
(59)-(62) approximate the differential operators Let us multiply from the left the equations (52) 
A', and the corresponding boundary conditions by the vectors {G[n-$] + G[n-l]}T, {G[n-4] + 
with the second order in the spatial variables. As a G[n+])T, {GLn+gI + G[n-gl]T, {GLn+$1 + G[n+hl)T 
result, we have and {G[ntl] + G[n+$]}llT respectively. Further, mul- 

tiply from the right the transposed equations (64) 
by the vectors {O[n+l] + O[n+$]), {O[n+$] + O[n+ 

GT(A&)TG 2 O, (m=l, 2 , s )  (63) f]}, {O[n+f] t O[n-f]), {O[n-41 + O[,-$11 and 
{O[n-a] + O [n-1 ] ) respectively. Combining the 

The adjoint difference scheme has the form 
resultsobtained and using the Lagrange identity 
(55) lead to the difference version of the balance 
equation (31) for each time interval1,: 

GT [n + 11 O[n + 11 + T PT [n] (O [n+l] + O[n - 11) 
3 3 

= T (G[n +I] + G[n J])T F[n] + GT[n - 11 O[n - 11 
3 3 

(66) 
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Emphasize that (66) can be obtained only if the 
scheme (64) is compatible with the S scheme (52). 

FACTORIZATION METHOD 

Thus the formulas (70)-(74) solve the problem 
(67)-(69). 

Each split onedimensional equation of the sche- 
mes (52) a n d  (64) represents a system of the 
three-point difference equations of the form 
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APPENDIX A 

The system (67)-(69) can easiiy be solved by the POSITIVE SEMIDEFINITENESS OF THE OPERATORS Ai 

well known factorization method (see, for exam- 
ple, Marchuk 198210) when the solution is sought 
in the form We now show that the operators (39)-(41) are tion- 

negative: 

Substituting (70) in (67) we obtain 

Due to the conditions (68) and (69) we have 

for each i=l,  2, 3. Obviously, it is sufficient to prove 
this assertion only for the operator 

(72) since the proof is the same for Al and A2. To this 
end, let us calculate the scalar product (A. l ) .  Inte- 
grating by parts and using the Green formula and 
the boundary conditions (7)-(9) lead to 
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because w I O o n  S; (see the section 'Pollutant 
transport problem'). T h e  assertion is proved. 
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