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ABSTRACT

This work shows the increase in hydrolysis and acidogenesis of the organic fraction 
of urban solid waste (OFUSW) by the action of fungal hydrolytic enzymes obtained 
by solid-state fermentation (SSF) with Aspergillus niger C25B28 on citrus wastes 
(CW) without sterilization or the addition of nutrients. To quantify the hydrolysis 
and acidogenesis of the organic fraction of urban solid waste, three treatments were 
studied in triplicate: OFUSW plus 10 % fresh CW (RC treatment), and OFUSW plus 
10 % citrus wastes pretreated by SSF (RCA treatment). The mixtures were packed into 
an anaerobic hydrolytic leaching bed reactor. The results showed that SSF decreased 
the limonene concentration by 97 %, removing 20 % of fiber and 46 % of fat from 
fresh CW. Pectinases (37 U/g DM [dry matter]), cellulases (33 U/g DM), xylanases 
(98 U/gDM), and proteases (0.2 U/gDM) were produced. Significant differences were 
observed between the different treatments: the greatest reduction in total solids (24 %), 
the highest removal efficiency of organic matter as chemical oxygen demand (COD), 
and the reduction of fats (23 % and 28 %, respectively), was achieved in RCA, com-
pared to those obtained in the reactors with OFUSW and ReC without pretreatment. 
The production rate of volatile fatty acids (VFA) was 1.4 gVFA/Ld for RCA, 4.5 times 
higher than in the reactors without pretreatment.

Palabras clave: valorización de desechos, producción de enzimas, limoneno, reactor hidrolítico anaerobio de 
lecho escurrido, procesos biológicos, demanda química de oxígeno, lixiviados.

RESUMEN

Este trabajo muestra el aumento de la hidrólisis y acidogénesis de la fracción orgánica 
de residuos sólidos urbanos (FORSU) por la acción de enzimas hidrolíticas obtenidas 
mediante fermentación en medio sólido (FMS) con Aspergillus niger C25B28, sobre 
residuos cítricos (ReC) sin esterilización y sin adición de nutrientes. Para cuantificar la 
hidrólisis y acidogénesis de la FORSU se estudiaron tres tratamientos por triplicado: 
FORSU (R); FORSU más 10 % de ReC (RC) y tratamiento de la FORSU más 10 % de 
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ReC pretratados por FMS (RCA). Las mezclas se empaquetaron en reactores anaerobios 
hidrolíticos de lecho escurrido. Los resultados muestran que la FMS disminuyó en un 
97 % la concentración de limoneno y removió el 20 % de fibra más el 46 % de grasa 
de los ReC frescos. Se produjeron pectinasas (37 U/g materia seca [MS]), celulasas 
(33 U/g MS), xilanasas (98 U/g MS) y proteasas (0.2 U/g MS). Se observaron diferen-
cias significativas entre los distintos tratamientos: en los rectores con RCA se obtuvo 
la mayor reducción de los sólidos totales (24 %), la mayor eficiencia de remoción de la 
materia orgánica como demanda química de oxígeno y la reducción de grasas (23 % y 
28 %, respectivamente) en porcentajes superiores a los obtenidos en los reactores con 
FORSU y con ReC sin pretratar. La tasa de producción de ácidos grasos volátiles fue 
de 1.4 gAGV/Ld para RCA, 4.5 veces mayor que para los reactores sin pretratamiento.

INTRODUCTION

Only a small part of the generated organic frac-
tion of urban solid wastes (OFUSW) and citrus 
wastes (CW) is currently recycled, composted 
or incinerated, and the unprocessed part is sent 
directly to sanitary waste disposal sites (Šan and 
Onay 2001). In Mexico City, citrus wastes are up 
to 10 % of the OFUSW (SEDEMA 2018), including 
orange, lemon, grapefruit, and tangerine, represent-
ing 60, 27, 8 and 7 % of the total CWs, respectively 
(SAGARPA-SIAP 2018). The juice manufacturing 
industry generates CW comprising the peel and 
pressed pulp, which usually accounts for 50-60 % of 
the whole fruit when processed for juice extraction 
(Ruiz and Flotast 2014). Some features of the CW 
can inhibit anaerobic digestion (AD); for instance, 
low pH (3-4), high total fiber content (570 g/kg 
peel dry weight), and essential oils (6.0 g/kg peel 
dry weight). Ninety percent of these essential oils 
is limonene, which has strong antimicrobial activ-
ity (Forgács et al. 2012, Ruiz and Flotast 2014). 
Two-stage AD has been proposed as an alternative 
method for the degradation of the organic fraction 
of OFUSW (Rodríguez et al. 2015). Hydrolysis is 
the first step in the overall AD process and is the 
rate-limiting step, especially if the substrate is in 
a solid form as in the case of OFUSW mixed with 
citrus wastes. To improve waste hydrolysis, vari-
ous pre-treatments have been applied with the aim 
of facilitating the digestion process, making the 
substrate organic content more easily accessible to 
the microbial community (Moon and Song 2011). 
Solid-state fermentation (SSF) is widely used to 
grow filamentous fungi in processes that produce 
metabolites on various substrates that act as induc-
ers during the production of enzymes (Darah et al. 
2015). SSF is suitable for enzyme production with 
filamentous fungi since the low water availabil-
ity reduces the possibility of contamination with 

bacteria or yeast (Attri et al. 2016). Some authors 
have obtained a fungal mass (FM) with high enzy-
matic activity using SSF with Aspergilllus CW (Biz 
et al. 2016). The enzymes produced by SSF on orange 
peels are more stable and efficient at the hydrolysis of 
orange peel than commercial enzymes, which in addi-
tion to their low production cost makes SSF the most 
feasible option (Awan et al. 2013, Biz et al. 2016).

The enzymatic hydrolysis of cellulose involves 
the sequential action of a group of enzymes known 
as cellulases, which belong to the family of glyco-
sylhydrolases, so called because they catalyze the 
hydrolysis of the glycosidic acid between two and 
more carbohydrates and a hydrate. In general, the 
glycosidic link hydrolysis is catalyzed by two amino 
acids in the catalytic site, generally aspartate, and 
glutamate (Biz et al. 2016).

Pectinases are a group of enzymes of various 
types responsible for breaking down pectin to its 
elemental monomeric compounds. The enzymatic 
activities that act on the pectin backbone comprise 
hydrolases, which act on α-1,4-glycosidic bonds. 
Given their mode of action they can be endotypes if 
they act randomly along the main chain or exotypes 
if they act on the non-reducing ends of the oligoga-
lacturonides (Awan et al. 2013).

Xylan, one of the major structural components of 
the plant cell wall and hemicellulose, is composed of 
1,4-β-D-xylopyranose residues. Xylanases constitute 
a repertoire of hydrolytic enzymes that facilitate the 
complete hydrolysis of xylan (Antier et al. 1993). Exo-
1,4-β-D-xylosidase (EC 3.2.1.37) catalyzes the hydro-
lysis of 1,4-β-D-xylo-oligosaccharides by removing 
successive D-xylose residues from the non-reducing 
end. The endoxylanases reported to release xylose 
during hydrolysis of xylan do not have any activity 
against xylobiose, which could be easily hydrolyzed by 
β-xylosidases. Proteases or peptidases are long known 
as enzymes that catalyze the rupture of peptide bonds 
into protein and peptide (Loera et al. 1999).
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Research into the production of fungal enzymes 
from CW has focused primarily on orange, grapefruit, 
and tangerine peels separately. There is limited infor-
mation regarding the hydrolysis of CW mixtures with 
the organic fraction of urban solid waste (SAGARPA-
SIAP 2018, SEDEMA 2018). The aim of this work 
is to improve both the hydrolysis and acidogenesis 
rate of the OFUSW in an anaerobic hydrolytic leach 
bed (AHLB) reactor. This included a pretreatment 
stage of SSF using Aspergillus niger C28B25 directly 
on the citric wastes mix as a substrate to produce 
hydrolytic enzymes but also to reduce inhibitory es-
sential oils such as limonene. The efficiency of this 
pretreatment was determined in the AHLB reactor 
whose configuration allows the drainage of hydrolysis 
and fermentation products.

MATERIALS AND METHODS

For this research, two types of waste were col-
lected. Citrus waste was collected in the juice 
stands installed in the streets near the Universidad 
Autónoma Metropolitana, campus Iztapalapa (UAM-
Iztapalapa), in Mexico City, and the OFUSW was 
collected from the waste of the lunch hour of the 
university cafeteria. Both residues were characterized 
at the beginning and end of each treatment in the pH, 
volatile solids (VS), total solids (TS) and chemical 
oxygen demand (COD).

Cultivation of the fungal seed
The fungus Aspergillus niger C28B25 has a gen-

erally regarded as safe (GRAS) status (Antier et al. 
1993) and belongs to the UAM-Iztapalapa culture 
collection. The fungus was maintained on potato 
dextrose agar (PDA) medium at 4 ºC before use. This 
strain produces hydrolytic enzymes in SSF (Antier 
et al. 1993, Loera et al. 1999, Loera and Córdoba 
2003). The fungus was reactivated in Czapek Dox 
Agar medium, in Petri dishes, and incubated at 30 º 
C for 14 days. After this time, the produced conidia 
were collected and transferred to Erlenmeyer flasks to 
further produce conidia for solid-state fermentation. 
The strain was cultured in 500 mL Erlenmeyer flasks, 
with 50 mL sterile Czapek Dox Agar culture medium 
incubated at 30 ºC for 7 days (Yamato, IC603CR in-
cubator). After the incubation period, sterile 0.01 % 
Tween 80 solution and a magnetic stirrer were added 
to the flasks to harvest the conidia. The flasks were 
placed in a shaking rack to release conidia and obtain 
the conidia solution, which was filtered with gauze to 
remove medium residues. Conidia were counted in 

Neubauer chambers after 10- and 100-fold dilutions 
of the suspension (Loera and Córdoba 2003).

Sampling of citrus waste and solid-state fermen-
tation

CW was collected in the juice stands installed in 
the streets near the University. The residues were 
taken to the laboratory and the mesocarp, skin, and 
seeds were manually removed. Only peel was used 
because it is where the highest concentration of es-
sential oils and limonene may be found (Darah et al. 
2015). The residues were weighed according to the 
urban proportion found as CW, as detailed below. 
Fresh, unsterilized waste was immediately ground 
in a mill (Torrey brand) to a particle size of 0.5 cm., 
and then it was mixed in proportions representative of 
the OFUSW, namely 60 % orange, 27 % lemon, 7 % 
grapefruit, and 6 % tangerine (SAGARPA-SIAP 
2018). The pH, soluble COD, and total and volatile 
solids were determined in accordance with APHA-
AWA-WPCF (2017); fat and fiber, limonene, cellu-
lases, pectinases, xilanases, and proteases were deter-
mined following Mertens (2002, 2003), Davidowski 
and DiMarco (2009), Meraz et al. (2012), Darah et 
al. (2015), Beauchemin et al. (1996), and Lee et al. 
(1998), respectively. The substrate for SSF was the 
mixture of fresh and unsterilized CW, then SSF was 
performed in aerobic conditions using 500 mL Erlen-
meyer flasks in triplicate. Each flask contained 16 g 
of fresh, non-sterile CW mixture. This quantity was 
chosen to avoid the problems of heat distribution and 
air flow. A single flask was used for each test carried 
out. Flasks were inoculated with 2 × 108 conidia per 
gram of dry matter (g/DM) and incubated at 30 ºC 
for 7 days, as this fungus has shown a maximum of 
enzyme production between days 5 and 7 (Antier et 
al. 1993, Patil and Dayanand 2006, Biz et al. 2016).

Enzymatic extraction and assays
Fifty mL of distilled water were added to each 

flask for enzyme recovery, then shaken with a 
magnetic stirrer at 200 RPM in an ice bath for 30 
min. Enzymatic extracts were filtered with gauze 
and centrifuged at 8000 RPM in a Beckman J2-HS 
centrifuge for 10 min at 4 ºC to obtain a clear liquid. 
These extracts were assayed for enzymatic activities 
(Ordaz et al. 2016).

Cellulase and pectinase activities were measured 
as reducing sugars were released according to the 
dinitrosalicylic acid (DNS) method (Miller 1959) (1 g 
glucose/L, r = 0.998 [r is the Pearson’s correlation co-
efficient]) reported by Meraz et al. (2012) and Darah 
et al. (2015). Xylanase activity was measured using 
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oat xylan as a substrate with the technique proposed 
by Beauchemin et al. (1996) (0.01 g caboximethylcel-
lulose [CMC]/L, r = 0.999). Proteolytic activity was 
assayed as described by Lee et al. (1998). Enzymes 
were reported in units per grams of initial dry matter 
(U/gDM). The unit of enzyme activity (U) is defined 
as the amount of enzyme that catalyzes the conver-
sion of 1 µmol of substrate in 1 min.

Extraction and quantification of limonene in CW
One gram of the CW mixture collected after re-

moving the mesocarp, skins, seeds, and pulp residues, 
was ground in a mill (Torrey brand) to a particle size 
of 0.5 cm. Afterwards it was placed in a 7 mL vial 
with 5 mL of methanol and vortexed vigorously for 
5 min (Davidowski and DiMarco 2009). Aliquots 
taken from the supernatant were filtered with a Mil-
lipore Sigma SX0001300 Swinnex syringe through 
a GSWP01300 MF-Millipore plain white mixed cel-
lulose ester membrane, diluted 1:10 with methanol 
to determine the amount of limonene present in the 
CW mixture. Independent samples were analyzed 
in triplicate. The limonene was quantified using gas 
chromatography (Hewlett Packard Series II 5890) 
with a flame ionization detector and Agilent MS5 
column. A standard curve was generated with 99 % 
pure reference limonene (Sigma-Aldrich) in concen-
trations from 0.03 to 1 g/L (r = 0.998). Measurement 
operating conditions consisted of a 275 ºC detector 
temperature, 275 ºC injector temperature, 3-min ramp 
(5 ºC/min) and a temperature increase of 45 ºC/min 
up to 275 ºC. Nitrogen was used as a carrier gas at a 
rate of 1 mL/min.

To evaluate the effect of the fungus on the limo-
nene concentration during SSF, CW samples were 
collected at both the beginning and end of each of the 
cultures. For this purpose, 1 g of CW was collected 
after removing the mesocarp, skins, seeds, and pulp 
residues, and grounded in a mill (Torrey) to a particle 
size of 0.5 cm. At the end of the culture, 1 g of the 
CW with the fungus was also analyzed. The samples 
were processed in triplicate using the methodology 
described in the section Extraction and quantification 
of limonene in CW.

Sampling and characterization of hydrolysis and 
acidogenesis of the organic fraction of urban solid 
waste

The OFUSW was collected from UAM- Iztapa-
lapa’s cafeteria at lunchtime. The pH, VS, TS, and 
total COD were determined at the beginning and end 
of each experiment (Choi et al. 2013, Ramírez et al. 
2014, Rodríguez et al. 2015, Calabrò et al. 2016, 2017).

The AHLB reactors in figure 1 consisted of a 
cylindrical glass column with a total volume of 0.2 L 
and a useful volume of 0.15 L, with a supporting 
acrylic mesh in the bottom that allowed the passage 
of leachates into a conical reservoir for collection 
and analysis from the reactor. The upper part of the 
AHLB reactor is closed with a rubber plug and Tygon 
connections. Feeding of the solid sample is allowed, 
as well as leaching of liquid and separation of gases 
produced during the acidic hydrolytic process. All 
exits were perfectly sealed to preserve the anaerobic 
conditions (Jiménez et al. 2020).

The solid phase packed in the AHLB reactors were 
monitored at the beginning and at the end of the 14 
days, to quantify the efficiency of COD removal and 
reduction of VS. The reactors were packed with 150 g 
of waste in the proportions described in table I. The 
R treatments were controls containing only OFUSW. 
The RC treatment columns contained OFUSW plus 
CW without fungal pretreatment and the RCA treat-
ment contained OFUSW and FM (fungal mass, CW 
pretreated) as indicated in table I. Each treatment was 
performed in triplicate. To avoid inhibition, due to 
the accumulation of the produced volatile fatty acids 
and other soluble compounds, water was added as a 
draining liquid through the upper part of the reactor 
to drag the fermentation products out of the reactor 
in leachate form. The generated leachate had a high 
amount of soluble organic matter and was drained 

Liquid enrty Gas outlet

Liquid outlet

Organic matter

Leachate
collector

Mesh of bottom

Fig. 1. Diagram of an anaerobic hydrolytic leach bed reactor.
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as previously reported (Rodríguez et al. 2015, Jimé-
nez et al. 2020). The runoff liquid was 5 mL of tap 
water to promote waste degradation. The leachates 
produced during the hydrolytic step in each AHLB 
reactor were analyzed for pH, soluble COD, and 
volatile fatty acids (VFA) (Ramírez et al. 2014) as 
fermentation products to follow up on the hydrolytic 
process (Francoise et al. 2007).

Treatment means were compared using one-way 
analyses of variance (ANOVA) with post-hoc Tukey 
comparisons. In all analyses the significance level 
was α = 0.05. All statistical analyses were carried 
out with the Number Cruncher Statistical System 19 
(NCSS) software (Kaysville, Utah, USA).

RESULTS AND DISCUSSION

Quantification of enzymes produced by Aspergi-
llus niger C28B25 on CW

The enzymatic activities of pectinases, cellulases, 
xylanases, and proteases at the end of the SSF are 
shown in table II. Xylanases had the highest activ-
ity, while proteases had the lowest. Pectinase activity 
(37 U/gDM) was similar to the one reported by Biz 
et al. (2016), who  studied A. niger on citrus pulp. A 
higher pectinase activity was obtained (79 U/gDM) 
with grapefruit peels as the sole substrate by a wild 
strain of A. niger under optimal culture conditions 
(30 ºC, 6 days of fermentation, 1 × 108 conidia/gCW 
inoculum and particle size of 0.75 mm) (Darah et al. 
2015). Grapefruit residues and other citrus fruits are 
substrates rich in lignocellulosic materials, including 
pectin, which act as inducers of pectinase production 
(Darah et al. 2013). In this work, nutrient enriched 
solutions were not added to the substrate, which is 
the main difference regarding other studies.

Cellulolytic activity was measured as 33 U/gDM, 
above the 9 U/gDM activity reported on orange 
peels in similar conditions (M’hiri et al. 2015). In 
another study, the production of cellulases was sig-
nificantly higher (129 U/gDM), with orange peels 
supplemented with Mandels saline solution at pH 6 
and 28 ºC after 7 days (Attri et al. 2016). Pectinase 
and cellulase activities in this study fell within the 
range reported by other authors. In fact, the low pH 
and the components of the CW favored production 
of xylanases in this work, wich was even higher 
than that reported by Janati et al. (2012) for orange 
peels alone (98 U/gDM). Some authors obtained 
multienzymatic complexes of pectinases (135 U/
gDM), cellulases (66 U/gDM), and xylanases (79 
U/gDM) (Choi et al. 2013). The differences between 
those results and this work were mainly in the op-
timization of conditions, while we used a mixture 
of fresh CW without supplementation. There are 
studies indicating that CW is a poor substrate to 
produce proteases (Maller et al. 2011). Neverthe-
less, this value is greater than observed here (0.2 
U/gDM). This result is a key advantage since a 
high concentration of proteases can break down 
other enzymes formed during SSF (Soares et al. 
2015). The activity produced by enzymes can vary 
depending on the microbial strain, the substrate, and 
the culture conditions, as well as the time used to 
produce the enzymes (Mamma et al. 2008, Ahmed et 
al. 2016). Table III shows the effect of SSF before 
and after the CW mix. The pH value in the mixture 
was in ranges reported by some authors who have 
worked with citrus peels separately. The pH of the 
mix was 4.8 while that of orange peels alone was 
between 3.5 and 4.3 (Abubakar and Oloyode 2013, 
Kanimozhi and Nagalakshmi 2014). Grapefruit 
peel has a pH value between 3.6 and 3.9 (Soares et 
al. 2015), lemon peel has a pH of 3.4 (Indulekha 
et al. 2017) and the pH of tangerine has not been 
measured before (Siles et al. 2016). The initial pH 
of this experiment was 4 before the SSF and 5.2 

TABLE I. WASTE MIXTURES PACKED IN THE AHLB.

AHLB
reactors

OFUSW
(%)

CW
(%)

Pretratment

R 100 0 OFUSW
RC 90 10 CW without pretreatment
RCA 90 10 CW with pretreatment (FM)

AHLB: anaerobic hydrolytic leaching bed reactor; OFUSW: or-
ganic fraction of urban solid waste; CW: citrus waste; FM: fungal 
mass; R: treatment with 100 % OFUSW; RC: treatment with 90 % 
OFUSW + 10 % CW without pretreatment; RCA: treatment with 
90 % OFUSW + 10 % CW with fungal pretreatment. 
Letters a, b, c indicate standard deviation between treatments 
(α = 0.05).

TABLE II. ENZYMATIC ACTIVITIES OF Aspergillus niger 
C28B25 IN SOLID SUBSTRATE FERMENTA-
TION ON CITRUS WASTE MIX.

Enzyme
group

Enzymatic activity
(U/gDM)

Pectinases 36 ± 7
Cellulases 33 ± 6
Xylanases 374 ± 54
Proteases 0.215 ± 0.001
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after the process, so these values allow enzymes to 
produce good activity. In general, the optimum pH  
is between 4.5 and 6 (Soares et al. 2015, Biz et al. 
2016, León et al. 2017).

The moisture value in the mixture was similar to 
that reported by other authors (75-83 %) (Abubakar 
and Oloyode 2013, Soares et al. 2015, Siles et al. 
2016). Fiber is a substantial component of peels. It 
is a variety of non-starch polysaccharides including 
cellulose, hemicellulose, pectine, and lignin. These 
molecules will be degraded by hydrolytic enzymes 
from bacteria to obtain sugars for the formation of 
VFA. Fiber represents 540 g/kg in orange and 510-
620 g/kg in lemon (Janati et al. 2012, Ruiz and Flotats 
2014). Similarly, fiber in grapefruit peel makes up 
between 390 and 560 g/kg, though it has not been 
quantified in tangerine. Only two authors have stud-
ied the fat content in peels: Soares et al. (2015) in 
orange (0.8 %), and Indullekha et al. (2017) in lemon 
peels,, including mesocarp (4.8%). Values obtained 
for fat and fiber contents after SSF are presented in 
table III. SSF with A. niger favored a significant 
removal of fiber (20 %) and fat (46 %), which could 
in turn ease the hydrolysis of the CW mix. Fiber is 
broken down into various chemical compounds: 
gases (hydrogen, carbon dioxide and methane) and 
short-chain fatty acids (acetate, propionate, and 
butyrate), which is mainly reflected in an increase 
in the production of VFAs as part of the solubles of 
the hydrolitic process (Dahiya et al. 2015). Moon 
and Song (2011) observed that both the addition of 
enzymes and the AD in two stages are strategies that 
promote hydrolysis of OFUSW, obtaining more COD 
soluble per gram of SV. These authors showed that the 
mixture of lipases, cellulases, and proteases increases 
by more than 100 % the reduction in VS, which is 
mainly reflected in an increase in the production of 
VFAs as part of the solubles of the hydrolitic process, 
compared to the control experiment without addition 
of enzymes. Both experiments, with and without ad-
dition of enzymes, were carried out at a constant pH 
of 4.5 adding NaOH.

Limonene removal
A major limitation of using CW in biological 

processes relates to the high contents of essential 
oils, primarily D-limonene, a well-known cytotoxic 
that inhibits the activity of microorganisms involved 
in the fermentative processes (Loera et al. 1999). 
Some authors establish that the half-maximal inhibi-
tory concentration (IC50) of limonene in batch ex-
periments is 423 mg/kg, and its minimum inhibitory 
concentration, measured as limonene concentration 
in a reactor with orange peels and inoculated with 
sludge from a large-scale biogas production plant, is 
about 200 mg/kg (Ruiz and Flotast 2016). Figure 2 
shows the removal of limonene in the mixture of 
the CW, evaluated at the end of the SSF (the black 
column represents limonene concentration without 
pretreatment and the gray column with pretreatment). 
The concentration of limonene decreased from 7.9 × 
104 mg/kg CW to 0.3 × 104 mg/kgCW, corresponding 
to a 97 ± 0.2 %.

In the RCA reactors that were packed with 
a mixture of OFUSW and FM, initial limonene 

TABLE III. COMPOSITION OF THE CITRUS WASTE MIX BEFORE AND AFTER THE SOLID 
SUBSTRATE FERMENTATION ON CITRUS WASTE (CW) MIX.

Parameter TS
(g/kg CW)

VS
(g/kg CW)

Moisture
(%)

Fiber
(g/kg CW)

Fat
(g/kg CW)

Fresh waste 280 ± 4 230 ± 1 72 ± 1 540 ± 6 0.5 ± 0.05
Fermented waste 270 ± 4 250 ± 3 73 ± 3 437 ± 13 0.27 ± 0.02

TS: total solids; VS: volatile solids; CW: citrus waste.
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Fig. 2. Limonene concentrations in the citrus waste (CW) at the 
start and end of the solid state fermentation (SSF) with 
Aspergillus niger C28B25. Different letters above error 
bars of the standard deviation represent significant dif-
ferences (α = 0.05). Black column is fresh citrus waste 
and gray column is fungal mass.
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concentrations were 350 mg/kg of mixture; the 
process ended with 150 mg/kg of mixture, which 
represents a 57 % loss of limonene in the hydrolytic 
reactor. Meanwhile, initial limonene concentration 
in the RC treatment was 2.1 g/kg of mix and after 
14 days it was 1.5 g/kg of mix, which represents a 
decrease of 28 %. In some laboratory a significant 
decrease in the limonene concentration (< 90 %) was 
observed after the sterilization of the CW; therefore, 
in this work fresh CW unsterilized was used to pre-
serve the natural concentration of essential oils.

The limonene removal achieved in this work is 
two times higher than that obtained with orange peel 
(55 %) subjected to SSF with a mixture of Sporotri-
chum sp., Aspergillus sp., Fusarium sp., and Penicil-
lium sp. (Srilatha et al. 1995). High value products 
such as biogas or ethanol are recoverable from CW, 
but the high content of limonene inhibits the process 
due to the antibiotic effect on microbial consortia 
(Mamma et al. 2008, Indulekha et al. 2017). This 
work shows that SSF, using a fresh CW substrate mix-
ture, produced hydrolytic enzymes and reduced limo-
nene, fiber, and fat content from the CW. Although 
the mechanism of action of the enzymes produced 
by A. niger is not completely clear, it has been seen 
that there is a decrease of limonene concentration in 
a fermentation processes in solid medium (Akao et 
al. 1992). Noma et al. (1992) observed the transfor-
mation of this compound by introducing a functional 
carbonyl group at carbon 3 of the limonene, forming 
less toxic compounds such as isopiperitenone (19 %), 
perililic alcohol (12 %), and (+)-cis-carveol (5 %) 
(Duetz et al. 2003).

Hydrolysis and acidogenesis of OFUSW in an 
AHLB reactor, adding fungal mass as a source 
of enzymes

Table IV presents the results of kinetics before 
and after 14 days of OFUSW fermentation for each 
of the treatments, including only treatments R, RC, 
and RCA, together with their effect on limonene 
concentration. There were significant differences 
between treatments R (100 % OFUSW) and RC 
(90 % OFUSW + 10 % CW without pretreatment), 
while RCA (90 % OFUSW + 10 % with FM) was 
significantly different from treatments without fungal 
mass (R and RC).

Due to the diversity of diets in different countries, 
OFUSW composition may vary; however, most re-
searchers consider that the characteristic values of 
the OFUSW are the same as those obtained in this 
study in terms of TS, COD and pH (Kim et al. 2006, 
2011, Zhang et al. 2007, Bo and Pin-Jing, 2014, TA
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Rodríguez et al. 2015). The high values of COD and 
volatile solids allow OFUSW to be a good substrate 
for AD processes. In the hydrolytic stage of anaerobic 
digestion there are diverse communities of anaerobic 
bacteria which produce exoenzymes that perform the 
hydrolytic step (Adekunle and Okolie 2015); thus, 
this stage is rate-limiting for solid residues (Patinvoh 
et al. 2017). Many studies have investigated pretreat-
ment methods that accelerate the velocity of hydro-
lysis and result in suitable by-products (Ariunbaatar 
et al. 2014).

In this context, an enzymatic pretreatment step is 
required to reduce substrate limitations before AD 
(Brémond et al. 2018). The quantity of limonene into 
reactors after SSF with and without fungal pretreat-
ment is shown in table IV. Even if in this work the 
concentration of limonene was 140 mg /kgCW at 
the beginning of the OFUSW fermentation, a value 
below that considered inhibitory (200 mg/kg CW 
mixture), the limonene concentration in the mixture 
of CW residues without fungal treatment was up to 
4700 mg/kg CW mixture, one order of magnitude 
greater than the maximum value recognized as inhibi-
tory (423 mg/kg) (Ruiz and Flotats 2016).

In the hydrolysis and acidogenesis stages there is 
no significant production of methane, due to pH condi-
tions (Adekunle and Okolie 2015). The efficiencies of 
volatile solids (VS) and COD reductions were greater 
in the AHLB reactor that contained the FM (Asper-
gillus niger C28B25 plus fungal enzymes), showing 
that SSF favored hydrolysis of compounds present 
in the OFUSW. Moon and Song (2011) observed 
that by applying a mixture of enzymes, a decrease 
of more than 50 % in VS and an increase in COD 
could be achieved compared to experiments without 
the addition of enzymes. The low concentration of 
limonene in the RCA mix (350 mg/kg) improved the 
hydrolysis of the OFUSW. In contrast, the efficien-
cies of reducing VS and removing COD were very 
low in the treatment containing 10 % of CW without 
pretreatment (RC). The initial limonene content was 
2.1 g/kg mix and at the end of the 14 days it was 
1.5 g /kg of mix. This validates the harmful effects of 
compounds such as limonene that inhibit microbial 
activities in the OFUSW. Additionally, the raw fiber 
in the CW hindered the hydrolysis. The fungal mass 
treatment (RCA) significantly improved all variables, 
e.g., a seven-fold reduction in VS with respect to the 
RC treatment. The same behavior was observed with 
the removal efficiency of total COD, which was five-
fold greater than with the RC treatment. Some authors 
suggest that it is necessary to improve hydrolysis by 
means of pretreatments such as hydrolytic enzymes, 

for instance when using citrus wastes, since these 
pretreatments contribute to the digestion of hard ma-
terials (Ruiz and Flotast 2014, Biz et al. 2016). SSF is 
a viable option to obtain these enzymes. In addition 
to the low-cost of the SSF process, the fermented 
substrates can be added directly to the reaction mix-
ture, which avoids the complex step of extracting the 
enzymes (Biz et al. 2016, Brémond et al. 2018). Some 
studies aiming to improve the hydrolysis of OFUSW 
have reported that adding hydrolytic enzyme extracts 
and anaerobic sludge reduced VS up to 50 % (Kim 
et al. 2006, Moon and Song 2011, Kiran et al. 2015). 
AHLB reactors in these studies were not inoculated; 
however, adding hydrolytic enzymes to the OFUSW 
mixtures improved the action of native microorgan-
isms present in the waste.

Leachate composition from the different 
treatments

The design of the AHLB reactor used to carry out 
the fermentation allowed the solubilization of organic 
matter present in the solid waste, which in fact was 
drained as leachate. Soluble COD in the leachate is 
an indicator of the products of hydrolysis and acido-
genesis, released by the enzymes added with the FM 
and by the microorganisms present in the OFUSW. 
The released sugars are easily fermented to VFAs and 
other low molecular weight compounds (Francois et 
al. 2007, Ramírez et al. 2014, Rodríguez et al. 2015). 
Figures 3 and 4 present the changes in soluble COD 
and VFA in the leachate from the different treatments. 
The values of these changes were significantly greater 
in the RCA treatment due to a better hydrolysis of 
solid residues,  the solubilization of organic matter 
and the fermentation of sugars to VFAs. Thus, when 
FM was added after the SSF pretreatment, there was 
a higher rate of COD change and VFAs.

Some authors have performed the AD of OFUSW 
using anaerobic sludge as inoculum in the AHLB 
reactor, obtaining lower VFA production values 
(0.21 g VFA/Ld) (Ramírez et al. 2014, Rodríguez et 
al. 2015). Experiments carried out on anaerobic hy-
drolysis of the OFUSW under alkaline thermophilic 
conditions had a greater VFA production rate (0.75 g 
VFA/Ld) than under mesophilic conditions and acidic 
pH (0.4 g VFA/Ld) (García et al. 2017). Jiménez et 
al. (2020) obtained 0.82 gVFA/Ld in the hydrolysis 
of aerobically pretreated OFUSW. VFA production 
rates in this work were greater in the RCA treatment 
(R = 0.3 g VFA/Ld, RC = 0.1 g VFA/Ld, and RCA 
= 1.4 g VFA/Ld). The significantly different results 
in COD production show the effect of pretreatment. 
The best result was obtained with the RCA (4.8 g/Ld), 
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while values of the other treatments were lower 
(R = 1.3 g/Ld; RC = 0.8 g/Ld). López and Espi-
nosa (2008) obtained an 18 % improvement in COD 
production after waste pretreatment. Jiménez et al. 
(2020) observed that the addition of enzymes in the 
hydrolytic process produced a significant two-fold 
increase in the hydrolysis compared to control ex-
periments (77 and 44 g/L, respectively). The above 
results suggest that under appropriate pretreatment, 
complex organic matter becomes more biodegrad-

able by roughly changing chemical structure. The 
pretreatment may enhance the surface area available 
for further microbial enzymatic attack to release 
organic matter.

CONCLUSIONS

The results obtained in this work show the benefits 
of SSF carried out with fresh citrus peels without 
sterilization and the addition of buffer solutions or 
supplements. The increase in the hydrolysis and 
acidogenesis of the OFUSW is explained by the ef-
fectiveness of this pretreatment based on SSF, due to 
the fact that Aspergillus niger C28B25 simultaneously 
produced hydrolytic enzymes and removed limonene, 
which in turn increased the soluble material available 
for other microorganisms and then improved the re-
duction of solids and the efficiency of COD removal 
during the fermentation of OFUSW. The results of 
VS and fiber degradation were associated with greater 
amounts of COD and VFA in the leachate. The AHLB 
reactor operated well without any inoculant addition, 
representing an important innovation for AD of the 
OFUSW. The leachate containing high COD and VFA 
concentrations make it an ideal material for biogas 
production in high-rate reactors. In the methanation 
process, it is expected that the leachates produced by 
the RCA treatment will produce more methane than the 
leachates produced by reactors without pretreatment.
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