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ABSTRACT

The purpose of this study is to examine the effect of vermicompost derived from
biosolids produced from wastewater treatment (named here as “biosolid humus”) on
the germination and growth of the forest species Schinus molle and Cedrela odorata
under greenhouse conditions. We applied four treatments, consisting of a mixture of
biosolid humus and substrate, in proportions of 0 (control), 5, 10, and 20%. There were
no significant differences in the species’ germination, which is considered to be the
production of the first pair of true leaves. The germination percentage value tended to be
higher for S. molle than C. odorata species under the 5 and 10% treatments. This result
indicates that biosolid humus favors the germination process. The effect of biosolid
humus resulted in more significant growth of C. odorata than S. molle. Both species
showed differential stem length and number of leaves responses to the treatment using
20% biosolid humus, significantly lower for C. odorata. However, the opposite was
true for germination parameters, resulting in a stimulating effect on S. mole. This study
indicates that biosolid humus affects the germination and growth of the two species.
Before incorporating this fertilization into regular seedling and reforestation processes,
further studies are necessary to determine the optimal dosage levels of biosolid humus
and prevent potential salinity effects.

Palabras clave: biosolido, aguas residuales, extracto humico, semillas, especies forestales.

RESUMEN

El proposito de este estudio fue examinar el efecto del vermicompostaje obtenido a partir
de biosoélidos de una planta de tratamiento de aguas (denominado en este articulo “humus
de biosdlido”) sobre la germinacion y crecimiento de las especies forestales Schinus
molle y Cedrela odorata en condiciones de invernadero. Se aplicaron cuatro tratamien-
tos, consistentes en una mezcla de humus de biosélido y sustrato, en proporciones de
0 (control), 5, 10 y 20 %. No hubo diferencias significativas en la germinacion de las
especies, considerada como la produccion del primer par de hojas verdaderas. El valor del
porcentaje de germinacion fue mayor para S. molle que para las especies de C. odorata
con tratamientos de 5 y 10 %. Este resultado indica que el humus de biosolido favorece


https://doi.org/10.20937/RICA.55050
mailto:juan.gonzalez@unimilitar.edu.co

276 J. M. Gonzalez-Guzman et al.

el proceso de germinacion. El efecto del humus de biosélido resultdé mas significativo
sobre el crecimiento de C. odorata que de S. molle. Ambas especies mostraron respu-
estas diferenciales al tratamiento utilizando 20 % de humus de biosélido para variables
como longitud del tallo y nimero de hojas, significativamente menores para C. odorata.
Sin embargo, ocurri6 lo contrario para los parametros de germinacion, resultando en un
efecto estimulante sobre S. molle. Este estudio indica que el humus de biosélido afecta la
germinacion y el crecimiento de las dos especies, pero son necesarios mas estudios sobre
sus niveles de dosificacion antes de incorporar este tipo de fertilizacion en el proceso
regular de produccion de plantulas y reforestacion.

INTRODUCTION

Various methods are employed to minimize
environmental impact, ensure sustainability, and
promote the reuse, recycling, and recovery of organic
waste from industrial and urban development (Col-
livignarelli et al. 2019). Among these methods, a
common approach implemented in wastewater treat-
ment plants (WWTP) combines physical, chemical,
and microbiological processes to remove solid and
liquid pollutants (Agrawal et al. 2020). However,
conventional practices such as incineration or landfill
disposal of resulting sewage sludge often contribute
to the expansion of contaminated areas (Rorat et al.
2019).

Recently, alternative treatments for WWTP
sludge, such as aerobic or anaerobic digestion, al-
kaline stabilization, thermal drying, acid oxidation/
disinfection, and composting, have gained prefer-
ence (US-EPA 2019). These methods aim to produce
biosolids—organic materials rich in macronutrients,
such as nitrogen and phosphorus. Biosolids must
undergo appropriate stabilization and processing to
be suitable for use as fertilizers and soil conditioners
to improve low-fertility soils and restore degraded
lands (Collivignarelli et al. 2019).

An emerging method for sludge stabilization
involves using earthworms, known as vermista-
bilization. This biological process transforms
sludge into high-value organic microbial fertilizer
(vermicompost) through the joint action of earth-
worms and microorganisms. However, it requires
the sludge to be dehydrated to facilitate the passage
of earthworms (Sinha et al. 2010, Edwards and
Arancon 2022).

The utilization of biosolids in agriculture and
engineering is becoming increasingly common
(Collivignarelli et al. 2019, Eurostat 2019) due to
their ability to enhance soil nutrient availability, soil
texture, and water retention capacity (Donoso et al.,
2016). Notably, incorporating biosolids into soils of
deforested areas, which are often depleted of nutrients

and organic matter, helps mitigate environmental
stress that inhibits plant growth (Xue et al. 2015,
Castan et al. 2016).

While this practice also promotes the germina-
tion and growth of some forest species, its success
depends on factors such as the source and application
method of biosolids, as well as the age of the plants
(Xue et al. 2015, Pérez-Piqueres et al. 2018). Con-
sequently, biosolid humus benefits forest restoration
(Campoe et al. 2014).

The natural forest area in Colombia is dwindling
annually due to agricultural expansion, livestock
production, and illegal logging (Minagricultura
2021). Strategies for species conservation, pro-
moting reforestation, and conducting tree-planting
campaigns have been initiated (Coérdoba et al.
2019). Clearly, these endeavors will require a sub-
stantial number of plants, and utilizing biosolids
reduces the environmental impact and enhances
the survival prospects of trees during reforesta-
tion efforts.

Therefore, this study aims to assess the impact
of biosolid humus produced at the WWTP of the
Universidad Militar Nueva Granada (UMNG) on
the germination and growth of two forest species,
Cedrela odorata and Schinus molle. The former is a
native timber species found in tropical and subtropi-
cal America, facing a threatened status (Calixto et
al. 2015, UEIA-USFS 2018), while the latter is a
woody tree native to the central Andes; it thrives in
subtropical and tropical regions of South America
and is utilized for medicinal, culinary, and urban
reforestation purposes (Ramos-Montafio 2020,
UEIA-USFS 2018).

MATERIALS AND METHODS

Study area

The experiment took place at the Nueva Granada
campus of UMNG in Cajica, Colombia (4° 56’33 N,
74° 00’45 W), situated at an elevation of 2670 masl.
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Production of vermicompost from the WWTP of
Nueva Granada campus

Sewage sludge from the WWTP of Nueva
Granada campus was collected and air-dried before
being incorporated into beds at the vermicomposting
facility. Eisenia foetida earthworms were utilized at
arate of 3.5 kg per square meter. The beds, measur-
ing 2 x 1 x 0.5 m, were monitored daily to maintain
pH levels between 5 and 8, temperatures between
16 and 25 °C, and humidity between 25 and 60%.
The conversion process into vermicompost typi-
cally takes approximately four months (Silva-Leal
et al. 2016).

After completion, a sample of biosolid humus
was collected for content analysis at an analytical

TABLE I. CHEMICAL SOIL ANALYSIS.

chemistry facility. The composition, cationic
relations, and heavy metal content of this biosolid
humus are detailed in table I.

Germination experiments

Seeds of both species came from a commercial
provider. The labels indicated a harvesting period
of less than a year, a germination percentage of
60%, and seed origin from natural forests. An in
vitro germination test verified the actual germina-
tion percentage, resulting in lower percentages than
indicated on the labels (30% for S. molle and 37%
for C. odorata).

The substrate consisted of a mixture of natural soil
(60%), burnt rice husk (20%), and crude rice husk

Result

Variable Unit

Biosolid humus Control TTOS TTO10 TTO20
pH (Acidity reaction) —logH+ 5.70 4.80 5.10 4.90 5.00
Electrical Conductivity dS/m 6.40 1.10 2.00 1.90 2.80
Major elements
Ammoniacal Nitrogen (NH4) % 0.035 0.006 0.015 0.021 0.013
Nitric Nitrogen (NO3) % 0.05 0.015 0.021 0.018 0.029
Nitrogen (N) % 0.91 1.02 0.46 0.36 0.50
Phosphorus (P) % 0.70 0.12 0.20 0.21 0.25
Potassium (K) % 0.23 0.09 0.15 0.14 0.12
Calcium (Ca) % 2.10 0.16 0.33 0.29 0.24
Magnesium (Mg) % 0.31 0.22 0.17 0.17 0.17
Sodium (Na) % 0.064 0.070 0.081 0.091 0.081
Sulfur (S) % 0.62 0.08 0.08 0.12 0.13
Sample Parameters
Water percent % 19.8 27.14 24.46 26.22 24.20
Carbon:nitrogen relation p:p 10.3 11.06 22.54 28.29 18.83
Organic carbon % 9.4 11.28 10.30 10.23 9.39
Organic material % 20.4 24.47 22.35 22.19 20.38
Heavy metals
Cd (8 mg/kg) mg/kg 2.5 0.4 0.6 0.6 0.7
Pb (300 mg/kg) mg/kg 327 14.0 15.3 16.3 15.4
Cr (1000 mg/kg) mg/kg 37.7 12.7 14.0 14.8 13.8
Minor elements
Iron (Fe) ppm 12129 12660.9 15796.0 10242.1 9741.8
Manganese (Mn) ppm 284 157.4 108.0 106.2 96.3
Copper (Cu) ppm 19.1 4.2 5.8 5.1 7.6
Zinc (Zn) ppm 457 11.0 332 30.4 59.8
Boron (B) ppm 43.5 7.6 9.5 7.2 11.3

The maximum heavy metal content allowed by Decree 1287-2014 (Minvivienda 2014) are given in parenthesis. Control:
0% biosolid humus treatment, TTOS5: 5% biosolid humus treatment, TTO10: 10% biosolid humus treatment, TTO20:

20% biosolid humus treatment.
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(20%), which was disinfected using the fumigant
Basamid before use. Basamid granules (35 g/m?)
were incorporated into the substrate at 10 cm from
the surface with a soil moisture content of 30%. The
area was covered with plastic to prevent gas emis-
sions. After one month, a soil quality control test was
conducted at a biological laboratory to certify the
absence of pathogens (Rippa et al. 2023).

Four treatments were established by mixing sub-
strate and biosolid humus. The final proportions of
biosolid humus were 0% (control), 5% (TTOS), 10%
(TTO10), and 20% (TTO20). A randomized block
design with two repetitions for each treatment was
employed, resulting in 90 plants per treatment. The
mixtures were dispensed into germination trays, with
one seed sown directly into each cell. The germination
trays were maintained under greenhouse conditions
(Gutiérrez-Ginés et al. 2023, Onchoke and Fateru 2024).

Germination, seedling emergence, and other ger-
mination parameters were recorded daily for a period
of two months. The following equations were used to
calculate different germination parameters:

Equation 1 calculates the germination percentage
(Kader 2005, ISTA 2023):

Germination gerZ?r’:Zz[t):; ;{eds
Percentage (GP) =
§ Number of x 100 (1)
seeds

Equation 2 calculates the velocity of germination
(Jones and Sanders 1987):

Coefficient of Velocity zf_l Ni
of Germination (CVG) = ———— x 100
/ (e > NiTi 2
where Ni corresponds to the number of seeds germi-
nated every day and 7i is the number of days from
sowing corresponding to

Equation 3 calculates the time spread of germi-
nation, which is the difference between the time of
the last germination (7},) and the time for the first
germination (7;) (Kader 2005):

Time Spread of Germination (TSG) =T, - T; (3)

The higher the 7SG value, the more significant the
difference in germination speed between the “fast”
and “slow” germinating members of a seed lot.

Equation 4 calculates the germination index
(Benech et al. 1991):

Germination Index (GI) = (10 X nl) +

(4)
Oxn2)+ ...+ xnl0)

Where nl, n2 . .. n10 are the number of germi-
nated seeds on the first, second, and subsequent days
until the 10th day, while 10, 9... and 1 are weights
given to the number of germinated seeds on the first,
second, and subsequent days.

Growth and development

The four treatments used to evaluate germination
were also employed to monitor growth and develop-
ment using a randomized block design. Stem length
and the number of leaves were measured weekly for
13 weeks to observe various developmental stages,
from seedling emergence to true leaf production and
the first stem bifurcation. The relative chlorophyll
content was also determined using a portable chlo-
rophyll meter (SPAD-502) when leaf size permitted.

Statistical analysis

Data were analyzed using the InfoStat statistical
package. Analysis of variance (Anova) was performed
at the p <0.05 confidence level for data meeting the re-
quired assumptions. For growth and development data,
the Kruskal-Wallis test was employed, and the means
of these data were compared using non-parametric
Tukey and Dunnett tests (p < 0.05). The R-project
statistical program and box plot diagrams were used
to illustrate the relationship between treatments.

RESULTS

Influence of biosolid humus on the germination

Figures 1 and 2, along with table II, present each
species’ germination percentage, speed, propagation
time, and index. S. mole experienced a stimulating or
neutral effect in some cases, such as the coefficient
of velocity of germination (CVG), for most of the
parameters evaluated. However, an adverse effect
was observed in plants subjected to TTO20. The
treatment exhibited a retardant effect on the assessed
parameters (Figs. 1a and 2; Table II). Conversely, C.
odorata displayed a different behavior, experiencing
aretardant effect on the germination percentage (GP)
and the germination index (GI) with all treatments
and no apparent effect on the other germination pa-
rameters assessed (Fig. 1b and Table II).

Influence of biosolid humus on growth

Figure 3 illustrates the behavior of the three
selected variables used to estimate plant growth:
stem length, leaf count, and chlorophyll content.
Remarkably, the treatment amended with 20%
vermistabilized biosolids demonstrated a general
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Fig. 1. Cumulative germination curve in substrates amended with three biosolid humus contents (a) S. molle, (b) C. odorata.
Control: 0% biosolid humus treatment, TTO5: 5% biosolid humus treatment, TTO10: 10% biosolid humus treatment;

TTO20: 20% biosolid humus treatment.
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Fig. 2. Distribution of the germinated seeds in substrates amended with three biosolid humus contents: (a) S. molle and (b) C.
odorata. Control: 0% biosolid humus treatment, TTOS5: 5% biosolid humus treatment, TTO10: 10% biosolid humus treat-
ment, and TTO20: 20% biosolid humus treatment. The error bars indicate 95% confidence interval. The error bars indicate
the 95% confidence interval; the lower and upper ends of the box represent the 25th and 75th percentiles, respectively; the

line within the box represents the median, and outliers are represented as dots.
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stimulatory effect on all variables for both spe-
S IS o cies. However, the magnitude of this effect varied
o] . . . .
ol i 2 b when considering each variable for each species
Hlese T individually.
*qa)' For instance, while stem length was more stimu-
- g lated in S. molle than in C. odorata, the effect on
SR o S § leaf count was greater for C. odorata than for S.
9 o f, i R 2 molle. Additionally, although the impact on chlo-
glElase — g rophyll content was subtle for both species, it was
‘§ - still detectable.
S S
= 0 1y 1)
Slglavsg| 2
Eletad S DISCUSSION
el - — [\
§ The Ve_rmicom_posting process plays a Vi.tal
ey = role in solid organic waste recovery, transforming
Tz = = compost into a valuable source of organic matter
é 2 BPS § ; for soil enhancement, fertilization, or incorporation
“ " 2 into crop substrates (Kiyasudeen et al. 2016, Huang
§ s et al. 2024). In vermistabilized biosolids, nutrient
5 o lee & availability is enhanced through earthworm activity,
E S 0o 3 S E which breaks down organic substrates, stimulates
5 ElsdT =N 5 microbial activity, and accelerates mineralization
2 - = rates (Kiyasudeen et al. 2016, Lei et al. 2024).
% 8 Consequently, vermicomposting products are an-
i ol Ty o :\3 ticipated to exhibit elevated nutrient concentrations
s Ol Hal 3 = and heavy metal content (Wang et al. 2024). Biosol-
Z 3 = E dezlp 8 ids produced over four months using vermiculture
12 s at UMNG complied with “category A” criteria as
o E % = per Decree 1287-2014 (Minvivienda 2014), indicat-
S lulw Ze o 8 g ing heavy metal levels below the permissible limits
ANEIEEEHE (table )
z “lae | 2 = Germination curves illustrate the impact of bio-
& —i: E solid humus on the germination process for both spe-
= o g E cies (Fig. 1). The treatments showed no statistically
a sla2.2] B % significant differences in germination for either spe-
=] EILGCE| B cies. Although the reported germination rates under
% Olde T 2 @ regular conditions for S. molle and C. odorata are
- E e 50% and 80%, respectively (Chan et al. 2012), our
& aé findings indicate an inhibitory effect on germination
5 = for both species.
m o o . . . . . .
= g é E Notably, S. molle exhibited its highest germination
% = § b5 g percentage under the TTO10 treatment (GP = 35.56
[ - 'i: £ + 5.21), while the lowest was observed at TTO20
| z =5 | 23 (GP = 16.67 % 1.63). Similarly, for C. odorata, the
B 2 ) § s % E highest germination percentage was recorded under
z - £ | 5% the TTO10 treatment (GP = 22.22 + 2.97), with the
E ~ S 8= é E g lowest at TTO20 (GP = 10.00 £ 2.01). Both values
5 %“6 % E =5 were lower than the control (GP = 38.89 + 3.80).
= 28z&| 28 Various dosages were included in the treatments
= g é':é g = based on previous studies, suggesting that low ver-
i g g% g E g micomposting dosages favor germination (Ievinsh
= OFOQOOI RO 2011, Azizi et al. 2024).
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Fig. 3. Behavior of S. molle for (a) stem length, (b) number of leaves, (c) chlorophyll content (SPAD Index), and behavior of C.
odorata for (d) stem length, (¢) number of leaves, (f) chlorophyll content (SPAD Index). CONTROL: 0% biosolid humus
treatment, TTOS5: 5% biosolid humus treatment, TTO10: 10% biosolid humus treatment, TTO20: 20% biosolid humus
treatment. The error bars indicate the 95% confidence interval; the lower and upper ends of the box represent the 25th and
75th percentiles, respectively; the line within the box represents the median, and outliers are represented as dots.
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Fig. 3. Behavior of S. molle for (a) stem length, (b) number of leaves, (c) chlorophyll content (SPAD Index), and behavior of C.
odorata for (d) stem length, (¢) number of leaves, (f) chlorophyll content (SPAD Index). CONTROL: 0% biosolid humus
treatment, TTOS5: 5% biosolid humus treatment, TTO10: 10% biosolid humus treatment, TTO20: 20% biosolid humus
treatment. The error bars indicate the 95% confidence interval; the lower and upper ends of the box represent the 25th and
75th percentiles, respectively; the line within the box represents the median, and outliers are represented as dots.

Luo et al. (2018) reviewed several characteris-
tics of biosolid humus, including high conductivity,
salinity, and low molecular weight of organic acids,
and their influence on germination processes. They
highlighted compost as a potential inhibitor of radicle
emergence due to factors such as the lack of standard-
ized methods for assessing compost toxicity.

Consequently, our results may be associated
with the soil’s electrical conductivity (EC), which
was measured at 6.4 dS/m (Table I). This high
value likely elevated the EC of the substrate mix,
impacting biological processes, as higher propor-
tions of biosolid humus in the substrate mixture
correlated with lower germination percentages
(Figs. 1 and 2).

In figure 3, the effects of vermistabilized biosolid
on stem length (F-value = 11.35), number of leaves
(F-value =0.802), and chlorophyll content (F-value =
0.891) exhibited significant differences at the TTO20
treatment in both species (Blouin et al. 2019, Rehman
et al. 2023).

These responses are likely attributed to earth-
worm activities, which promote mineralization and

enhance nutrient availability, thereby contributing to
the nutritional enrichment of biosolid humus in the
soil and ultimately affecting growth and photosyn-
thetic activity (Calixto et al. 2015, Shi et al. 2024).
However, further studies are warranted to delve into
these aspects comprehensively.

CONCLUSIONS

Our results validate the potential of sewage sludge
stabilized with Eisenia foetida to stimulate the growth
of C. odorata more effectively than S. molle. How-
ever, given the significance of these species as urban
trees and their crucial role in ecosystem recovery,
it is essential to highlight the differential responses
observed during germination. Interestingly, we ob-
served a stimulating effect on S. molle.

Therefore, while compost can help maintain
optimal soil nutrition, its application should be ap-
proached cautiously, preferably post-germination
for C. odorata. In contrast, S. molle could benefit
from low doses applied before and after germination.
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Notably, both species displayed varied responses to
the 20% biosolid humus treatment, with C. odorata
exhibiting significantly lower stem length and leaf
number values.

These findings underscore the need for further
research to refine dosage strategies and explore sub-
sequent applications, aiming to maximize the use of
these species in environmental restoration endeavors
and broaden the utilization of compost derived from
wastewater treatment plants.
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