COMBINED TREATMENT USING OZONE FOR CYANIDE REMOVAL FROM WASTEWATER: A COMPARISON

(Tratamiento combinado con el uso de ozono para la remoción de cianuro de efluentes: una comparación)

Jefferson MORILLO ESPARZA, Nicolás CEVALLOS CUEVA, Christian SANDOVAL PAUKER, Paul VARGAS JENTZSCH and Florinella MUÑOZ BISESTI*

Departamento de Ciencias Nucleares, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 170525 Quito, Ecuador
*Corresponding author: florinella.munoz@epn.edu.ec

(Received February 2018; accepted August 2018)

Key words: ozonation, hydrogen peroxide, peroxone process, activated carbon, cyanidation

ABSTRACT

Cyanidation is widely used by several gold mining companies worldwide. Since its wastewaters contain cyanide, appropriate treatments must be applied to remove this pollutant. Combinations of ozone (O₃), hydrogen peroxide (H₂O₂) and activated carbon (AC) can be used for this purpose. In this work, synthetic cyanide solutions ([CN⁻]₀ = 15.37 mM) were treated using O₃ and the combinations O₃/H₂O₂, O₃/AC and O₃/H₂O₂/AC under alkaline conditions. O₃ was produced from dry oxygen at a rate of 2.51 g O₃/h ([O₃]gas-phase = 6.9x10⁻² g/L). The concentration of cyanide (CN⁻) and O₃ consumption were measured and the performance of the treatments evaluated. The highest cyanide removal was reached at pH 11.0 for all cases and with 10 mg H₂O₂/mg O₃ upon adding H₂O₂. In contrast, the addition of AC did not improve the cyanide removal in comparison with O₃ alone. The best cyanide removal was achieved with the combination O₃/H₂O₂ followed by the combination O₃/H₂O₂/AC. Moreover, cyanidation effluents were treated using the combination O₃/H₂O₂. In this case, almost a total removal of free cyanide was achieved after 3 min of treatment.

Palabras clave: ozonificación, peróxido de hidrógeno, sistema peroxona, carbón activado, cianuración

RESUMEN

El proceso de cianuración es ampliamente utilizado en la industria minera alrededor del mundo. Las aguas residuales de este proceso contienen cianuro, lo cual obliga al uso de tratamientos apropiados para su remoción. Para ello, se pueden utilizar combinaciones de ozono (O₃), peróxido de hidrógeno (H₂O₂) y carbón activado (CA). En este trabajo se trataron, soluciones sintéticas de cianuro ([CN⁻]₀ = 15.37 mM) con el uso de O₃ y las combinaciones O₃/H₂O₂, O₃/CA y O₃/H₂O₂/CA en condiciones alcalinas. Se produjo O₃ a partir de oxígeno seco con una producción de 2.51 g O₃/h ([O₃] gas-phase = 6.9x10⁻² g/L). Se evaluó el comportamiento de cada proceso y se midió la concentración de cianuro (CN⁻) y el consumo de ozono durante los tratamientos. La mayor remoción de cianuro se alcanzó a pH 11.0 para todos los casos. Al añadir H₂O₂ la remoción fue mayor al usar 10 mg H₂O₂/mg O₃. Por otra parte, la adición de CA no
INTRODUCTION

Gold has been a subject of fascination since ancient times. It is well known that this metal had also a religious and even mythical significance due to its remarkable stability. Ancients used gold to produce jewelry, sculptures, vessels, coinage as well as decoration for monuments and buildings, among others (Akcil 2002, Akcil 2003). Gold was used as commodity money during centuries and its accumulation was correlated to “social power” and even triggered wars. On this field, Schoenberger (2011) published an interesting discussion on the historical value of gold. In modern times, the importance of gold has not declined and is a well-known fact that this commodity supports the world economy. Taking into account that gold still plays a fundamental role in modern society and economy, huge projects around the world have focused on the exploitation of low-grade gold ores.

To extract and concentrate gold, some processes were developed and typically been used in gold mining worldwide. The most important process currently used to separate gold from the ores is cyanidation. Cyanidation, which was developed in Scotland in 1887 (Habashi 1987), is widely used in the USA, Canada, Turkey as well as in several developing countries (Akcil 2002, Eisler and Wiemeyer 2004, Veiga et al. 2014). It consists in the dissolution of gold from the ore in an alkaline dilute cyanide solution. Later, gold is recovered from the solution using either activated carbon, zinc or ion-exchange resins (Eisler and Wiemeyer 2004) and important amounts of cyanide remain in solution in the form of free cyanide or as complexes of other metals (Donato et al. 2007). It is difficult to establish the average consumption of water for the operation of gold mining companies since this depends on a variety of factors including the type of ores, the degree of water recycling, the technology used for the extraction and even the characteristics of the site, among others (Mudder 2007). However, there is a consensus of opinion among the scientific community and society that gold mining activities have a very strong environmental impact, and most of these impacts are due to wastewaters. Both quality and quantity are problems when it comes to evaluating the wastewater issue of gold mining activities since huge amounts of cyanide-polluted water are generated and must be adequately treated. Considering that cyanidation has gained a bad reputation in the eyes of the public, alternative lixiviant processes for gold ores were explored (Hilson and Monhemius 2006). However, although these remarkable efforts, it seems that cyanidation dominance in the gold mining industry will prevail in years (or decades) to come. Therefore, treatment processes to remove cyanide from the water were (and are still) subject of intense study in the last decades.

Some well-known treatment processes to remove cyanide from gold mining wastewaters are natural cyanide degradation (in tailings ponds), biological processes, chemical processes, electrolytic oxidation and other methods such as evaporation (applied in arid regions) (Kuyucak and Akcil 2013). Probably the most applied process, due to its simplicity, is the natural cyanide degradation in tailings ponds. This process basically involves the storage of wastewaters in ponds exposed to the environment and the degradation of cyanide takes place through different natural mechanisms (volatilization, photodecomposition, chemical oxidation, microbial oxidation, hydrolysis and precipitation). The great disadvantage of this treatment is the low degradation rate, therefore enormous volumes of polluted water must be stored for long periods of time with the subsequent possibility of incidents and accidents. In fact, countless big accidents involving tailings dams happened in the past, data from some of them were compiled in earlier publications (Mudder and Botz 2004, Rico et al. 2008). However, not only incidents and accidents are responsible for negative environmental impacts; Donato et al. (2007) have extensively discussed the impact of gold cyanide-bearing tailings solutions on wildlife and their arguments suggest that wildlife deaths due to “correctly” operated and controlled tailings ponds could be underestimated.

Concerning biological processes, many researchers reported in the past the application of different microorganisms for the removal of cyanide from wastewaters (specially, from gold mining) (Evangelho et al. 2001, Akcil and Mudder 2003, Ebel et
al. 2007, Mekuto et al. 2015, Mekuto et al. 2016). Although biological systems have interesting advantages, as described by Akcil (2003), there are also limitations related to operational conditions. For instance, biological systems are often sensitive to load fluctuations in both flow rate and pollutant charge. Therefore, under certain circumstances, chemical processes are preferred, and many options were studied (Mudder and Botz 2004, Kuyucak and Akcil 2013).

The oxidation of cyanide with hydrogen peroxide is a widely used chemical method because it does not produce dangerous by-products or harmful environmental pollutants (Chergui et al. 2015). Some studies showed that higher performances in the removal of cyanide can be reached by the combined action of hydrogen peroxide and other materials such as activated carbon (plain and metal-impregnated) (Deveci et al. 2006, Yeddou et al. 2010, Yeddou et al. 2011), activated alumina (Chergui et al. 2015) and copper-impregnated pumice (Kitis et al. 2005). The combined effect of hydrogen peroxide and ozone on the oxidation of cyanide was also tested and remarkable results were reported by Monteagudo et al. (2004). The results reported by these authors showed that cyanide removal was improved when hydrogen peroxide and ozone were combined for the treatment. Such improvement was attributed to the formation of hydroxyl radicals (‘OH), a very strong oxidant agent. Processes using ‘OH radicals for the degradation of pollutants are known and grouped as advanced oxidation processes (AOPs) and have several applications in wastewater treatment (Oturuan and Aaron 2014). Considering the mentioned aspects, a treatment in which an activated carbon, hydrogen peroxide and ozone are combined could improve the treatment of wastewaters containing cyanide.

In this work, the removal of cyanide was tested using activated carbon, hydrogen peroxide and ozone. The performance of treatments combining hydrogen peroxide and ozone, activated carbon and ozone, as well as ozone, hydrogen peroxide and activated carbon, was evaluated and discussed. These results can provide insights to perform improvements in existing systems and/or the development of new systems for the treatment of wastewaters containing cyanide.

EXPERIMENTAL AND METHODS

Reagents
Synthetic solutions of NaCN (400 mg/L, 15.37 mM) were prepared using NaCN (> 95 %, Sigma-Aldrich). The pH values of the NaCN solutions were adjusted with a 0.1 N aqueous solution of NaOH (99.0 %, Merck). H2O2 (30 % w/w, Scharlau) and commercial activated carbon (PanReac AppliChem, ref: 121237, d80 < 38 µm) were used during the treatments in combination with O3 (see ozonation system description below). For the measurement of O2, 2 % w/w KI (99.0 % PanReac AppliChem), 2N Na2S2O3•5H2O (99.0 %, Baker) and 2N H2SO4 (97 %, Merck) aqueous solutions were prepared. All the solutions were prepared with double distilled water.

Measurement of cyanide concentration
The concentration of cyanide (CN-) was measured using a colorimetric method (Standard Method 4500-CN-E, in a range from 0.02 to 0.2 mg/L CN-) in a Hach DR2800 spectrophotometer. In addition, a cyanide – selective electrode method (4500-CN-F, in a range from 0.05 to 10 mg/L CN-) with a Thermo Orion 9606BNWP electrode, was also used.

Ozonation system description
Ozone (O3) was produced from dry oxygen (99.999 %, AGA) using a Philaqua BMT 802M generator at an approximate dose of 2.51 g O3/h (O3 gas-phase = 6.9x10² g/L). O3 was transferred to 90 mL samples of cyanide solutions through a porous diffuser. The concentrations of the O3 feed (at the inlet of the reactor) and the O3 not consumed (at the outlet of the reactor) were measured by the iodometric titration method (Standard Method 2350-E). The amount of consumed O3 was calculated at different times by applying a mass balance into the reactor. All the tests were carried out at room temperature (~20 °C).

Influence of activated carbon and H2O2 doses and pH on cyanide removal and O3 consumption
90 mL samples of synthetic cyanide solutions (400 mg/L, 15.37 mM) were treated using O3 alone and the combinations O3/H2O2, O3/AC and O3/H2O2/AC at two pH values (10 and 11). Consumed O3 and CN- removal were determined at different times for 7.5 min (the experiment was carried out separately for each time). All runs were carried out in triplicate. Additionally, the statistical software Statgraphics Centurion XVI (version 16.1.03) was used to compare the treatments.

The treatment using the combination H2O2/O3 was performed at different ratios of H2O2/O3 feed (2.0, 5.0 and 10.0 mg H2O2/mg O3). When the combination AC/O3 was employed, three different AC dosages of 0.3, 0.5 and 1.0 g/L were used. The surface area, pore
diameter and pore volume of the activated carbon were measured using a Quantachrome Instruments Nova4200e surface area and pore size analyzer by the Brunauer-Emmett-Teller (BET) method. The point of zero charge (PZC) of the activated carbon was determined using the method reported by Newcombe et al. (1993).

The conditions of the treatments with O\textsubscript{3}, H\textsubscript{2}O\textsubscript{2}/O\textsubscript{3} and AC/O\textsubscript{3} that allowed the highest cyanide removal were selected for the treatment with the combination O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}/AC. Additionally, tests with H\textsubscript{2}O\textsubscript{2} and activated carbon alone were carried out for comparative purposes.

Characterization and treatment of samples from cyanidation effluents

In order to assess if the treatment (O\textsubscript{3}, O\textsubscript{3}/AC, O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}, or O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}/AC) that showed the highest cyanide removal for the synthetic solutions can degrade free cyanide in an industrial effluent, experiments with effluents from a cyanidation process were carried out applying the best treatment. The samples of effluents were characterized, before and after the treatment application, by measuring the following parameters: pH, cyanide concentration (Standard Methods 4500-CN-E and 4500-CN-F), chemical oxygen demand (COD, Standard Method 5220-B), total organic carbon (TOC, Standard Method 5310-B) and turbidity.

RESULTS AND DISCUSSION

Influence of AC, H\textsubscript{2}O\textsubscript{2} doses, and pH on cyanide removal and O\textsubscript{3} consumption

The results of cyanide removal at different times under all conditions tested are shown in Table I. According to the results of the ANOVA test of the treatment using only O\textsubscript{3}, the pH value had a significant effect on cyanide removal (p < 0.05). Moreover, the higher cyanide removal was achieved at pH 11.0. As mentioned by von Gunten (2003), the pH value plays an important role because •OH ions can initiate the O\textsubscript{3} decomposition into •OH radicals. Previous studies have reported that the treatment of cyanide using O\textsubscript{3} is better at alkaline conditions (Andreozzi et al. 1999, Mert et al. 2014). In addition, Soto et al. (1995) found that the oxidation of the protonated form of cyanide (HCN) using O\textsubscript{3} is slower in comparison with the oxidation of cyanide ions (CN−). Since at pH values higher than the pKa of HCN (pH = 9.2) the proportion of CN− ions is higher in comparison with HCN.

TABLE I. CYANIDE REMOVAL USING THE TESTED COMBINATIONS: O\textsubscript{3}; O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}; O\textsubscript{3}/CA AND O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}/CA ([CN−]\textsubscript{0} = 15.37 mM)

<table>
<thead>
<tr>
<th>pH</th>
<th>Treatment</th>
<th>H\textsubscript{2}O\textsubscript{2}* (mM)</th>
<th>AC** doses (g/L)</th>
<th>Cyanide removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5 min</td>
</tr>
<tr>
<td>pH = 10</td>
<td>O\textsubscript{3}</td>
<td>-</td>
<td>-</td>
<td>79.8</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}</td>
<td>0.18 (2 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3})</td>
<td>-</td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}</td>
<td>0.49 (5 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3})</td>
<td>-</td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}</td>
<td>1.02 (10 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3})</td>
<td>-</td>
<td>94.6</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/CA</td>
<td>-</td>
<td>0.30</td>
<td>69.4</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/CA</td>
<td>-</td>
<td>0.50</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/CA</td>
<td>-</td>
<td>1.00</td>
<td>79.3</td>
</tr>
<tr>
<td>pH = 11</td>
<td>O\textsubscript{3}</td>
<td>-</td>
<td>-</td>
<td>84.6</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}</td>
<td>0.18 (2 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3})</td>
<td>-</td>
<td>88.2</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}</td>
<td>0.42 (5 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3})</td>
<td>-</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}</td>
<td>1.04 (10 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3})</td>
<td>-</td>
<td>95.9</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/CA</td>
<td>-</td>
<td>0.30</td>
<td>72.7</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/CA</td>
<td>-</td>
<td>0.50</td>
<td>80.6</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/CA</td>
<td>-</td>
<td>1.00</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td>H\textsubscript{2}O\textsubscript{2}</td>
<td>1.04</td>
<td>-</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>-</td>
<td>0.50</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}/CA</td>
<td>1.02 (10 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3})</td>
<td>0.50</td>
<td>83.5</td>
</tr>
</tbody>
</table>

* The values in parenthesis are expressed in milligrams of H\textsubscript{2}O\textsubscript{2} per milligram of O\textsubscript{3} feed
**AC = activated carbon
COMBINED TREATMENT USING OZONE FOR CYANIDE REMOVAL

(Stavropoulos et al. 2015), the removal of cyanide could increase at high pH values. Furthermore, working at alkaline conditions avoid the generation of the volatile species HCN which is a compound known for its high respiratory toxicity (Chan et al. 2010).

When H\textsubscript{2}O\textsubscript{2} was included in the treatment, the highest free cyanide removal was achieved using 10 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3}. In addition, there were not found statistically significant differences between 2 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3} and 5 mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3}. On the other hand, the removal of cyanide was not affected by the pH values tested (10.0 and 11.0) (Fig. 1b). As reported previously, the addition of H\textsubscript{2}O\textsubscript{2} could increase the generation of 'OH radicals because H\textsubscript{2}O\textsubscript{2} anions (HO\textsubscript{2}−) react rapidly with O\textsubscript{3} which is decomposed in 'OH radicals and O\textsubscript{2} (see eqs. (1)–(4)) (von Sonntag and von Gunten 2012). Furthermore, as shown in figure 1, an increment of the O\textsubscript{3} consumption was observed when the H\textsubscript{2}O\textsubscript{2}/O\textsubscript{3} ratio increased. This consumption may be related to a scavenging effect of O\textsubscript{3}, since it is known that O\textsubscript{3} reacts rapidly with 'OH radicals (von Gunten 2003). In other words, the reaction of O\textsubscript{3} with 'OH competes with the reaction between cyanide and 'OH (Gurol and Bremen 1985). Thus, more O\textsubscript{3} is needed in order to achieve the removal of cyanide.

\[
\text{H}_2\text{O}_2 \rightleftharpoons \text{HO}_2− + \text{H}^+ \quad (1)
\]

\[
\text{HO}_2− + \text{O}_3 \rightarrow \text{HO}_3′ + \text{O}_3− \quad (2)
\]

\[
\text{O}_3− + \text{H}^+ \rightleftharpoons \text{HO}_3′ \quad (3)
\]

The characterization of the activated carbon and the results of the cyanide removal using the combination of O\textsubscript{3}/AC are depicted in table II and figure 2, respectively. According to the Pareto chart of the main effects obtained using this combination (Fig. 2b), the cyanide removal was not affected by the activated carbon dosage and the pH value (10.0 and 11.0). Furthermore, the addition of activated carbon did not increase the cyanide removal in comparison with O\textsubscript{3} and O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}. This is in good agreement with previous results for the treatment of other compounds, for instance, Zaror (1997) reported that the addition of AC did not affect the oxidation of phenolic compounds. Moreover, Sanchez-Polo et al. (2005) mentioned that activated carbon could act as an initiator of the O\textsubscript{3} decomposition reaction rather than a catalyst. This behavior is explained because activated carbon loses its reactivity during the process due to a decrease of basic functional groups responsible for the promotion of O\textsubscript{3} decomposition. In this study, an activated carbon dose of 0.5 g/L was chosen to carry out the comparison between all the treatments (Fig. 3).

\[
\text{HO}_3′ \rightleftharpoons \text{OH} + \text{O}_2 \quad (4)
\]

![Fig. 1. a) Cyanide removal as a function of the O\textsubscript{3} consumed (mM) at different H\textsubscript{2}O\textsubscript{2}/O\textsubscript{3} ratios (mg H\textsubscript{2}O\textsubscript{2}/mg O\textsubscript{3} feed) and pH values b) Pareto chart of the main effects obtained from the cyanide removal using the treatment O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2} (A = pH, B = time, C = H\textsubscript{2}O\textsubscript{2}/O\textsubscript{3} ratio)](image)

<p>| TABLE II. CHARACTERIZATION OF THE EMPLOYED COMMERCIAL ACTIVATED CARBON (AC) |
|-----------------------|------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>S\textsubscript{BET} (m2/g)</th>
<th>V\textsubscript{micro} (cm3/g)</th>
<th>Φ\textsubscript{micro} (Å)</th>
<th>pH\textsubscript{PZC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>934.15</td>
<td>0.3843</td>
<td>3.68</td>
<td>7.40</td>
</tr>
</tbody>
</table>

(PanReac AppliChem, ref: 121237)
A comparison between all treatments applied (O₃, O₃/AC, O₃/H₂O₂ and O₃/H₂O₂/AC) and the individual effect of H₂O₂ and activated carbon on the cyanide removal was carried out at the conditions which presented the best cyanide removal for each combination. As shown in figure 3a, the higher cyanide removal was obtained using the combination O₃/H₂O₂ (10 mg H₂O₂/mg O₃, pH = 11.0). Also, the combination O₃/H₂O₂/AC (10 mg H₂O₂/mg O₃, 0.5 g AC/L, pH = 11.0) exhibited a better cyanide removal in comparison with O₃ alone (pH = 11.0).

Regarding O₃ consumption (Fig. 3b), the treatment using O₃/H₂O₂ showed the highest values. In this case, the quantity of ozone consumed increased during the process. A similar trend was obtained for the treatment using only O₃. These behaviors may be related to the scavenging effect of O₃ (von Gunten 2003). As mentioned before, the reaction of O₃ with •OH competes with the reaction between cyanide and •OH (Gurol and Bremen 1985). When the concentration of CN⁻ decreases the probability of O₃ to react with •OH radicals could increase. As a result, more O₃ needs to be consumed to degrade the residual CN⁻. When activated carbon was added, the O₃ consumption decreased. For the treatment using O₃/AC (0.5 g AC/L, pH = 11.0) the O₃ consumption was
approximately 1 mol O$_3$/mol CN$^-$, while for the treatment using O$_3$/H$_2$O$_2$/AC the consumption was lower than 1 mol O$_3$/mol CN$^-$). Zaror (1997) also found that the presence of AC in the ozonation process decreased the ozone consumption. In the case of the combination O$_3$/AC, this reduction may be attributed to the generation of \cdotOH radicals at specific sites over the large surface of the activated carbon. It seems that these radicals produced are less available to react with the incoming O$_3$. Thus, the selectivity of \cdotOH radicals (i.e., the reaction of \cdotOH radicals with target components) is improved, since there is a decrease of the scavenging effect of O$_3$. The same principle could apply to the combination O$_3$/H$_2$O$_2$/AC with the difference of the increase of \cdotOH production by the addition of H$_2$O$_2$ with a subsequent decrease in the consumption of O$_3$. Future studies should be focused on the reaction mechanisms when O$_3$, H$_2$O$_2$ and activated carbon are combined in order to have a better understanding of this phenomena.

Characterization and treatment of samples from cyanidation effluents

Samples of cyanidation effluents from gold ore processing were treated using the combination O$_3$/H$_2$O$_2$ (10 mg H$_2$O$_2$/mg O$_3$, pH =11.0) which presented the highest cyanide removal. Figure 4 shows the results of the cyanide removal from the samples of effluents ($[\text{CN}^-]_o = 172.5$ mg/L). Moreover, the cyanide removal of synthetic solutions ($[\text{CN}^-]_o = 400.0$ mg/L) treated under the same conditions is reported for comparative reasons. Almost a total removal of cyanide from the effluents was achieved at 3 min. This time was lower than the time needed to achieve the same conversion in the synthetic samples because the initial free cyanide concentration was lower in the effluent.

The results of the characterization of the effluents before and after the treatment are provided in Table III. As shown in the results, the removals of TOC and COD were 82.2 % and 76.11 %, respectively. Since TOC represents the degree of mineralization (oxidation of organic carbon content to CO$_2$), the removal values suggested that the treatment can trigger the formation of less toxic species. Also, the final cyanide concentration (0.08 mg/L) complies with the drinking water regulation of the Environmental Protection Agency (EPA) of the US which is 0.2 mg/L. The results suggested that the treatment could be applied for the removal of cyanide in cyanidation effluents. It should be noted that this study was only focused in the removal of free cyanide, although in these effluents cyanide can be in the form of various species such as free cyanide and cyanide complexes. Moreover, there are some reports of the capability of O$_3$ to oxidize also cyanide complexes (Kuyucak and Akcil 2013). Therefore, it is important to mention that future studies should also focus on the combination of the processes studied to remove this kind of compounds.

TABLE III. CHARACTERIZATION OF THE CYANIDATION EFFLUENT, BEFORE AND AFTER TREATMENT USING THE COMBINATION O$_3$/H$_2$O$_2$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial value</th>
<th>Final value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{CN}^-]$ (mg/L)</td>
<td>172.5</td>
<td>0.08</td>
</tr>
<tr>
<td>pH</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>56</td>
<td>68</td>
</tr>
<tr>
<td>TOC (mg/L)</td>
<td>137.8</td>
<td>24.5</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>496</td>
<td>118.5</td>
</tr>
</tbody>
</table>

(pH 11; 10 mg H$_2$O$_2$/mg O$_3$; t = 7 min)

CONCLUSIONS

The highest cyanide removal was achieved at pH 11.0 for the ozonation process. When H$_2$O$_2$ was added, the cyanide removal was improved with the increase of the H$_2$O$_2$/O$_3$ ratio. This result was attributed to a possible increase in the generation of \cdotOH radicals.
radicals caused by the reaction between H_{2}O_{2} anions (HO_{2}^{-}) and O_{3}. The highest removal was obtained with 10 mg H_{2}O_{2}/mg O_{3}. Moreover, the O_{3} consumption increased with the increment of H_{2}O_{2}/O_{3} ratio which was attributed to a scavenging effect of O_{3}. For the combination O_{3}/AC, the statistical analysis showed that the cyanide removal was not affected by the activated carbon dosage. Also, the addition of AC did not improve the cyanide removal in comparison with O_{3} alone.

According to the comparison between all the treatments applied (O_{3}, O_{3}/AC, O_{3}/H_{2}O_{2} and O_{3}/H_{2}O_{2}/AC), the best cyanide removal was reached with the combination O_{3}/H_{2}O_{2} followed by the combination O_{3}/H_{2}O_{2}/AC. Furthermore, the O_{3} consumption increased during the process using the combinations O_{3}/H_{2}O_{2} and O_{3}. When activated carbon was added, the O_{3} consumption decreased during the process. For the combination O_{3}/AC the O_{3} consumption was approximately 1 mol O_{3}/mol CN^{-}, while for the combination O_{3}/H_{2}O_{2}/AC the consumption was lower than 1 mol O_{3}/mol CN^{-}.

The treatment of cyanidation effluents was carried out using the treatment with O_{3}/H_{2}O_{2} (10 mg H_{2}O_{2}/mg O_{3}, pH = 11.0). According to the results, almost a total removal of free cyanide (CN^{-}) was achieved after 3 min of treatment. Moreover, the final cyanide concentration was 0.08 mg/L. This value complied with the drinking water regulation of the Environmental Protection Agency of the US which is 0.2 mg/L.

ACKNOWLEDGMENTS

The authors would like to thank the financial support provided by Escuela Politécnica Nacional of Ecuador through the project PII-15-01: “Estudio del uso de ozono combinado con peróxido de hidrógeno en presencia de carbón activado, para el tratamiento de aguas residuales contaminadas con cianuro”.

REFERENCES

DOI: 10.1016/S0892-6785(02)00165-6

DOI: 10.1016/S0734-9750(03)00099-5

DOI: 10.1023/A:1022608213814

DOI: 10.1016/S0920-5861(99)00102-9

DOI: 10.3109/15563650.2010.505197

DOI: 10.1080/02772248.2015.1093129

DOI: 10.1016/j.minpro.2006.03.002

DOI: 10.1016/j.envint.2007.04.007

DOI: 10.1016/j.chemosphere.2006.06.041

DOI: 10.1007/978-1-4419-9100-3_2

DOI: 10.1016/S0301-7516(00)00059-4

DOI: 10.1021/es00139a006

Habashi F. (1987). One hundred years of cyanidation. CIM Bull. 80 (905), 108-114

DOI: 10.1016/j.jclepro.2004.09.005

DOI: 10.1016/j.watres.2005.01.027

DOI: 10.1016/j.mineng.2013.05.027

DOI: 10.1007/s11356-015-4221-4

DOI: 10.1016/j.scitotenv.2016.07.040

DOI: 10.1016/0927-7757(93)80311-2

DOI: 10.1080/10643389.2013.829765

DOI: 10.1016/j.jhazardmat.2007.07.050

DOI: 10.1016/j.watres.2005.05.026

DOI: 10.1016/0892-6875(94)00123-T

DOI: 10.1016/j.jclepro.2013.08.015

DOI: 10.1016/S0043-1354(02)00457-8

DOI: 10.1016/j.mineng.2011.02.012
