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ABSTRACT

As	one	of	 the	most	 hazardous	 natural	 events,	 flash	flood	 is	 frequently	 responsible	
for loss of life and severe damage to infrastructure and public health. The Rainfall 
Threshold	(RT)	is	the	main	warning	index	of	flash	flood	that	is	used	in	China.	How-
ever,	the	amount	of	parameters	in	RT	calculation	is	significantly	large,	and	the	deter-
mination of some parameter values is affected by subjective factors substantially. In 
this	paper,	a	Morris-Sobol	Two-layer	Progressive	Model	(M-STPM)	is	established	to	
identify	sensitive	parameters	in	RT	calculation.	Firstly,	the	Morris	screening	method	
is applied to qualitatively analyse the sensitivity of parameters, while the insensitive 
parameters	are	filtered.	Then	the	Sobol	method	is	employed	to	quantify	the	sensitivity.	
The sensitivity of parameters in RT calculation is determined through a case study in 
Duli Village of Anyang County in Henan Province. The results indicate that mean of 
1-h	annual	maximum	point	rainfall	is	the	most	influential	parameter.	It	is	found	that	
the	parameters	in	water	level-discharge	relation	calculation	have	a	large	influence	on	
the RT, which shows that the proposed model can provide a reference for determining 
the value of parameters and can lay a theoretical foundation for further error analysis 
in RT calculation.

Palabras clave: inundación repentina, umbral de precipitación, parámetro de sensibilidad, modelo progresivo 
Morris-Sobol	de	dos	capas,	método	inverso	del	nivel	de	descarga	de	agua

RESUMEN

Las inundaciones repentinas, uno de los eventos naturales más peligrosos, son con 
frecuencia	responsables	de	la	pérdida	de	vidas	humanas	y	de	daños	a	la	infraestructura	
y	a	la	salud	pública.	El	umbral	de	precipitación	(RT,	por	sus	siglas	en	inglés)	es	el	prin-
cipal índice de alerta que se utiliza en China. Sin embargo, la cantidad de parámetros 
para el cálculo del RT es muy grande y la determinación de los valores de algunos de 

Rev.	Int.	Contam.	Ambie.	35	(Environmental	Engineering	of	Sustainable	Landscapes)	133-147,	2019
DOI:	10.20937/RICA.2019.35.esp01.13



W. Yuan et al.134

ellos	es	afectada	por	factores	subjetivos.	En	este	trabajo,	el	modelo	progresivo	Morris-
Sobol	de	dos	capas	(M-STPM,	por	sus	siglas	en	inglés)	se	establece	para	identificar	
los	 parámetros	 sensibles	para	 el	 cálculo	del	RT.	Primero,	 el	método	de	filtrado	de	
Morris	se	aplica	para	el	análisis	cualitativo	de	la	sensibilidad	de	los	parámetros	y	los	
no	sensibles	se	excluyen.	Posteriormente	se	utiliza	el	método	Sobol	para	cuantificar	
la sensibilidad. La sensibilidad de los parámetros para calcular el RT se determina 
a	través	de	un	estudio	de	caso	en	la	villa	de	Duli,	condado	de	Anyang,	provincia	de	
Henan. Los resultados indican que la media anual del punto máximo de precipitación 
1-h	es	el	parámetro	más	influyente.	Se	encontró	que	el	cálculo	de	los	parámetros	en	la	
relación	del	nivel	de	descarga	de	agua	tiene	una	gran	influencia	en	el	RT,	lo	que	muestra	
que el modelo propuesto puede proporcionar una referencia para determinar el valor 
de los parámetros y, asimismo, dar un fundamento teórico para un futuro análisis del 
error en el cálculo del RT.

INTRODUCTION

Flash	flood	is	a	rapid-onset	natural	disaster	with	
destructive power and serious damage (Hapuarachchi 
et	al.	2011,	Gascon	et	al.	2016,	Ma	et	al.	2010,	Halim	
and	Phang	2017,	Shamsudin	et	al.	2017).	According	
to China Floods and Droughts Disasters Bulletin 
(http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb),	 an	
annual average of about 838 deaths were caused by 
flash	floods	 from	2012	 to	 2015.	Such	high	 losses	
and	risks	have	underscored	the	need	for	flash	flood	
warning and forecasting.

Flash	flood	 is	 defined	 as	 a	 rapid	 and	 extreme	
flow	of	 high	water	 into	 a	 normally	 dry	 area,	 or	 a	
rapid water level rise in a stream or creek above a 
predetermined	flood	level,	beginning	within	6	h	of	the	
causative	event	(NWS	2016,	Amiri	et	al.	2017).	The	
Flash Flood Guidance (FFG) approach is widely em-
ployed in America and Europe (Villarini et al. 2010, 
Georgakakos	2006,	Reed	et	al.	2007).	FFG	represents	
the depth of rain of a given duration, taken as uniform 
in space and time on a certain basin, necessary to 
cause	minor	flooding	at	the	outlet	of	the	considered	
basin	(Norbiato	et	al.	2008,	Qu	et	al.	2017).	

The Rainfall Threshold (RT) is the main warning 
index	of	flash	flood	in	China,	and	can	be	reasonably	
regarded as a prototype of the FFG. When the now-
casted or forecasted rainfall depth is greater than the 
RT,	the	flooding	is	considered	likely	to	happen.	As	
for	the	services	of	the	Ministry	of	Water	Resources,	
determination of RT has already been started at the 
village level. The mountainous areas account for 
almost two thirds of China’s total land area (Yun et 
al.	2017,	Tan	et	al.	2017).	In	addition,	the	small	basis	
in mountainous areas are often ungauged, as they are 
short of monitoring facilities. Hence, the methods 
for calculating RT in China are mainly theoretical 
ones based on physical mechanism and hydrological 

theory, and empirical ones related to event correlation 
and geographical condition similarity. The theoretical 
methods include the Classical Hydrological Theory 
Method	(CHTM),	the	Water	Level-Discharge	Inver-
sion	Method	(WL-DIM),	Rainfall	Threshold	Curve	
Method	(RTCM),	etc.	The	empirical	approaches	are	
composed	of	Statistical	 Induction	Method	 (SIM),	
Analogy	Method	(AM),	Interpolation	Method	(IM),	
etc. (Li and Guo 2013).

In	practice,	it	is	difficult	to	calculate	the	accurate	
value	of	RT,	due	to	a	lack	of	data	and	affected	by	field	
measurements and subjective factors. Especially in 
small basins, when theoretical methods are applied, 
some parameters will be generalized or determined 
in	a	given	range	(Tariq	et	al.	2017).	As	a	result,	it	is	
essential to analyze the sensitivity of parameters, 
namely,	to	determine	the	influence	of	each	param-
eter on the RT, which can give a reference for the 
parameters value when the RT is calculated, and can 
lay the theoretical groundwork for further analyzing 
the RT error.

Sensitivity analysis is generally divided into lo-
cal	analysis	and	global	analysis	(Saltelli	et	al.	1999,	
Griensven et al. 2006). Local sensitivity analysis 
focuses on the effects of uncertain inputs around a 
point (or base case), whereas global sensitivity analy-
sis	concerns	more	about		the	influences	of	uncertain	
inputs over the whole input space (Song et al. 2015, 
Yasin	et	al.	2017).	Global	sensitivity	analysis	method	
falls into two categories: qualitative and quantita-
tive types. Qualitative analysis methods include 
the	Morris	 screening	method,	multiple	 regression	
method	and	LH-OAT	method;	quantitative	analysis	
methods include Sobol method, Extend FAST method 
and	GLUE	method,	etc.	(Morris	1991,	Sobol	1993,	
Francos	et	al.	2003,	Beven	and	Binley	1992).	The	
modified	Morris	 screening	method	 calculates	 the	
sensitivity	of	each	parameter-based	differential.	This	
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approach features minor computation and can handle 
multiple input parameters, but is devoid of analysis 
of interactions among parameters (Shin et al. 2013, 
Aziz	and	Hanfiah,	2017).	The	Sobol	method	based	
on variance decomposition has such advantages as 
working	 for	 non-linear	models	 and	 analyzing	 the	
attribution of total output variance to individual pa-
rameters and their interactions, which is widely used 
in	diverse	fields.	However,	the	Sobol	algorithm	has	
high computational costs.

Some studies have established a multilevel 
model, since it is capable of integrating the advan-
tages	of	various	methods	(Wan	et	al.	2017,	Ismail	
and	 Hanafiah	 2017).	 Hence,	 the	Morris-Sobol	
Two-layer	Progressive	Model	(M-STPM)	is	estab-
lished,	with	an	aim	to	evaluate	the	influence	of	the	
parameters on RT and the effect of the interaction 
among the parameters on RT, aiming to improve the 
computational	efficiency.	In	this	model,	the	modi-
fied	Morris	 screening	method	 is	 used	 to	 analyze	
the qualitative sensitivity of each parameter, and 
goes a step further by applying the Sobol method 
to calculate the quantitative sensitivity. The RT in 
the case study of Duli Village of Anyang County 
in Henan Province is calculated, so as to identify 
the sensitivity and correlation of the parameters on 
RT, which helps determine the value of parameters 
in RT calculation.

This paper is structured as follows. First, the theo-
retical method of RT in China is introduced. Second, 
the	Morris-Sobol	Two-layer	Progressive	Model	(M-
STPM)	is	established.	Third,	the	parameters	in	RT	
calculation and the experimental design of linear and 
stability analysis of parameters for RT response are 
determined in consideration of the case study of Duli 
Village. Finally, the results are presented, along with 
main research points summarized.

THEORETICAL METHOD OF RAINFALL 
THRESHOLD (RT)

Generally, precipitation forecast model and hydro-
logical model is not widely available, due to the lack 
of rainfall data, hydrological data, basic surveying and 
mapping data and remote sensing data in small basins.
Therefore, the theoretical method is often utilized to 
calculate	RT.	This	paper	 takes	 the	WL-DIM	as	 an	
example to look into the sensitivity of parameters in 
RT calculation.

WL-DIM	assumes	that	the	frequency	of	rainfall	is	
the	same	as	that	of	flood	(Li	and	Gua	2013).	According 
to	the	bank-full	water	level	(Zbf) at the control section 
of	village	and	the	water	level-discharge	curve	(Z	-	Q), 
the	bank-full	discharge	(Qbf) is determined. Then RT 
is determined by Qbf and the curve of rainfall and 
flood	peak	(Pf	-	Qf). And the Pf	-	Qf curve is consis-
tent	with	the	rainfall-frequency	curve	(P	-	f) and the 
curve	of	flood	peak	and	frequency	(Q -	f).	The	flow	
chart	of	WL-DIM	is	shown	in	Fig.1.

The calculation methods of design rainfall and 
design flood in small basins are usually chosen 
according to the local hydrological manual. The 
water	level-discharge	curve	is	often	determined	by	
Manning	formula	(Venutelli	2005).	The	formula	is	
as follows:

JRA
n

1
Q 2

1
3
2

⋅⋅⋅=  (1)

Where Q represents the discharge, A is the area 
of the control section, R is the hydraulic radius, n 
is	the	roughness	coefficient,	which	can	be	assumed	
based on characteristics of river bank (land use) and 
river bed (soil), and J	is	the	surface	slope	of	flood,	
which is usually replaced by the slope of river bed 
in theoretical calculation.

Fig. 1. Flow	chart	of	the	Water	Level-Discharge	Inversion	Method	(WL-DIM)
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MORRIS-SOBOL TWO-LAYER 
PROGRESSIVE MODEL (M-STPM)

The RT calculation consists of three parts: design 
rainfall	 calculation,	 design	 flood	 calculation	 and	
water	 level-discharge	 relation	 calculation,	which	
involve many parameters. The sensitivity analysis of 
RT	calculation	parameters	based	on	M-STPM	is	pro-
posed,	in	order	to	improve	computational	efficiency	
in the sensitivity analysis of parameters. The basic 
principle is shown in Fig. 2.

Qualitative analysis
The	Modified	Morris	Screening	method	serves	to	

analyze qualitative sensitivity of parameters in RT 
calculation. As to changing the value of parameter xi, 

the algorithm calculates the sensitivity discriminant 
factor S.	The	perturbation	is	determined	by	the	fixed	
step length C and the maximum amplitude M. The 
formula goes as follows:

1/
1-Z

0i 1

0

1
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−

−

=∑
= +

+
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ii

ii
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Where S represents the sensitivity discriminant 
factor, Y0 is the RT value for the parameter initial 
value xi, Yi is the RT value for the parameter value 
xi that corresponds to the change of the ith perturba-
tion, Pi is the percentage change of the RT value for 
the parameter value xi, which goes between its initial 
value and the value that corresponds to the change 

Fig. 2. The	two-layer	algorithm	used	in	this	study
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of the ith perturbation, and Z is the total number of 
disturbances, ie, experiment times, which is deter-
mined	by	the	fixed	step	length	C and the maximum 
amplitude M.

Lenhart determined that if the response of target 
function to perturbation of a parameter is nonlinear, 
when the parameter sensitivity is calculated by a 
fixed	percentage	change,	the	result	will	depend	on	the	
choice of parameter initial value. That is to say, small 
initial values will result in small parameter sensitivity 
figures,	and	the	reverse	is	also	the	case	(Lenhart	et	
al. 2002). Hence, linear correlation should be veri-
fied	first	when	modified	Morris	screening	method	is	
used, that is, to analyze the linear correlation between 
parameters and the response of target function to per-
turbation of parameters. If the response is nonlinear, 
the corresponding parameter initial value should be 
preliminarily	 determined	 to	mitigate	 the	 influence	
on analysis results.

Francos studied that Z	of	Morris	screening	method	
can affect the sensitivity index. The results showed 
that when Z are about 10 times, the stability of S is 
better. Hence, scholars in many areas used the modi-
fied	Morris	screening	method	with	a	fixed	step	length	
of 5% and a maximum variation of 20% for sensitiv-
ity analysis (Francos et al. 2003, Song et al. 2014, Tan 
et al. 2015). However, Z	may	depend	on	the	specific	
case, either the model used or the investigated site 
or case, and several experiments might be necessary 
to achieve a favorable convergence of the ranking 
produced	by	the	Morris	method.	Consequently,	the	
stability of S	was	studied,	namely	 rating	 the	fixed	
step length C and the maximum amplitude M, by 
means of different experimental designs. Finally, the 
sensitivity	classification	is	carried	out	until	achieving	
the stability of S.

The	parameter	 sensitivity	 classification	 is	 con-
ducted, according to S of each parameter. The sensi-
tivity grade is shown in Table I.

The insensitive parameters are screened out, ac-
cording to the qualitative analysis results of each 
parameter, namely, the sensitivity classification. 
To make further progress, quantitative analysis for 
residual parameters will be carried out in this model.

Quantitative analysis
The	variance-based	Sobol	method	is	used	to	quan-

titatively analyze the parameter sensitivity in the RT 
calculation	(Sobol	1993).	This	method	decomposes	
the output variance into contribution from individual 
parameters and their interactions.

Assuming that Y = f(x) = f(x1,x2,...xn), Y is the RT, xi 
is the ith parameter, according to variance decompo-
sition theory. The equation has the following form:

)|((|(()( xYVExYEVYV ii +=  (3)

Where V(Y) represents the total variance of RT,  
V(E(Y|xi) is the variance of conditional expectation 
of RT, and E(V(Y|xi) is error term or residual term.

Calculation	formulas	of	first-order	sensitivity	in-
dex and total sensitivity index can be obtained from 
Eq. (3) (Saltelli and Annoni 2010):
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x
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Where Sxi	 represents	 the	 first-order	 sensitivity	
index, and ST

xi is the total sensitivity index.
Sxi is the main effect of individual parameter on 

RT.	The	greater	the	first-order	sensitivity	index	is,	the	
greater the effect of the parameter has on RT will be. 
ST

xi yields a parameter’s total effect, which include 
all its interactions with other parameters. Under the 
condition where the total effect of the parameter is 
large, not only the individual parameter but its inter-
actions with other parameters will have a powerful 
influence	on	the	RT.	

Sobol	offered	a	Monte	Carlo	strategy	to	compute	
indices	of	any	order,	which	is	based	on	a	Monte	Carlo	
exploration of input space (Saltelli et al. 2005, Zhang 
2014). From the range of k parameters by Latin hy-
percube sampling t, we extract the following A and 
B two input matrixes:
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TABLE I. SENSITIVITY CLASSIFICATION

Absolute value of s Sensitivity	classification

0.00	≤	|s| < 0.05 Insensitive parameter
0.05	≤	|s| < 0.2 Moderately	sensitive	parameter
0.2	≤	|s| < 1 Sensitive parameter
|s|	≥	1 Highly sensitive parameter
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where each row of the matrix represents a combina-
tion of k parameters, and each column represents 
the values of the randomly extracted parameters xi. 
We obtain matrix Ci	by	replacing	the	first	column	of 
the matrix A	in	the	Eq.	(6)	with	the	first	column	of	the	
matrix B, keeping the remaining columns unchanged. 
We obtain matrix C–i	by	merely	replacing	the	first	
column of the matrix B	in	the	Eq.	(6)	with	the	first	
column of the matrix A, as follows:
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The RT is calculated with the parameters in 
matrix A, B, Ci, and C–i.The corresponding variance 
and parameter sensitivity indexes are respectively 
calculated according to Eq. (8) to Eq. (13) as fol-
lows:
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f ̂20 is the mean of matrix A and B; V̂(y) the approxi-
mate number of RT; Ûi the mean of matrix A and Ci; 
Û–i the mean of matrix A and Ci; Sxi	the	first-order	
sensitivity index; ST

xi the aggregate sensitivity index.

DATA AND MATERIALS

The case study is conducted upon Duli village. 
Duli village of Anyang county, covering an area of 
69.11	km2, is located in north of Henan province 
(latitude	 between	 35º35′	 and	 36º21′N,	 longitude	
between	113º35′	and	114º45′E),	as	shown	in	Fig. 2. 
The landscape of the village is high in the west and 
low in the east, featured by hills, mounds, plains, 
and depression. The small basin enjoys a typical 
temperate monsoon climate, featured by uneven 
rainfall in both temporal and spatial terms. The 
average	annual	rainfall	is	about	510	mm.	The	flood	
level of control section in this small basin is 220.15 
m.	This	paper	takes	1-h	RT	calculation	process	as	
an example.

Parameter determination
The	WL-DIM	is	used	to	calculate	RT.	According	

to Fig.1,	WL-DLM	includes	design	rainfall	calcula-
tion,	design	flood	and	the	water	level-discharge	curve	
determination. Design rainfall calculation is based 
on the hydrological manual of Henan, calculated as 
follows:

)]Φ(1[ Cf,CHH svft, +⋅=  (14)

Where	H	 is	 t-h	design	rainfall	with	design	fre-
quency	f,	H	the	mean	of	t-h	annual	maximum	rainfall,	
Cv	the	coefficient	of	variation,	Φ	a	frequency	factor,	f	
the frequency, and Cs	coefficient	of	skewness.	H	and	
Cv are determined based on the geographical location, 
hydrological division of village and contour map in 
the hydrological manual of Henan. For the f and Cs, 
Φ	can	be	obtained	from	the	table	of	Φ.	In	this	paper,	
Cs/Cv = 3.5.

Taking	 1-h	RT	 calculation	 as	 an	 example,	 the	
design	rainfall	parameters	include	the	mean	of	1-h	
annual maximum rainfall H̅1	and	coefficient	of	varia-
tion Cv.

As the surface area of the small basin is less than 
200 km2; the rational formula is commonly applicable 
to	flood	in	the	basin.	According	to	the	hydrological	
manual of Henan, the rational formula is as follows:

F
τ

0.278ψQ
n
p

m
s

=  (15)
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Where Qm	 is	 the	design	peak	flow	with	design	
frequency f, ψ	the	runoff	coefficient,	Sp the design 
rainfall depth in one hour, τ the time of concentration, 
and ni (i=1,2,3)	a	coefficient	called	storm	index.	F is 
the	basin	area,	and	0.278	a	coefficient	for	transferring	
the dimension. 

Sp is calculated by 

1)(n224HS f24,p −⋅= ∧  (16)

τ is calculated by

0.278
QmJ
L

=τ 	 (17)

Where L is the basin length, m	a	coefficient	of	
routing, related to the hydraulic properties of the 
flow	and	basin’s	physical	characteristics,	and	J the 
river average slope.

When	 the	 rainfall-runoff	 duration	 tc is greater 
than τ, ψ is calculated by equation ; when the tc is 
less than τ, ψ is calculated by equation 

n

S
τ

μ
ψ −=1  (18)

Where µ	is	the	infiltration	loss	coefficient.

)1()/( ici ntn −⋅= ∧τψ 	 (19)

Taking the rational formula as an example, the 
design flood parameters include infiltration loss 
coefficient	µ, basin area A, basin length L, the river 
average slope J,	mean	of	24-h	annual	maximum	point	
rainfall H̅24 and storm index ni.

Manning	 formula	was	used	 to	determine	water	
level-discharge	relation,	which	include	roughness	n 
and water surface slope i. 

For a given small basin, its geometric characteris-
tic parameters, including basin area A, basin length L 
and river average slope J, are unchanged in the short 
term. Thus they were not selected as parameters in 
sensitivity analysis.

Following the hydrological manual of Henan, we 
consider the natural geography, topography, hydrol-
ogy, meteorology and hydrological regionalization 
of Duli. We calculate the range of parameters and 
initial values, as presented in Table II.

Linear and stability analysis of parameters for 
RT response

In	 the	established	model,	 the	modified	Morris	
screening method is applied to analyze the sensitiv-
ity of each parameter in Table II	in	the	first	layer.	
It was stated previously that the linear correlations 

between parameters and the response of the RT to 
changes of parameters need to be analyzed, and 
multiple experiments might be needed to achieve 
the convergence of the ranking produced by the 
modified	Morris	screening	method.	Therefore,	each	
parameter changes according to a scheme with 5% 
for	the	fixed	step	size	C and 20% for the maximum 
amplitude M. We then calculate the values of cor-
responding RT and analyze the linear correlations 
between parameters and the response of RT to 
changes of parameters. Experimental schemes 
shown in Table III, were designed to study the 
stability of the sensitivity discrimination factor S of 
each	parameter.	In	other	words,	first	rate	C and M, 
then determine the total number of disturbances Z 
corresponding to S in steady state. The sensitivity 
of	the	parameters	is	classified	by	a	stable	S and the 
parameters above moderately sensitive parameter 
are	filtrated.	The	Sobol	method	is	used	to	conduct	
quantitative analysis of the selected parameters, 
and	finally	calculating	the	sensitivity	of	parameters	
in RT.

TABLE III. MODIFIED	MORRIS	SCREENING	METHOD	
EXPERIMENTAL	DESIGN

The	first	group:	fix	step	size	C (5%)

Item 1 2 3 4 5

The maximum amplitude M 10% 15% 20% 25% 30%

The	second	group:	fix	the	maximum	amplitude	M (20%)

Item 1 2 3 4 5
Step size C 0.5% 1% 2% 4% 5%
Experiment times Z (times) 81 41 21 11 9

TABLE II. PARAMETERS	RANGES	AND	VALUES

Parameters Range Initial
value

Mean	of	24-h	annual	maximum	point	
rainfall H̅ 24 100~110 101
Mean	of	1-h	annual	maximum	point	
rainfall H̅ 1 40~45 43
Variation	coefficient	Cv 0.6~0.7 0.6
Storm index n1 0.55~0.6 0.55
Storm index n2 0.7~0.75 0.7
Storm index n3 0.75~0.8 0.75
Infiltration	loss	coefficient	µ 5~8 6.5
Roughness n 0.025~0.06 0.038
Water surface slope i 0.005~0.009 0.005
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RESULTS AND DISCUSSION

Qualitative analysis results
Analyzing the linear correlation between param-

eters and the response of RT to changes of parameters, 
we gain results as shown in Fig. 4-12.

The response of RT to the parameters, includ-
ing	the	mean	of	1-h	annual	maximum	point	rainfall	
H̅1, storm index n2,	 infiltration	 loss	 coefficient	µ 
and water surface slope i, is linearly positive to the 
corresponding	parameters,	while	the	mean	of	24-h	
annual maximum point rainfall H̅24 and roughness n 
are negative to the corresponding parameters. And 
there is no change in the response of RT to the param-
eters which include storm index n1 and n3. The RT 

Fig. 3. The location of Duli basin

Fig. 4. Response of RT to H̅24

Fig. 5. Response of RT to H̅1

Fig. 6. Response of RT to Cv
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Fig. 8. Response of RT to n2

Fig. 9. Response of RT to n3

Fig. 10. Response of RT to µ

Fig. 11. Response of RT to n

Fig. 12. Response of RT to i

Fig. 7. Response of RT to n1
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is	nonlinear	for	the	variation	of	variation	coefficient	
Cv.	Therefore,	referring	to	the	“variation	coefficient	
contour map” and the position of the village in the 
map sets of design rainstorm, the initial value of Cv 
is 0.62 based on the proportion linear difference.

According to the experimental designs listed in 
Table III,	results	of	the	first	group	stay	unchanged:	
parameters	 change	 in	 fixed	 step	C (5%), and the 
varied maximum amplitude M	still	reflects	the	sen-
sitivity discriminant factor S. M	 is	 fixed	 but	C is 
changed in the second group. Fig. 13 to 21 show how 
S of each parameter vary as the times of experiments 
performed (Z) increases.

The S of H̅1, Cv, n1 and n3 are basically unchanged 
as Z increases. Step size C and maximum amplitude 
M can be 5% and 20% respectively. The S of the other 
5 parameters when Z increases, gradually reaching 

Fig. 13. Changes of S for H̅24 as experiments increase

Fig. 14. Changes of S for H̅1 as experiments increase

Fig. 15. Changes of S for Cv as experiments increase

Fig. 16. Changes of S for n1 as experiments increase

Fig. 17. Changes of S for n2 as experiments increase



A M-STPM FOR SENSITIVITY ANALYSIS OF PARAMETERS IN RT CALCULATION 143

stability when Z	is	greater	than	10.	Hence	for	the	five	
parameters, unreliable are the results of experiments 
with C	fixed	to	5%	and	M to 20%. Z required for the 
sensitivity discriminant factor S to achieve stability 
is shown in Table IV.

Table IV shows that also unreliable is the S of 5 
parameters	among	9	qualitative	analysis	parameters,	
which are calculated by setting Z at 10. In other 
words, Z of S can only reach stability when more than 
half of the parameters in RT calculation are greater 
than 10 times.

Not only in the sensitivity analysis of parameters 
in	RT	calculation,	but	also	in	other	research	fields,	
the stability analysis of the sensitivity discriminant 
factor S	should	also	be	carried	out	when	the	modified	
Morris	screening	method	is	applied,	rating	the	step	
size C and the maximum amplitude M to obtain more 
accurate	parameter	sensitivity	classification.

According to Fig 12 to 20, the sensitivity deter-
mination factors S for each parameter are listed in 
Table V.

It can be seen that there are 3 insensitive param-
eters	 in	RT	calculation	of	flash	flood,	 namely,	 the	
variation	 coefficient	Cv, storm index n1 and n3; 1 
moderately	sensitive	parameter,	namely,	infiltration	
loss	 coefficient	µ; 4 sensitive parameters, namely, 

Fig. 18. Changes of S for n3 as experiments increase

Fig. 19. Changes of S for µ as experiments increase

Fig. 20. Changes of S for n as experiments increase

Fig. 21. Changes of S for i as experiments increase

TABLE IV. EXPERIMENT	TIMES	Z	OF	EACH	PARAM-
ETER THAT S REQUIRES REACHING STABIL-
ITY

Parameters H̅ 24 n2 µ n n

The experiment times Z (times) 80 40 80 40 80
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the	mean	of	1-h	annual	maximum	point	rainfall	H̅1, 
storm index n2, roughness n and water surface slope 
i.; 1 highly sensitive parameter, namely, the mean of 
24-h	annual	maximum	point	rainfall	H̅24.

Based	on	the	qualitative	analysis	of	the	first	layer	
of the model, we select 6 parameters above moderate 
sensitivity as the parameters of quantitative analysis, 
namely, µ, H̅1, n2, n, i and H̅24. The aim is to screen 
out insensitive parameters, reduce the input param-
eter	of	quantitative	analysis,	improve	efficiency	of	
analysis and ensure that the parameters in the research 
system are fully analyzed and calculated.

Quantitative analysis results
The second layer of sensitivity analysis is carried 

out based on the selected 6 sensitive quantitative 
analysis parameters and their range. Latin hypercube 
sampling is conducted, obtaining 2000 samples. The 
first-order	sensitivity	indexes	and	the	total	sensitiv-
ity indexes of 6 parameters are calculated according 
to the Sobol method, as listed in Table 6. Column 2 
shows	the	results	of	the	first-order	sensitivity	index 
ST

xi, column 3 the results of the total sensitivity index ST
xi 

and corresponding ranks are shown in column 4.
Column 2 of Table VI shows that H̅1 is the most 

influential	single	parameter	to	RT,	followed	by	n, i, 
n2, µ and H̅24. Parameter H̅1 has nearly 2 times more 
impact on RT than n (rank 2) and 12 times than i. H̅1 
is the critical parameter in design storm calculation, 
which	has	a	direct	influence	on	the	value	of	RT.	The	
value of Sxi for n2 and µ	are	only	–0.0038	and	–0.0087	
respectively. Because of their small Sxi values, we 
think that they have less effect upon RT.

Column 3 shows that H̅1 is the most important 
parameter for the total effect, followed by n, i, n2, µ 
and H̅24.	The	ranks	of	each	parameter	for	the	first-
order sensitivity index Sxi and the total sensitivity 
index ST

xi are the same. 

Theoretically the value of total sensitivity index 
ST

xi	 is	equal	to	or	greater	than	the	first-order	sensi-
tivity index Sxi. Yet for some parameters, the result 
is reverse. Because of numerical integration, some 
values of ST

xi and Sxi may be negative (Xu et al. 2012).
The major and aggregate impact of H̅1 upon RT is 

much greater than that of the rest of the parameters. 
Therefore, when the design storm or the observed 
rainfall is applied to calculate the RT, the precision 
of	short-term	rainfall	should	be	paid	attention	to.

Roughness n	also	has	greater	influence	on	the	RT.	
However, in practical engineering, its value is usually 
determined according to river characteristics with 
reference to “the table of natural river roughness”. 
Obviously, the function of the subjective factors 
exists in the RT calculation (Kylili et al. 2018, Gao 
et	 al.	 2017,	Shen	et	 al.	 2017).	Therefore,	 in	order	
to improve the accuracy of RT, we should focus 
on the analysis of n when determining the value 
of	parameters	 in	 the	RT	calculation	of	flash	flood.	
When	the	measured	hydrological	data	is	sufficient,	
the measured hydrological data should be applied to 
calculation. When the measured hydrological data is 
lacking, an optimal value should be selected by con-
sidering the river channel characteristics, vegetation 
growth, bed roughness and other factors.

As mentioned above, the calculation of RT usu-
ally includes three parts: design rainfall calculation, 
design	flood	calculation	and	water	 level-discharge	
curve calculation. However, we discover that the 
water	level-discharge	relation	parameters	occupies	a	
dominant position. These parameters include rough-
ness n (rank 2) and water surface slope i (rank 3). 
Therefore, we should strengthen the study of water 
level-discharge	 relation	 parameters	 and	 improve	
the	quality	of	early	warning	and	forecasting	of	flash	
flood	(Rusanow	et	al.	2016,	Pina-Garcia	et	al.	2016,	
Kim et al. 2018).

When determining the valve of parameters in RT 
calculation	of	flash	flood,	we	should	strengthen	the	

TABLE V. SENSITIVITY	ANALYSIS	RESULTS	OF	MODI-
FIED	MORRIS	SCREENING	METHOD

Parameters S

Mean	of	24-h	annual	maximum	point	rainfall	H̅ 24 –1.045
Mean	of	1-h	annual	maximum	point	rainfall	H̅ 1 0.999
Variation	coefficient	Cv –0.002
Storm index n1 0
Storm index n2 0.557
Storm index n3 0
Infiltration	loss	coefficient	µ 0.125
Roughness n –0.728
Water surface slope i 0.235

TABLE VI. SENSITIVITY ANALYSIS RESULTS OF SOBOL 
METHOD

Parameters Sxi ST
xi Rank

Mean	of	24-h	annual
maximum point rainfall H̅ 24 –0.1776 –0.1985 6
Mean	of	1-h	annual
maximum point rainfall H̅ 1 0.7269 0.746 1
Storm index n2 –0.0038 –0.0047 4
Infiltration	loss	coefficient	µ –0.0087 –0.0078 5
Roughness n 0.3865 0.4135 2
Water surface slope i 0.0601 0.0705 3
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study of the larger sensitivity parameters to improve 
the	accuracy	of	RT	and	enhance	the	accuracy	of	flash	
flood	warning	(Wang	et	al.	2017)	according	to	the	
rank of sensitivity parameters.

CONCLUSIONS

In	this	paper,	we	have	established	a	Morris-Sobol	
Two-layer	Progressive	Model	(M-STPM).	The	sensi-
tivity of parameters in RT calculation is analyzed with 
this	model.	The	modified	Morris	Screening	Method	
in	the	first	layer	is	applied	to	the	qualitative	analysis	
of the parameters in the RT calculation. We also 
analyze the linear correlations between parameters 
and the response of the RT to changes of parameters 
and the times of experiments Z that the sensitivity 
discrimination factor S of each parameter requires 
to achieve stability.

The parameters screened out in this layer helps to 
improve	computational	efficiency.	The	Sobol	method	
applied to the second layer provides quantitative mea-
sures of sensitivity. The sensitive parameters need to 
be optimized while the less sensitive parameters are 
fixed	to	a	certain	value.

Some useful experimental results are obtained. 
Namely, Z of the sensitivity discriminant factors 
Sneeds to be greater than 10 for more than half of the 
parameters in RT calculation to reach stability. Thus, 
the stability analysis of the S should also be carried 
out to obtain a more accurate parameter sensitivity 
classification	when	 extended	 to	 other	 study	fields	
applying	the	modified	Morris	Screening	Method.

Besides,	the	mean	of	1-h	annual	maximum	rainfall	
H̅1	has	the	most	significant	first-order	and	total	effects	
on the RT. Therefore, we should pay attention to the 
precision	of	short-term	rainfall	when	the	design	storm	
or the observed rainfall is used to calculate the RT. The 
influence	of	the	roughness	n on the RT is also great, 
the value of which should be studied and analyzed. 
On the one hand, when the measured hydrologic data 
are available, the value of n can be calculated through 
them. On the other hand, when the measured hydro-
logic data are missing, a best value should be selected 
by considering the channel characteristics, vegetation 
growth, bed roughness among many other factors.

Another positive conclusion of this work is to 
point	 out	 that	 the	water	 level-discharge	 relation	
parameters are more important than design rainfall 
parameters	and	design	flood	parameters.	Thus,	it	is	
necessary	to	focus	on	the	study	of	water	level-dis-
charge relation parameters, improving the accuracy 
of the RT value.

The	Morris-Sobol	Two-layer	Progressive	Model	
(M-STPM)	 proposed	 in	 this	 paper	 can	 provide	 a	
reference for the parameter value of the RT calcula-
tion	of	flash	flood	and	lay	a	theoretical	foundation	
for further analysis of the RT error. In addition, the 
proposed model can be applied to other RT calcula-
tion methods.

In	 this	 study,	we	discuss	 only	 the	WL-DIM	 in	
the RT calculation. The application of the proposed 
model to different RT calculation methods or even 
other	fields	to	identify	sensitive	parameters	and	pro-
vide the reference for the parameter value is a further 
line of research.
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