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ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are of great environmental concern due to 
their widespread occurrence and persistence. Anthracene and phenanthrene (C14H10) 
are two priority pollutants that are found in high concentrations in PAHs-contaminated 
surface soils. The objective of this study was to analyze the capability of endogenous 
soil microorganisms of a pristine soil of the Pampas region, Argentina, to dissipate two 
isomers: anthracene and phenanthrene. Nutrient availability and the effects of ryegrass 
(Lolium perenne L.) on these PAHs´ dissipation were also evaluated. After 100 days, 
both contaminants were significantly degraded in root-free soils by autochthonous 
microorganisms. L. perenne significantly enhanced microbial degradation. The dis-
sipation of both pollutants in the rhizosphere was accompanied by higher values of 
total bacteria counts at the end of the experimental period. No biostimulation effect 
was observed. In all cases, the dissipation of phenanthrene was significantly higher 
than anthracene. These results point to the important role of indigenous PAH degrading 
microorganisms, even present in a non-polluted soil. 
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RESUMEN 

Los hidrocarburos aromáticos policíclicos (HAP) constituyen una preocupación ambiental 
debido a su persistencia en el ambiente. El antraceno y el fenantreno (C14H10) son dos 
contaminantes prioritarios que se encuentran en altas concentraciones en la superficie de 
suelos contaminados con HAP. El objetivo de este estudio fue analizar la capacidad de 
los microorganismos endógenos presentes en un suelo prístino de la región pampeana, 
Argentina, para disipar dos isómeros: antraceno y fenantreno. También se evaluó el efecto 
de la disponibilidad de nutrientes y la presencia de pasto inglés (Lolium perenne L.) so-
bre dicha disipación. Después de 100 días, los microorganismos autóctonos degradaron 
significativamente ambos contaminantes en los suelos sin plantas. La presencia de L. 
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perenne incrementó significativamente la degradación microbiana. La disipación de ambos 
contaminantes en la rizósfera estuvo acompañada por valores más altos de recuentos de 
bacterias totales al final del ensayo. No se observó efecto de bioestimulación. En todos 
los casos, la disipación del fenantreno fue significativamente mayor que la del antraceno. 
Estos resultados indican el importante papel de los microorganismos autóctonos presentes 
en suelos no contaminados en la degradación de HAP.

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are 
emitted into the environment by natural processes 
or by anthropogenic emissions (Li et al. 2014, Duan 
et al. 2015). Once in the air, PAHs can attach to 
atmospheric particulate matter to be transported 
over long distances. Due to their acute toxicity and 
potential mutagenic, teratogenicity and carcinogenic 
effects on human health, sixteen PAHs have been 
considered as priority pollutants by both the United 
States Environmental Protection Agency (USEPA 
1977) and the European Environmental Agency (EC 
2001, Keith 2014). Over 90 % of total PAHs released 
to the environment accumulate in soils, which acts 
as a sink for these compounds (Eom et al. 2007). In 
Argentina, soil PAH contamination is mainly related 
to spills of petroleum products. 

The Pampas Region is one of the largest temper-
ate prairies of the world. It is located in the Southern 
Hemisphere, between 32º to 39ºS and 56 to 67ºW. 
This zone covers more than 52 Mha of agricultur-
ally prime quality land, the remaining being either 
marginally suitable or unsuitable for cropping due to 
rainfall and slight differences in relief. Crude oil ex-
traction began in the southwest of the Pampas region, 
Argentina, in 1969. The predominant soils nearby the 
petroleum extraction region are Entic Haplustolls 
and deep, coarse textured typic Hapludolls (Torri et 
al. 2011), with low nitrogen and phosphorus avail-
ability for plant growth (Díaz-Zorita and Buschiazzo 
2006). The productivity of the zone is first related to 
soil water content, and then to nutrient availability 
(Díaz-Zorita et al. 1999). These agroecosystems are 
known to be more fragile, with longer time needed 
to recover from disturbances compared with other 
environments (Noy-Meir 1973, PROSAP/EPSA 
2010). Until now, only one accident was officially 
informed in the southwest Pampas in 2015, due to 
the spill of 80 m3 of crude oil with a total affected 
area of 500 m2.

Anthracene and phenanthrene are usually found 
in high concentrations in PAHs-contaminated soils 
(Chirakkara and Reddy 2015, Dubrovskaya et al. 

2016). Unlike other high-molecular-weight PAHs, 
these isomers do not pose a risk to human health. 
However, phenanthrene is mutagenic in bacterial and 
animal cells, and carcinogenic in rodents (Wilson and 
Jones 1993), whereas anthracene is highly toxic to 
wildlife (Cheung et al. 2008). Owing to their chemi-
cal structure that resembles certain carcinogenic 
PAHs, both compounds have been used as models 
for different environmental studies (Bouchez et al. 
1995, Kanaly and Harayama 2000). 

Indigenous soil microbial communities may have 
an adaptive response to the presence of PAHs (Mar-
gesin and Schinner 2001, Delille et al. 2004) if they 
are not limited by environmental conditions or low 
nutrient availability (Gavrilescu 2005, Nikolopoulou 
et al. 2013). In recent decades, different plant species 
began to be used in remediation technologies, mainly 
because PAHs dissipation in the rhizosphere may be 
significantly improved in comparison to the bulk soil 
(Bourceret et al. 2015). The release of root exudates 
enhances microbial biomass, activity and diversity 
(Vácha et al. 2010, Martin et al. 2014, Torri et al. 
2014). But plant species differ in their root character-
istics and exudates. For instance, grass species have 
a high root surface area compared to dicotyledonous 
plants, and possess an extensively branched, fibrous 
root system (Soleimani et al. 2010), which can inter-
act with soil microorganisms (Dzantor et al. 2000). 
Besides, fine root death provides readily available 
nutrients, which may also increase the microbial 
degradation of PAHs (Olson et al. 2003). In the last 
years, much of the research on PAHs´ dissipation in 
contaminated soils has focused on using organic or 
inorganic amendments to immobilize pollutants or to 
increase their water solubility (Fernández-Luqueño 
et al. 2017, Han et al. 2017, Kong et al. 2018, among 
others). However, there is not available information 
concerning the long-term influence of these sub-
stances on the ecosystems (Fernández-Luqueño et al. 
2017). Autochthonous adapted microorganisms have 
the advantage of being safe, eco-friendly and eco-
nomical, apart from preserving soil natural structure 
and texture (Huang et al. 2004). Besides, they may 
be more adapted to the particular soil environment 
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than non-indigenous commercial microbial inocula 
(Silva et al. 2009). However, there is a certain con-
troversy about the capacity of indigenous microbial 
communities to degrade PAHs in contaminated soils. 
Some researchers indicated that competent degraders 
may be absent or present at too low abundances to 
perform remediation, especially if the site was not 
previously exposed to the contaminant (Sabaté et al. 
2004, Couto 2010), while others reported that native 
hydrocarbon-utilizing microorganisms are present in 
most natural environments, but selectively enrich in 
contaminated soil (MacNaughton et al. 1999, Nandal 
et al. 2015, Baruah et al. 2017). 

The objective of this study was to analyze the 
capability of endogenous soil microorganisms of a 
pristine sandy soil of the Pampas region, Argentina, 
not previously exposed to any kind of contaminants, 
to dissipate two isomers (anthracene or phenanthrene) 
in optimal temperature and water availability condi-
tions, with or without plant (Lolium perenne L.). The 
influence of nutrient availability was also evaluated. 

We hypothesized that the native soil microbial 
biomass of this pristine soil, not previously exposed 
to contaminants, was potentially capable of degrading 
anthracene or phenanthrene in optimal temperature 
and water conditions. PAHs removal would increase 
in the presence of L. perenne and adequate nutrient 
availability. 

MATERIALS AND METHODS 

Chemicals
Analytical anthracene (~ 95 %) and phenanthrene 

(≥ 97 %) were purchased from Sigma Aldrich Co., 
Ltd, UK. All the other chemicals used in the study 
were of analytical purity.

Soil
The pristine soil selected was a typic Hapludoll 

(U.S. Soil Taxonomy) of the Pampas Region, Argen-
tina. Sampling was performed near Carlos Casares 
Town (35º 37’ S - 61º 22’ W). Composite soil samples 
(10 sub samples, 0 - 15 cm depth) were collected from 
fields with no previous history of contamination, far 
from roads or urban areas in order to assure minimum 
concentrations of PAHs. Water holding capacity was 
determined according to the method proposed by 
Mizuno et al. (1978). Soil samples (10 sub samples) 
were thoroughly homogenized, air dried and passed 
through a stainless-steel sieve with 2-mm openings 
to remove stones and roots. Relevant soil properties 
are presented in table I. 

Soil spiking procedure 
Soil was spiked with anthracene or phenanthrene. 

To maintain indigenous microbiota, the soil was 
not sterilized. Although PAHs are usually added to 
soils solubilized in different organic solvents (ac-
etone, dichloromethane, hexane), in this work the 
compounds were added as a fine solid powder. This 
way was chosen in order to avoid any damage to the 
natural microflora by the organic solvent (Ruberto et 
al. 2006). The spiking technique used was stainless-
steel spoon (Doick et al. 2003): 1 g of anthracene or 
phenanthrene crystals were finely ground in an ag-
ate mortar and added to a mixing vessel containing 
200 g of dry soil, and gentle mixed using a sterile 
spatula for 5 min. The remainder 800 g soil was 
added in 200 g aliquots; blending was performed 
for 25 minutes. To ensure a uniform distribution of 
anthracene or phenanthrene, both spiked soils were 
each extended in a plastic tray, and replicated soil 
samples for analysis were taken from different parts 
of the bulk spiked soil.

Greenhouse experiment
A pot experiment was conducted in a greenhouse 

(23 ± 1 oC) sheltered from rain or direct sunlight. A 
disc of filter paper was placed in the bottom of each 
plastic pot (10 cm depth x 6 cm diameter) to avoid 
soil loss. The pots were filled with 250 g dry weight 
spiked or unspiked soils, and were afterwards covered 
with a layer of 5 mm of coarse sand to minimize 
PAHs volatilization (Zhou et al. 2013). Pots were 
left undisturbed and allowed to settle down over 
10 days. During this period, and throughout all the 

TABLE I. SOIL CHARACTERISTICS OF THE TYPIC HAP-
LUDOLL (A HORIZON, 0-15 CM) USED FOR 
THE POT EXPERIMENT

Typic Hapludoll 

Clay (%) 19.2
Silt (%) 23.2
Sand (%) 57.6
pH 5.12
Organic carbon (g/kg) 28.6
Water holding capacity (%) 19.3
Total N (mg/g) 2.62
Electrical conductivity (dS/m) 0.61
Cation exchange capacity (cmol(c)/kg) 22.3
Exchangeable cations
Ca2+  (cmolc/kg) 10.2
Mg2+ (cmolc/kg) 2
Na+   (cmolc/kg) 0.3
K+     (cmolc/kg) 2.8
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experiment, soils were maintained at 80 % WHC us-
ing distilled water, preventing possible loss of PAHs 
due to leaching. 

Ryegrass (Lolium perenne L.) seeds were surface 
sterilized by soaking in 30 % (v/v) H2O2 for 20 min 
and washed several times with distilled water. At 
day 10, twenty seeds were surface-sown in each pot 
according to the treatments detailed in table II. In 
all, 12 treatments [1 soil material x 3 (no pollutant, 
anthracene, phenanthrene) x 2 (plant, no plant) x 
2 (non-fertilized, fertilized)] were each replicated 
four times. The pots were moved around at regular 
intervals to compensate for light differences. 

Germination was monitored closely between days 
10-25. The number of germinated seeds in each pot 
was recorded and expressed as a percentage of the 
number of seeds added. Seedlings were thinned to 
ten at day 25. 

At day 25, 3 mL of an aqueous solution made up 
of 1 g/L containing N:P2O5:K2O 15:15:15 ratio (Xu et 
al. 2006) were added twice a week to each pot of the 
fertilized treatment. To ensure nutrient homogeneous 
distribution, nutrient solution was uniformly hand 
applied by drops on soil surface prior to watering. If 
weeds germinated, they were removed periodically 
by hand before they reached 0.5 cm in size. At day 
90, the aerial parts of the plants were harvested. 
Aerial biomass was dried at 60 oC for 48 h, and then 
weighed (DW). The soil from each pot was collected 
and homogenized. Soil samples were stored at 4 oC 
before analysis. Since L. perenne´s roots explored all 
the pot´s volume, the recovered soils from planted 

pots were considered as rhizospheric soil, and the 
others as root-free soil (Chiapusio et al. 2007, Liu 
et al. 2013).

Anthracene or phenanthrene extraction and 
quantification

The procedure described by Torri and Alberti 
(2012) was used to determine anthracene and phen-
anthrene concentrations in soil samples. Briefly, 10 g 
of soil sample were sonicated 20 min with 20 mL 
of hexane:acetone (3:2, v/v) in an ultrasonic bath 
(frequency 35 kHz, Neytech 28H, USA), followed 
by centrifugation at 3000 rpm, reduced to 1 mL with 
rotary evaporator at 30 ºC and injected into the gas 
chromatography-mass spectrometry (GC/MS) system. 
The analysis was carried out with a GCMS-QP2010 
equipment from Shimadzu (Shimadzu Corporation, 
Japan) equipped with a DB-1 fused silica capillary col-
umn (polydimethylsiloxane, 30 m long x 0.25 mm i.d. 
0.25 μm film thickness, J&W Scientific, Folson, CA). 
The GC system was operated in splitless mode and 1 
μL portions of the extracts were injected by using an 
autosampler. Both the injection liner, which contained 
deactivated glasswool for splitless injection (Agilent 
Technologies), and the transfer line were maintained 
at 280 oC. The oven temperature was programmed 
to rise from 70 oC (1 min hold) to 290 oC at a rate of 
30 oC/min (22 min hold). Helium was used as the car-
rier gas at linear velocity 40 cm/s. The electron-impact 
(EI) ionization energy was 70 eV. The presence of 
the compounds was confirmed by means of the mass 
spectra obtained in full scan acquisition mode in the 
m/z range from 20 to 500. High purity analytical stan-
dards (> 98.5 %) of anthracene or phenanthrene were 
injected in triplicate to identify the retention time and 
mass spectra of each compound. Standard calibration 
curves were established by plotting peak areas (Fig. 1) 
against different concentrations of anthracene (range: 
3.000-820.000 µg/mL) or phenanthrene (range: 
0.441-66.216 µg/mL). Regressive equations for 
anthracene and phenanthrene were y = 54070x – 
263065, R2 = 0.9962 and y = 140532x – 102291, 
R2 = 0.9986 respectively.

The system was controlled by an interface module 
and a computer. Mass spectra was compared with 
reference compounds. The peaks of the total com-
ponents were integrated to obtain the total area. The 
area of each compound was divided by the total area 
and expressed as percentage. The concentration of 
those that produced a signal-to-noise of 3:1 in blank 
sample was defined as detection limit (DL). The DL 
for anthracene and phenanthrene were 2.0 ng/g (DW) 
and 2.3 ng/g (DW) respectively.

TABLE II. TREATMENTS 

Abbreviation Description 

C non-spiked soil 
CF non-spiked soil with fertigation
CR non-spiked soil with ryegrass  
CRF non-spiked soil with ryegrass and fertigation
A anthracene spiked soil 
AF anthracene spiked soil with fertigation
AR anthracene spiked soil with ryegrass  
ARF anthracene spiked soil with ryegrass and 

fertigation
P phenanthrene spiked soil 
PF phenanthrene spiked soil with fertigation
PR phenanthrene spiked soil with ryegrass  
PRF phenanthrene spiked soil with ryegrass and 

fertigation
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Counting of the total bacterial community
Ten grams soil samples were added to 100 mL 

sterile 0.85 % NaCl (w/v) solution, sonicated for 1 
min and allowed to stand for 2 min. Ten-fold serial 
dilutions in the ranges 10-1 to 10-9 were prepared 
(Fawole and Oso 2007). Aliquots (0.01 mL) of 
these dilutions were seeded on sterile Petri dishes 
on tryptone soya agar medium in triplicate and incu-
bated in the dark at 30 oC for 7 days. Uninoculated 
controls were included. Total heterotrophic bacterial 
count was determined by pour plate technique, and 
expressed as colony forming units per gram of dry 
soil (CFU/g).

Statistical analysis
The statistical analysis was performed with Statis-

tix 7.0 (Analytical Software 2000), processing the 
data for analysis of variance (ANOVA) to test main 
and interactive effects. Normality assumption was 

tested by the Shapiro-Wilks test, and homogeneity of 
variance was tested using the Bartlett’s test. Signifi-
cant effects and interactions between contaminant, 
plant and fertilizer were evaluated. Where significant 
F values were obtained, differences between indi-
vidual means were tested using Tukey’s test. Statisti-
cal significance was defined as p < 0.05. All results 
reported are the mean of four replicates. The results 
were expressed as mean ± standard deviation.

RESULTS

Soils
Non-spiked soils had undetectable anthracene 

and phenanthrene concentrations. In the spiked soils, 
the initial levels of anthracene and phenanthrene 
(1000 ± 21 mg/kg and 1000 ± 29 mg/kg respec-
tively) met the required coefficient of variance for 
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Fig. 1. Quantification of peak areas. A) anthracene; B) phenanthrene
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spike-homogeneity for the mixing to be considered 
valid and statistically sound (Hakanson 1984). 
Therefore, mean anthracene and phenanthrene con-
centration measured in the subsamples was assumed 
to be representative of all the spiked soil (Northcott 
and Jones 2000). These initial levels (1000 ± 21 mg 
anthracene/kg and 1000 ± 29 mg phenanthrene/kg) 
represent the mean concentration of both PAHs at 
day 0 in the greenhouse trial, and may well be its 
soil concentration after an accidental discharge into 
the environment (Alvaro et al. 2017).

Effect of PAHs treatments on L. perenne growth
Percentage seed emergence of L. perenne (93-95 %) 

did not significantly vary (p < 0.05) between spiked 
and non-spiked soils. Plants did not exhibit apparent 
signs of stress or toxicity along the growing period 
under PAHs treatment. Soil addition of anthracene 
(AR) or phenanthrene (PR) resulted in a statistically 
higher production of aerial biomass compared to the 
unfertilized control (CR; Table III) in soils (CRF), 
biomass yield significantly increased with fertigation. 
However, the aerial biomass yield of the fertilized an-
thracene spiked soil (ARF) was significantly lower (p 
<  0.05) than the unfertilized treatment (AR), whereas 
no statistical differences were observed between 
fertilized and non-fertilized phenantrene spiked soils 
(PR vs. PRF). All fertilized treatments (CRF, ARF 
and PRF) showed no statistical differences in relation 
to aerial biomass (Fig. 2).

Dissipation of anthracene and phenanthrene in soil
GC-MS chromatograms of anthracene and 

phenanthrene remaining in the soil at the end of the 

experimental period are shown in figures 3 and 4; 
their residual concentrations are shown in table III. 
After 100 days, the mean concentration of both PAHs 
was significantly reduced in all treatments. Initial 
anthracene (1000 mg/kg soil) and phenanthrene 
(1000 mg/kg soil) were significantly reduced to 331.5 mg 
anthracene/kg soil (A) and 88.4 mg phenanthrene/kg 
soil (P) in unplanted treatments (p < 0.05). This 
represents a removal efficiency of 66.9 % and 
91.2 % respectively.

In planted spiked soils, anthracene and phen-
anthrene were reduced to 167.5 and 2.74 mg/kg 
respectively (treatments AR and PR), representing 
83.25 % and 99.7 % depletion. Moreover, the compari-
son of mean values based on the AOV model statement 

TABLE III. INITIAL CONCENTRATION OF ANTHRACENE OR PHENANTHRENE 
(DAY 0), RECOVERIES AND PERCENT DISSIPATED AFTER 100 DAYS 
IN EACH TREATMENT

Treatment* mg pollutant/kg soil
day 0

mg pollutant/kg soil
day 100

% dissipated

A 1000 ± 21 331.45 ± 4.68 a 66.90
AF 1000 ± 21 348.60 ± 49.26 a 65.14  
AR 1000 ± 21 167.51 ± 33.34 b 83.25  
ARF 1000 ± 21 112.92 ± 6.74 b 88.71  
P 1000 ± 29 88.40 ± 9.96 bc 91.20 
PF 1000 ± 29 103.65 ± 9.36 b 89.60 
PR 1000 ± 29 2.74 ± 0.81 c 99.70 
PRF 1000 ± 29 0.50 ± 0.11 c 99.95 

*Treatments: A = anthracene spiked soil; AF = A with fertigation; AR = A with ryegrass; 
ARF = A with ryegrass and fertigation; P = phenanthrene spiked soil; PF = P with fertigation; 
PR = P with ryegrass; PRF = P with ryegrass and fertigation. Distinctive groups are marked 
with different letters (p < 0.05).
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Fig. 2. Aerial biomass (shoot dry weight (DW)) of ryegrass at 
the end of the experimental period (100 days). Distinctive 
groups are marked with different letters (p < 0.05)
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Fig. 3. Total ion chromatogram (TIC) from the gas chromatography-mass spectrometer analysis of 
anthracene spiked soils at the end of the experimental period. Treatments: A = anthracene spiked 
soil; AF = A with fertigation; AR = A with ryegrass; ARF = A with ryegrass and fertigation 
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indicated a significant interaction (p < 0.01) between two 
individual factors: plant and contaminant (Table IV). 
No other interactions were observed. The addition of 
nutrients had no effect on both PAHs dissipation: no 
significant differences in anthracene or phenanthrene 
soil concentration were observed between fertilized 
vs non-fertilized treatments (A and AF, AR and ARF, 
P and PF or PR and PRF).

The overall extent of PAHs dissipation was clearly 
compound-dependent: after 100 days, the concentra-
tion of anthracene was significantly higher (p < 0.05) 
compared to that of phenanthrene for the same treat-
ment in all spiked soils (Table III).

Total bacterial count
Figure 5 shows the mean total bacterial counts 

in all treatments after the 100 days pot experiment. 
In the non-spiked soil, bacterial counts significantly 
increased (Tukey, p < 0.05) with nutrient addition 
(CF) or L. perenne planting (CR) as compared to 
control (C), although no significant differences (p 
> 0.05) between CF, CR and CRF were observed. 

Soil spiking with anthracene (A) or phenanthrene 
(P) produced no significant differences (p > 0.05) with 
respect to bacterial counts relative to the unspiked con-
trol. No effect due to nutrients addition was observed 
in AF or PF compared to A or P respectively. However, 
bacterial counts in the anthracene or phenanthrene 
spiked soils were significantly higher (p < 0.05) in 
plant treatments (AR or ARF; PR or PRF) as compared 
to unplanted treatments (A, AF or P, PF respectively).

DISCUSSION

Ryegrass (Lolium perenne L.) was chosen as 
the test plant for phytoremediation to reflect typical 

species found in the Pampas region. Aerial biomass 
was measured at the end of the experimental period to 
explore the ability of L. perenne to grow in anthracene 
or phenanthrene spiked soils. 

Toxic effects of both PAHs on the growth of this 
species have been previously described (Günther et 
al. 1996, Cheema et al. 2010, Acosta-Santoyo et al. 
2017). These authors found that root and shoot yields 
of L. perenne were significantly reduced in PAHs-
polluted soils compared to control soils. Low-mo-
lecular-weight volatile hydrocarbons are soluble in 
hydrophobic plant materials, and can penetrate root´s 
cell membranes (Salanitro et al. 1997). Phytotoxicity 
may be exerted in part by PAHs ability to damage 
cell membranes, reducing nutrient or metabolite 
transport (Chouychai et al. 2007) or water utilization 
efficiency (Ma et al. 2010, Nakata et al. 2011). Pho-
tosynthetic activity and electron transport may also 
be inhibited (Mallakin et al. 2002, Torri et al. 2009). 
These effects are nonspecific, and depend on PAHs 
water solubility. Reilley et al. (1996) suggested that 
PAHs might reduce the ability of contaminated soil 
to provide water and nutrients to plants, leading to a 
decline in biomass production. PAHs may also induce 
retard growth, genetic mutation, and increase plant 
sensitivity to other stresses (Maliszewska-Kordybach 
and Smreczak 2000).

Contrary to the results reported by other research-
ers, the presence of anthracene or phenanthrene did 
not affect seedling emergence of L perenne. Several 
studies reported that seed germination might be in-
sensitive to bioavailable toxic chemicals because 
seedlings obtain nutrients from internal materials 
(Smith et al. 2006, Eom et al. 2007, Torri et al. 2009, 
Anyanwu and Semple 2015). Surprisingly, plant 
aboveground biomass (DW) was significantly higher 
in spiked treatments compared to non-spiked soils, 

TABLE IV. ANALYSIS OF VARIANCE OF STUDIED FACTORS (POLLUTANT, 
PLANT, FERTIGATION) AND PARTITION OF THE TREATMENT SUM 
OF SQUARES INTO MAIN EFFECT AND INTERACTION

SOURCE DF Sum of squares Mean square F P

FERTIGATION (A) 1 1220.88 1220.88 0.82 0.3740
PLANT (B) 1 158727 158727 106.67 0.0000
SPIKED (C) 1 273945 273945 184.10 0.0000
AxB 1 2062.97 2062.97 1.39 0.2506
AxC 1 2846.63 2846.63 1.91 0.1794
BxC 1 17262.9 17262.9 11.60 0.0023
AxBxC 1 427.584 427.584 0.29 0.5969
RESIDUAL 24 35711.8 1487.99
TOTAL 31 492204

DF = degrees of freedom; F = F-statistic; P = P-value
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despite the high spiking-dose used. Growth promot-
ing effects of PAHs were first described by Gräf and 
Nowak (1966). Low levels (below 10 mg/kg) of 
soil PAHs concentrations were reported to stimulate 
rather than inhibit plants growth at the early stages 
of plant development (Maliszewska-Kordybach and 
Smreczak 2000). Other studies reported that higher 
phenanthrene levels (200 mg/kg) produced no sig-
nificant differences in ryegrass biomass (DW) before 
60 days of seedling emergence (Xu et al. 2006, Liu 
et al. 2013) although, afterwards, a restrain in growth 
due to toxicity stress was observed, which resulted in 
a significantly lower biomass than control at the end 
of the experiment (Liu et al. 2013). Similarly, Binet 
et al. (2000) reported that shoot and root biomass 
were significantly lower than control in a 40 days 
pot experiment using 200 mg/kg anthracene and 
phenanthrene spiked soil. But Fismes et al. (2002) 
observed no detrimental effect on plant growth in 
soil PAHs concentrations even up to 2526 mg/kg. 
But herein, a statistically higher production of aerial 
biomass as the result of soil addition of anthracene or 
phenanthrene compared to unfertilized control was 
observed (Table III). An explanation to this may be 
a positive priming effect (PE) originated as a conse-
quence of anthracene and phenanthrene soil inputs, 
which released bioavailable nutrients to the soil solu-
tion (Joner et al. 2002). This positive PE was reported 
to decrease in high nutrient availability conditions, 
as microorganisms may fulfill their nutrient demand 
by utilizing the added nutrients rather than mineral-
izing them from native SOM (Dimassi et al. 2014, 
Liu et al. 2017). Therefore, the PE, which may have 
occurred in non-fertilized pots, would have masked 

a fertigation effect on L. perenne biomass and, as a 
result of this, no significant increase in aerial biomass 
was observed in fertilized compared to non-fertilized 
plant treatments. 

Alternatively, a rapid initial mineralization of both 
contaminants cannot be ruled out. Numerous stud-
ies have shown that the availability, and therefore, 
the biodegradation of anthracene and phenanthrene 
in spiked soils is related to the degree of sorption 
onto soil organic matter (SOM) (Ahmad et al. 2001, 
Ahangar et al. 2008), for sorbed substrates are more 
resistant to biodegradation than non-sorbed ones 
(Wszolek and Alexander 1979). Soils´ capacity to 
absorb PAHs is positively related to the aromatic 
constituents of SOM (Ahmad et al. 2001). In the Pam-
pas region, the SOM of coarse textured soils is more 
aliphatic, less aromatic and less rich in carboxylic 
acid groups compared to that of fine-textured soils 
(Galantini et al. 2004). In line with this, anthracene or 
phenanthrene may have been weakly adsorbed onto 
the SOM of the typic Hapludoll (Ran et al. 2007), 
and, therefore, potentially available for microbial 
degradation. 

Both PAHs concentration in root-free soils sig-
nificantly decreased at the end of the experiment 
compared to initial concentrations. Previous studies 
have shown that the number of PAHs-degrading 
microorganisms and their proportion in the het-
erotrophic community increased upon previous 
exposure of soils at PAHs concentrations greater 
than background (van der Meer et al. 1992). But the 
pristine soil used in this study was not previously 
exposed to PAHs pollution. In fact, the Pampas is 
recognized as a non-polluted region (Torri 2014), 

Fig. 5. Mean total bacterial counts (x109 CFU/g) at the end of the experimental period. Dis-
tinctive groups are marked with different letters (p < 0.05)
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with very low background concentration levels of 
PAHs, in the range of 1.8-34 ng/g (Wilcke et al. 
2014). Conversely, other authors indicated that soil 
autochthonous microbial communities can rapidly 
degrade low molecular weight PAHs because these 
ubiquitous compounds are known to be present in all 
soils at very low concentrations (Stroud et al. 2007). 
The dissipation of anthracene or phenanthrene in 
root-free spiked soils at the end of the experiment 
revealed the catabolic capability of the autochthonous 
soil microbiota. These results are in good agreement 
with a previous experiment with the same root-free 
treatments, where we measured the production of 
C-CO2 along 60 days as an indirect estimation of 
microbial activity (Torri et al. 2018). The production 
of C-CO2 in all incubated soils increased from day 
0 to day 10, with no significant differences between 
treatments. But from day 10 onwards, the average 
respiration in unspiked soils decreased to a minimum 
on day 24, whereas C-CO2 emission in anthracene or 
phenanthrene spiked soils was significantly higher 
than controls (p < 0.01), with a maximum between 
days 10-18, related to PAHs degradation. Apparently, 
a compatible microflora existed or rapidly established 
in the Hapludoll soil, which resulted in anthracene 
or phenanthrene degradation. Therefore, we cannot 
determine whether PAH degradation in the pristine 
Hapludoll is a characteristic of indigenous soil mi-
crobial communities or an acquired ability induced 
by exposure to undetectable levels of PAHs. In any 
case, 77.3 % of anthracene and 91.2 % of phenan-
threne were removed from the unplanted spiked soils 
at the end of the experimental period. Similar results 
for spiked soils were reported by Binet et al. (2000), 
Xu et al. (2006) and Cennerazzo et al. (2017) in pot 
experiments. Nonetheless, the results obtained in 
this study may differ from those obtained in field 
conditions, because organic compounds that have 
aged in contaminated soils are less bioavailable than 
in freshly spiked soils and therefore, their removal 
rate may be reported to occur relatively slow (Fu et 
al. 2012). Besides, adverse environmental conditions 
in natural soils in comparison with laboratory condi-
tions usually cause less efficient biodegradation of 
organic pollutants.

As expected, L. perenne favored to decrease the 
concentration of anthracene and phenanthrene in 
spiked soils compared to non-vegetated spiked soils 
(Table III). The removal of PAHs from vegetated 
soils may occur by three processes: abiotic dissipa-
tion, plant uptake or degradation by soil microor-
ganisms. In this pot experiment, abiotic dissipation 
(leaching or volatilization) was prevented by the 

experimental conditions chosen. On the other hand, 
plant uptake of phenanthrene or anthracene has been 
reported to be very low in many phytoremediation 
studies. Reilley et al. (1994) found that total accumu-
lation of anthracene in roots and shoots of different 
plant species accounted for less than 0.03 % of total 
added compound, Cheema et al. (2010) indicated 
that only 1.1 % of the spiked phenanthrene was ab-
sorbed by L. perenne roots after a 65 days pot trial, 
while Cennerazzo et al. (2017) reported that less 
than 1 % of total phenanthrene carbon was taken up 
by ryegrass roots after 21 days. Similar results were 
reported by Fu et al. (2012). An explanation to this is 
the low water solubility of PAHs (Binet et al. 2000), 
together with the non-polar organic composition of 
root tissue, such as lipid contents (Chiou et al. 2001, 
Gao and Zhu 2004) that might prevent significant 
uptake by plant roots. In the light of this, biodeg-
radation by native soil microorganisms is likely to 
be the dominant mechanism for the dissipation of 
anthracene and phenanthrene in the rhizosphere of 
L. perenne treatments. Some researchers speculated 
that plants may respond to the presence of a chemical 
stress in soil by increasing or changing exudation, 
modifying rhizospheric microflora composition or 
activity (Walton et al. 1994). The synergistic effect 
of bacteria and root exudates on the selective growth 
of PAHs degraders in contaminated soils has been 
previously reported (Khan et al. 2013, Yang et al. 
2014, Guo et al. 2017). In addition, roots possess 
wall-bound and soluble oxidative enzymes that may 
be directly implicated in the degradation of PAHs 
(Rezek et al. 2008). These results are consistent with 
the findings of previous studies, which showed that 
anthracene and phenanthrene degradation in spiked 
soil was significantly higher in rhizospheric than in 
non-rhizospheric soils (Günther et al. 1996, Binet et 
al. 2000, Korade and Fulekar 2009). 

Soil removal of phenanthrene and anthracene 
was different, although they both contain three 
fused aromatic rings. In all cases, the degradation of 
phenanthrene was significantly higher than anthra-
cene (Table III). This result may be related to the 
higher water solubility of phenanthrene (1.1 mg/L), 
as compared with anthracene (0.045 mg/L) (Bianche 
et al. 2014). Many microorganisms are known to 
degrade PAHs only when they are dissolved in an 
aqueous media (Johnsen et al. 2005). In fact, water 
solubility of many PAHs is the rate-limiting factor 
for biodegradation since microbial biodegrada-
tion is considerably slower from sorbed sites than 
from the soil solution (Gordon and Millero 1985, 
Semple et al. 2003). Therefore, a large labile pool of 
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phenanthrene may have been present in the soil solu-
tion of the spiked typic Hapludoll, readily available 
for soil microorganisms’ degradation. This process 
lead, in turn, to the desorption of more phenanthrene 
from the solid phase to the aqueous phase (Mueller 
and Shann 2006), increasing phenanthrene degrada-
tion respect to anthracene degradation. 

The addition of inorganic nutrients is a strategy to 
enhance PAHs microbial biodegradation rate in con-
taminated soils (Kalantary et al. 2014). But this was 
not the case here. Contrary to what we expected, no 
significant differences in anthracene or phenanthrene 
dissipation were observed between fertilized and non-
fertilized treatments. Soils in the Pampas region are 
moderately acid, low in available P, and have high 
organic carbon content (Torri and Lavado 2002). 
Therefore, nutrient availability seemed to be adequate 
in non-fertilized treatments along the studied period, 
for no significant differences in terms of anthracene 
or phenanthrene degradation were observed between 
fertilized and non-fertilized treatments at the end of 
the experimental period.

Soil microbial biomass is closely related to soil 
fertility (Zhong and Cai, 2007). Total bacterial counts 
in the unspiked soil was similar to other soils of the 
Pampas region (Merini et al. 2007). Although the 
effects of nutrients on microbial biomass have been 
investigated intensively, the results are inconsis-
tent. Some studies showed that chemical fertilizers 
increased microbial biomass (Geisseler and Scow 
2014), but other researchers reported that soil P and 
N contents had no significant effects on soil micro-
bial populations (Zhong and Cai 2007). Some other 
evidence suggests the use of nitrogen fertilizers may 
cause ammonia or nitrite toxicity to microorganisms 
(Tibbett et al. 2011), which may be particularly se-
vere in sandy soils with limited buffering and water 
holding capacity (Ferguson et al. 2003). In our study, 
the chemical fertigation (NPK) of the pristine soil 
improved nutrient availability, increasing total bac-
teria counts as compared to the control at the end of 
the experimental period.

As expected, the growth of L. perenne promoted 
the degradation of anthracene and phenanthrene, and 
total bacterial counts were significantly stimulated. 
The bacterial abundances in rhizosphere soils were 
higher than those in root-free soils, indicating that L. 
perenne roots significantly stimulated the growth of 
the bacteria in spiked soils. At the end of the experi-
ment, the highest value of total bacteria counts was 
observed in phenanthrene spiked soils with plant 
treatment (PR). This treatment exhibited the highest 
removal efficiency (99.7 %). The increase of bacterial 

counts in the rhizosphere has already been observed 
in other studies (Shahsavari et al. 2015, Thomas and 
Cébron 2016, Guo et al. 2017). Although the growth 
of hydrocarbon-degrading bacteria may be strongly 
enhanced by fertigation with inorganic N and P (Niko-
lopoulou and Kalogerakis 2010), this was not observed 
here. These results suggest that nutrient availability 
was adequate in non-fertilized spiked soils, or am-
monia or nitrite toxicity to microorganisms as a result 
of N addition, as indicated above. Nonetheless, further 
investigation is needed to identify the microbial com-
munities responsible for anthracene and phenanthrene 
dissipation in this pristine soil.

CONCLUSIONS

The major finding of the present study was the 
natural capacity of a pristine soil of the Pampas 
region, which was not previously exposed to PAH 
pollution, to degrade anthracene or phenanthrene. 
No phytotoxic effects of both contaminants on L. 
perenne growth were observed; on the contrary, 
plant aboveground biomass significantly increased 
as a result of treatments. On the other hand, ryegrass 
significantly enhanced soil dissipation of both con-
taminants. The addition of inorganic nutrients did 
not produce a biostimulation effect. In all cases, the 
dissipation of phenanthrene was significantly higher 
than anthracene, and may be related to the higher 
water solubility of the former. 

Results suggest that microbial degradation was 
largely responsible for PAHs dissipation, suggesting 
that indigenous PAHs degrading microorganisms 
might exist in the pristine Hapludoll of the Pampas 
region, and exert a degrading function. At the end 
of the experimental period, total bacteria counts 
in rhizosphere soils were higher than those in non-
rhizosphere soils, revealing that L. perenne´s roots 
significantly stimulated the growth of bacteria in 
spiked soil. 

Nevertheless, freshly applied PAHs may not be-
have in the same way as aged pollutants in contami-
nated soils. Moreover, the rate of PAHs biodegrada-
tion in natural environments may be different com-
pared to those observed in this experiment. This is 
because environmental factors, which determine the 
success of bioremediation, may not be maintained at 
optimal range in contaminated environments. Provi-
sion of oxygen, moisture, nutrient availability, pH and 
temperature are amongst the most important environ-
mental factors that need to be kept at optimal range 
for autochthonous (indigenous) microorganisms´ 
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growth and metabolism, and for plant survival and 
growth. The present findings are based on a pot ex-
periment. Therefore, this remediation strategy needs 
to be applied and validated in the field, to ensure the 
safe and cost-effective restoration of PAHs contami-
nated soils.
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