CYPS MOLECULAR BIOMARKERS IN RAINBOW TROUT Oncorhynchus mykiss TO ASSESS OIL CONTAMINATION IN A PATAGONIAN STREAM

Contenido principal del artículo

Leonardo Ramón Leggieri
Julieta Soledad de Anna
Gerardo Abel Cerón
Luis Arias Darraz
Daniela Fuentes Monasterio
Juan Guillermo Cárcamo
Carlos Marcelo Luquet

Resumen

Cytochrome P450 (CYP) gene expressions were studied by semi-quantitative polymerase chain reaction (PCR) to assess oil pollution using liver and gills of juvenile rainbow trout Oncorhynchus mykiss sampled from La Mina stream (Bariloche, Argentina), up and downstream of a discharge of petroleum spill from an unproductive wellbore. Data was complemented with laboratory exposure to water accommodated fraction (WAF) from the oil spill. Oil exposure induced gill and liver CYP1A transcription (1.2-1.4-fold), which was used as reference biomarker. In both organs, CYP2K1 transcript was induced after 5 % WAF exposure, 24 h (1.8-2.0-fold), and it was down-regulated in more extended time (1.2-1.5-fold). CYP2M1 transcript levels were down-regulated in liver of impacted wild trout and in trout exposed to 5 % WAF during 96 h (1.5-1.7-fold). CYP2K1 and CYP2M1 are involved in the metabolism of fatty acids and estrogenic hormones, and its down-regulation would indicate metabolic alterations. CYP3A27 levels were only induced in liver of wild trout (1.6-fold), possibly related to crosstalk between aryl hydrocarbon receptor and pregnane X receptor signaling pathway. While CYP1A mRNA expression appears to be a more robust biomarker for detecting the effects of crude oil under different dose and exposure time, the expression of CYP2K1, CYP2M1 and CYP3A27 mRNAs would indicate different time exposure to oil pollution, particularly under high oil concentration in water. Hence, patterns of multiple CYP genes expression in rainbow trout gills and liver could be especially valuable for monitoring programs of crude oil pollution and remediation actions on Patagonian freshwater ecosystems.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a

Leonardo Ramón Leggieri, INIBIOMA - CONICET

Leggieri LR es Licenciado en Ciencias Biológicas y Doctor en Biología de la Universidad Nacional del Comahue (Argentina). Actualmente, desarrolla un posdoctorado en biología molecular solventado por el CONICET y la Fundación YPF en el Instituto de Investigaciones en Biodiversidad y Medioambiente (Bariloche, Argentina).

Julieta Soledad de Anna, Laboratorio de Ecotoxicología Acuática, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Dirección: Ruta 61, km 3, CCP7, Junín de los Andes (CP8371), Neuquén, Argentina

Licenciada en Ciencias Biológicas con orientación en Biología Molecular y Celular - Realizando un Doctorado en Biología (Universidad Nacional del Comahue, Argentina)

Gerardo Abel Cerón, Laboratorio de Zoología, Centro Regional Universitario Bariloche de la Universidad Nacional del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Dirección: Quintral 1250, San Carlos de Bariloche (CP8400), Río Negro, Argentina

Licenciado en Ciencias Biológicas y Doctor en Biología - Realizando un Posdoctorado (CONICET) 

Luis Arias Darraz, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile - Dirección: Campus Isla Teja, Casilla 567, Valdivia, Chile

Bioquímico - Realizando un Doctorado (Universidad Austral de Chile)

Daniela Fuentes Monasterio, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile - Dirección: Campus Isla Teja, Casilla 567, Valdivia, Chile

Bioquímica

Juan Guillermo Cárcamo, Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR) - Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile - Dirección: Campus Isla Teja, Casilla 567, Valdivia, Chile

Bioquímico, Research Fellow (Memorial Sloan-Kettering Cancer Center, New York USA), Doctor en Ciencias (Universidad Austral de Chile. Post Doctorado (FONDECYT). Categoría: Invetigador Principal (CONICYT)

Carlos Marcelo Luquet, Laboratorio de Ecotoxicología Acuática, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Dirección: Ruta 61, km 3, CCP7, Junín de los Andes (CP 8371), Neuquén, Argentina

Licenciado en Ciencias Biológicas y Doctor en Ciencias Biológicas (CONICET). Categoría: Investigador Principal (CONICET)

Compartir en:

PLUMX metrics

Citas

Bailey, G.S., Williams, D.E. & Hendricks, J.D. (1996). Fish models for environmental carcinogenesis: the rainbow trout. Environmental Health Perspectives, 104, 5-21. doi: 10.2307/3432693.

Bainy, A.C., Kubota, A., Goldstone, J.V., Lille-Langoy, R., Karchner, S.I., Celander, M.C., Hahn, M.E., Goksøyr, A. & Stegeman, J.J. (2013). Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio). Aquatic Toxicology, 142-143, 447-457. doi: 10.1016/j.aquatox.2013.09.014.

Barquín, M., Ríos, S.M. & Nudelman, N. (2011). The application of toxicity test on the specie Atriplex lampa in the risk assessment of oil spills in Patagonian soils. Revista de Toxicología, 28, 135-139.

Buhler, D.R., Miranda, C.L., Henderson, M.C., Yang, Y.H., Lee, S.J. & Wang-Buhler, J.L. (2000). Effects of 17 beta-estradiol and testosterone on hepatic mRNA/protein levels and catalytic activities of CYP2M1, CYP2K1, and CYP3A27 in rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology, 168, 91-101. doi: 10.1006/taap.1999.9016.

Buhler, D.R. & Wang-Buhler, J.L. (1998). Rainbow trout cytochrome P450s: purification, molecular aspects, metabolic activity, induction and role in environmental monitoring. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology, 121, 107-137. doi: 10.1016/S0742-8413(98)10033-6.

Buhler, D.R., Yang, Y.H., Dreher, T.W., Miranda, C.L. & Wang, J.L. (1994). Cloning and Sequencing of the Major Rainbow Trout Constitutive Cytochrome P450 (CYP2K1): Identification of a New Cytochrome P450 Gene Subfamily and Its Expression in Mature Rainbow Trout Liver and Trunk Kidney. Archives of Biochemistry and Biophysics, 312, 45-51. doi: 10.1006/abbi.1994.1278.

Cazau, L., Cortiñas, J., Reinante, S., Asensio, M., Bechis, F. & Apreda, D. (2005). Cuenca de Ñirihuau. In Frontera Exploratoria de la Argentina (pp. 251-273). 6th Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, Argentina.

Chang, C.C., Sue, Y.M., Yang, N.J., Lee, Y.H. & Juan, S.H. (2014). 3-Methylcholanthrene, an AhR agonist, caused cell-cycle arrest by histone deacetylation through a rhoa-dependent recruitment of HDAC1 and pRb2 to E2F1 complex. PLoS ONE, 9, e92793. doi: 10.1371/journal.pone.0092793.

Clark, B.W., Matson, C.W., Jung, D. & Di Giulio, R.T. (2010). AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquatic Toxicology, 99, 232-240. doi: 10.1016/j.aquatox.2010.05.004.

Collier, T.K., Krone, C.A., Krahn, M.G., Stain, J.E., Chan, S.L. & Varanasi, U. (1996). Petroleum exposure and associated biochemical effects in subtidal fish after the Exxon Valdez oil spill. In S.D. Rice, et al. (Eds.), Proceedings of the Exxon Valdez Oil Spill Symposium held at Anchorage (pp. 671-683). Alaska: American Fisheries Society Symposium press.

Danielson, P.B. (2002). The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Current Drug Metabolism, 3, 561-597. doi: 10.2174/1389200023337054.

Ekins, S., Reschly, E.J. Hagey, L.R. & Krasowski, M.D. (2008). Evolution of pharmacologic specificity in the pregnane X receptor. BMC Evolutionary Biology, 8, 103-124. doi: 10.1186/1471-2148-8-103.

EPA (1978). Method 418.1: Petroleum Hydrocarbons (Spectrophotometric Infrared). United States Environmental Protection Agency. Manual. Washington D.C., EUA.

Goksøyr, A. (1995). Use of cytochrome P450 1A (CYP1A) in fish as a biomarker of aquatic pollution. Archives of Toxicology, 17, 80-95. doi: 10.1016/0378-4274(94)90283-6.

Jönsson, M.E., Gao, K., Olsson, J.A., Goldstone, J.V. & Brandt, I. (2010). Induction patterns of new CYP1 genes in environmentally exposed rainbow trout. Aquatic Toxicology, 98, 311-321. doi: 10.1016/j.aquatox.2010.03.003.

Jönsson, M.E., Orrego, R., Woodin, B.R., Goldstone, J.V. & Stegeman, J.J. (2007). Basal and 3,3’,4,4’,5-pentachlorobiphenyl-induced expression of cytochrome P450 1A, 1B and 1C genes in zebrafish. Toxicology and Applied Pharmacology, 221, 29-41. doi: 10.1016/j.taap.2007.02.017.

Jönsson, M.E., Abrahamson, A., Brunstrom, B. & Brandt, I. (2006). Cytochrome P4501A induction in rainbow trout gills and liver following exposure to waterborne indigo, benzo[a]pyrene and 3,3′,4,4′,5-pentachlorobiphenyl. Aquatic Toxicology, 79, 226-232. doi: 10.1016/j.aquatox.2006.06.006.

Krasowski, M.D., Ai, N., Hagey, L.R., Kollitz, E.M., Kullman, S.W., Reschly, E.J. & Ekins, S. (2011). The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species. BMC Biochemistry, 12, 5. doi: 10.1186/1471-2091-12-5.

Lee, S.J. & Buhler, D.R. (2003). Cloning, tissue distribution, and functional studies of a new cytochrome P450 3A subfamily member, CYP3A45, from rainbow trout (Oncorhynchus mykiss) intestinal ceca. Archives of Biochemistry and Biophysics, 412, 77-89. doi: 10.1016/S0003-9861(03)00029-8.

Lee, S.J., Hedstrom, O.R., Fischer, K., Wang-Buhler, J.L., Sen, A, Cok, I. & Buhler, D.R. (2001). Immunohistochemical localization and differential expression of cytochrome P450 3A27 in the gastrointestinal tract of rainbow trout. Toxicology and Applied Pharmacology, 177, 94-102. doi: 10.1006/taap.2001.9289.

Luckert, C., Ehlers, A., Buhrke, T., Seidel, A., Lampen, A. & Hessel, S. (2013). Polycyclic aromatic hydrocarbons stimulate human CYP3A4 promoter activity via PXR. Toxicology Letters, 222, 180-188. doi: 10.1016/j.toxlet.2013.06.243.

Ma, Q. & Baldwin, K.T. (2002). A cycloheximide-sensitive factor regulates TCDD-induced degradation of the aryl hydrocarbon receptor. Chemosphere, 46, 1491-1500. doi: dx.doi.org/10.1016/S0045-6535(01)00270-3.

Mancini, D. & Serna, M. (1989, April). Evaluación petrolera de la Cuenca de Ñirihuau. Sudoeste de Argentina. In Actas of 1st Congreso Nacional de Exploración de Hidrocarburos, (pp. 739-762).

Meyer, J.N., Wassenberg, D.M., Karchner, S.I., Hahn, M.E. & Di Giulio, R.T. (2003). Expression and inducibility of aryl hydrocarbon receptor pathway genes in wild-caught killifish (Fundulus heteroclitus) with different contaminant-exposure histories. Environmental Toxicology and Chemistry, 22, 2337-2343. doi: 10.1897/02-495.

Mimura, J., Emma, M., Sogawa, K. & Fujii-Kuriyama, Y. (1999). Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes & Development, 13, 20-25. doi: 10.1101/gad.13.1.20.

Miranda, C.L., Wang, J.L., Henderson, M.C., Zhao, X., Guengerich, F.P. & Buhler, D.R. (1991). Comparison of rainbow trout and mammalian cytochrome P450 enzymes: Evidence for structural similarity between trout P450 LMC5 and human P450111A4. Biochemical and Biophysical Research Communications, 176, 558-563. doi: 10.1016/S0006-291X(05)80220-7.

Moore, M., Depledge, M., Readman, J. & Leonard, D. (2004). An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutation Research, 552, 247-268. doi: 10.1016/j.mrfmmm.2004.06.028.

Nahrgang, J., Camus, L., Carls, M.G., González, P., Goksøyr, A., Christiansen, J.S. & Hop, H. (2009). PAH biomarker responses in polar cod Boreogadus saida exposed to benzo(a)pyrene. Aquatic Toxicology, 94, 309-319. doi: 10.1016/j.aquatox.2009.07.017.

Parsons, T.W. (2002). Pioneros olvidados: argentinos y uruguayos. Río Negro (Arg.), SCB: TW Parsons press.

Pascual, M., Macchi, P., Urbanski, J., Marcos, F., Riva Rossi, C., Novara, M. & Dell'Arciprete, P. (2002). Evaluating potential effects of exotic freshwater fish from incomplete species presence-absence data. Biological Invasions, 4, 101-113. doi: 10.1023/A:1020513525528.

Quirós, R. (1990). Predictors of relative fish biomass in lakes and reservoirs of Argentina. Canadian Journal of Fisheries and Aquatic Sciences, 47, 928-939. doi: 10.1139/f90-107.

SA & DS (Secretaría de Ambiente y Desarrollo Sustentable) (2000). Secretary of Soil Conservation. Buenos Aires, Argentina.

Singer, M.M., Aurand, D., Bragin, G.E., Clark, J.R., Coelho, G.M., Sowby, M.L. & Tjeerdema, R.S. (2000). Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Marine Pollution Bulletin, 40, 1007-1016. doi: 10.1016/S0025-326X(00)00045-X.

Sovadinová, I. (2006). Nuclear receptor-mediated toxicity of xenobiotics (Doctoral thesis, Masaryk University, Czech Republic). Retrieved from http://is.muni.cz/th/12052/prif_d/Text_prace.pdf, 62 pp.

Thomas, R.E. & Rice, S.D. (1981). Excretion of aromatic hydrocarbons and their metabolites by freshwater and seawater Dolly Varden char. In F.J. Vernberg, A. Calabrese, F.P. Thurberg & W.B. Venberg (Eds.) Biological Monitoring of Marine Pollutants (pp. 425-448). New York, NY: Academic Press.

Uno, T., Ishizuka, M. & Itakura, T. (2012). Cytochrome P450 (CYP) in fish. Environmental Toxicology and Pharmacology, 34, 1-13. doi: 10.1016/j.etap.2012.02.004.

Varanasi, U. (1989). Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Boca Raton, FL: CRC press.

Wassmur, B., Gräns, J., Kling, P. & Celander, M.C. (2010). Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 100, 91-100. doi: 10.1016/j.aquatox.2010.07.013.

Yang, Y.H., Miranda, C.L., Henderson, M.C., Wang-Buhler, J.L. & Buhler, D.R. (2000). Heterologous expression of CYP2K1 and identification of the expressed protein (BV-CYP2K1) as lauric acid (omega-1)-hydroxylase and aflatoxin B1 exo-epoxidase. Drug Metabolism & Disposition, 28, 1279-1283. doi: dmd.aspetjournals.org/content/dmd/28/11/1279.

Yang, Y.H., Wang, J.L., Miranda, C.L. & Buhler, D.R. (1998). CYP2M1: cloning, sequencing, and expression of a new cytochrome P450 from rainbow trout liver with fatty acid (omega-6)-hydroxylation activity. Archives of Biochemistry and Biophysics, 352, 271-280. doi: 10.1006/abbi.1998.0607.

Zanette, J., Jenny, M.J., Goldstone, J.V., Woodin, B.R., Watka, L.A., Bainy, A.C. & Stegeman, J.J. (2009). New cytochrome P450 1B1, 1C2 and 1D1 genes in the killifish Fundulus heteroclitus: basal expression and response of five killifish CYP1s to the AHR agonist PCB126. Aquatic Toxicology, 93, 234-243. doi: 10.1016/j.aquatox.2009.05.008.

Zhu, S., King, S.C. & Haasch, M.L. (2008). Biomarker induction in tropical fish species on the northwest shelf of Australia by produced formation water. Marine Environmental Research, 65, 315-324. doi: 10.1016/j.marenvres.2007.11.007.