CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN AN AGRICULTURAL WASTEWATER-IRRIGATED SOIL, IN SEMI ARID MEXICO

Contenido principal del artículo

Rosa María Fuentes Rivas
Germán Santacruz de León
José Alfredo Ramos Leal
Janete Morán Ramírez
Francisco Martín Romero

Resumen

Most agricultural soils in semi-arid regions present a deficiency of organic matter (SOM). In order to improve this soil, wastewater is used due to its high organic carbon content. The objective of the present work was to characterize the dissolved organic matter in five residual water samples and ten soil samples from the agricultural area of the municipality of San Luis Potosí by 3D fluorescence spectroscopy. The changes in some physical and chemical properties of the soil were also analyzed. The soil samples were collected at different depths to observe the anthropogenic organic matter presence, their retention in the soil profile, their fluorescence intensity changes and their migration into the aquifer. Temperature, electrical conductivity, dissolved oxygen, oxidation- reduction potential and total dissolved solids were determined in situ. The major anions and cations: Na+, K+, Mg2+, Ca2+, PO43–, SO42–, NO3–, NO2, were analysed in laboratory. The results show the great contribution of organic matter (>2020 mg/L) in the residual water used for irrigation, as well as, the low content of SOM. The physical and chemical results indicate that the high electrical conductivity of the water, represents a risk of salinization for soils, but not of short term sodicity. The 3D fluorescence spectra of the soil profile, shows the presence of humic and fulvic acids, aromatic proteins and products of microbial degradation. The latter observed in that depth where there is a greater percentage of clay.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a

Rosa María Fuentes Rivas, Universidad Autónoma del Estado de Mexico, Facultad de Geografía. Cerro de Coatepec s/n Ciudad Universitaria, Toluca estado de México, 50110, México. División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, C.P. 78216 San Luis Potosí, SLP, Mexico.

Profesor Investigador, Facultad de Geografía, Universidad Autónoma del Estado de México.

Graduado del programa de doctorado de la División de Geociencias Aplicadas

 

 

Germán Santacruz de León, El Colegio de San Luis, C.A. (COLSAN). Parque de Macul, 155, Fracc. Colinas del Parque, San Luis Potosí, México, 78294, México.

Profesor Investigador, Programa Agua y Sociedad

 

José Alfredo Ramos Leal, División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, C.P. 78216 San Luis Potosí, SLP, Mexico.

Profesor Investigador, División de Geociencias

 

Janete Morán Ramírez, División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, C.P. 78216 San Luis Potosí, SLP, Mexico.

Graduado del programa de doctorado de la División de Geociencias Aplicadas

 

Francisco Martín Romero, Universidad Nacional Autónoma de Mexico (UNAM), Instituto de Geología. Avenida Universidad, 3000, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510.

Profesor Investigador, Departamento de Geoquímica

Compartir en:

PLUMX metrics

Citas

Abedi-Koupai J., Mostafazadeh-Fard B., Afyuni M. and Bagheri M. R. (2006). Effect of treated wastewater on soil chemical and physical properties in an arid region. Plant Soil Environ. 52 (8), 335-344.

Akagi J., Zsolnay A. and Bastida F. (2007). Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: air-drying and pre-incubation. Chemosphere. 69 (7), 1040-1046.

Alvarez-Bernal D., Contreras-Ramos S. M., Trujillo-Tapia N., Olalde-Portugal V., Frías-Hernández J. T. and Dendooven L. (2006). Effects of tanneries wastewater on chemical and biological soil characteristics. Appl Soil Ecol. 33 (3), 269-277.

Alvarez R. and Steinbach H. (2006). Asociación entre el nitrógeno del suelo y el rendimiento de los cultivos. Materia Orgánica: valor agronómico y dinámica en suelos pampeanos/coordinado por Roberto Álvarez-1 ed.–Bs. As. UBA.

Bernier M. H., Levy G. J., Fine P. and Borisover M. (2013). Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples. Geoderma. 209 (210), 233-240.

Bhardwaj A. K., Goldstein D., Azenkot A. and Levy G. J. (2007). Irrigation with treated wastewater under two different irrigation methods: Effects on hydraulic conductivity of a clay soil. Geoderma. 140 (1), 199-206.

Boehme J., Coble P., Conmy R. and Stovall-Leonard A. (2004). Examining CDOM fluorescence variability using principal component analysis: seasonal and regional modeling of three-dimensional fluorescence in the Gulf of Mexico. Mar Chem. 89 (1), 3-14.

Bot A. and Benites J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production (No. 80). Food and Agriculture Org. DOI: 10.1080/03650340214162.

Brzezińska M., Sokołowska Z., Alekseeva T., Alekseev A., Hajnos M. and Szarlip P. (2011). Some characteristics of organic soils irrigated with municipal wastewater. Land Degrad Dev. 22 (6), 586-595.

Brooks D. M., Pando-Vasquez L. and Ocmin-Petit A. (1999). Comparative life history of cotingas in the northern Peruvian Amazon. Ornitol Neotrop. 10, 193-206.

Bruun T. B., Elberling B. and Christensen B. T. (2010). Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol Biochem. 42 (6), 888-895.

Cai J. G., Lu L., Ding F. and Fan F. (2009). Significance of Interaction Between Soluble Organic Matter and Clay Minerals in Muddy Source Rocks. Journal of Tongji University, Natural Science. 12, 021.

Cai J. G. (2004). Organo Clay Complexes in Muddy Sediments and Rocks (in Chinese). Beijing: Sci. Press.

Cai J. G., Lu L. F., Song M. S., Ding F., Bao Y. J. and Fan F. (2010). Characteristics of extraction of organo-clay complexes and their significance to petroleum geology. Oil Gas Geol. 31 (3), 300-308.

Carranco-Lozada S., Ramos-Leal J., Almanza-Tovar O. and Morán-Ramírez J. (2016). Balance Hidrológico Superficial del Valle de San Luis Potosí. In: G. Santacruz de León and A. Ramos leal, ed., Condiciones Hidrogeoquímicas Y Explotación Del Sistema Acuífero Del Valle De San Luis Potosí, 1a ed. San Luis Potosí, S.L.P: El Colegio de San Luis, pp.23-43.

Caravaca F., Lax A. and Albaladejo J. (2001). Soil aggregate stability and organic matter in clay and fine silt fractions in urban refuse-amended semiarid soils. Soil Sci Soc Am J. 65 (4), 1235-1238.

Chen W., Westerhoff P., Leenheer J. A. and Booksh K. (2003). Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol. 37 (24), 5701-5710.

Chen Y., Dosoretz C.G., Katz I., Jüeschke E., Marschner B. and Tarchitzky J. (2010). Organic matter in Wastewater and Treated Wastewater-Irrigated Soils: Properties and Effects, in Treated Wastewater in Agriculture: Use and Impacts on the soil Environment and Crops (eds. G. J. Levy, P, Fine and A. Bar-Tal). Wiley-Blackwell, Oxford, UK. DOI: 10.1002/9781444328561.ch13.

Cirelli C. (2004). Agua desechada, agua aprovechada: cultivando en las márgenes de la ciudad. San Luis Potosí, San Luis Potosí, México. El Colegio de San Luis. ISBN: 970-762-010-2. 224 p.

Clemente J. S., Simpson A. J. and Simpson M. J. (2011). Association of specific organic matter compounds in size fractions of soils under different environmental controls. Org Geochem. 42 (10), 1169-1180.

CONAGUA (2014). Comisión Nacional del Agua. Estadísticas del agua en México. Semarnat/Conagua. Retrived from:

http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/EAM2014.pdf

Corral‐Nuñez G., Opazo‐Salazar D., GebreSamuel G., Tittonell P., Gebretsadik A., Gebremeskel Y. and Beek C. L. (2014). Soil organic matter in Northern Ethiopia, current level and predicted trend: a study case of two villages in Tigray. Soil Use Manage. 30 (4), 487-495.

Davel M. and Ortega A. (2003). Estimación del índice de sitio para pino oregón a partir de variables ambientales en la Patagonia Andina Argentina. Bosque (Valdivia), 24 (1), 55-69.

Ding F., Cai J., Xu X. and Yang Y. (2011). Characteristics of soluble organic matter combined with< 2 mu m clay size fraction of source rocks and its significance. Journal of Tongji University. Natural Science. 39 (11), 1710-1714.

DOF Diario Oficial De la Federación. (2000). Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis: México, 31, 85.

Domènech X. and Peral J. (2006). Química ambiental de sistemas terrestres. Reverté, Barcelona, 256 pp.

Drewes J. E., Quanrud D. M., Amy G. L. and Westerhoff P. K. (2006). Character of organic matter in soil-aquifer treatment systems. J Environ Eng. 132 (11), 1447-1458.

Edwards L., Burney J. R., Richter G. and MacRae A. H. (2000). Evaluation of compost and straw mulching on soil-loss characteristics in erosion plots of potatoes in Prince Edward Island, Canada. Agriculture, ecosystems & environment, 81 (3), 217-222.

Yearbook F. S. (2013). World food and agriculture. Food and Agriculture Organization of the United Nations, Rome, 2013.

Fassbender H. (1982). Química de suelos con enfasis en suelos de América Latina. 3a. Reimpresión. II CA San José Costa Rica. 422 p.

Feigin A., Ravina I. and Shalhevet J. (1991). Irrigation with treated sewage effluent. Management for environmental protection. Springer, Berlin Heidelberg New York, 200 pp.

Fine P., Hass A., Prost R. and Atzmon N. (2002). Organic carbon leaching from effluent irrigated lysimeters as affected by residence time. Soil Sci Soc Am J. 66 (5), 1531-1539.

Fonseca A. F. D., Herpin U., Paula A. M. D., Victória R. L. and Melfi A. J. (2007). Agricultural use of treated sewage effluents: agronomic and environmental implications and perspectives for Brazil. Sci Agr. 64 (2), 194-209.

Filip Z. and Kubát J. (2001). Microbial utilization and transformation of humic substances extracted from soils of long-term field experiments. Eur J Soil Biol. 37 (3), 167-174.

Friedel J. K., Langer T., Siebe C. and Stahr K. (2000). Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biol Fert Soils. 31 (5), 414-421.

Fuentes-Rivas R. M., Ramos-Leal J.A., Moran-Ramírez J., Esparza-Soto, M. Methodology with 3D Fluorescence Spectroscopy to Characterize Dissolved Organic Matter in Soil. Forthcoming.

Fuentes Rivas R. M., Ramos Leal J. A., Jiménez Moleón M. D. C. and Esparza Soto M. (2015). Caracterización de la materia orgánica disuelta en agua subterránea del Valle de Toluca mediante espectrofotometría de fluorescencia 3D. Rev. Int. Contam. Ambie. 31 (3), 253-264.

Gotosa J., Nezandonyi K., Kanda A., Mushiri S.M., Kundhlande A., Nyamugure T. (2011). Effects of irrigating Eucalyptus grandis plantations with a mixture of domestic and pulp and paper mill effluent on soil quality at a site in northern Zimbabwe. J. Sustain. Develop. in Africa. 13, 136–149.

Guggenberger G., Zech W. and Schulten H. R. (1994). Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Org Geochem. 21 (1), 51-66.

Guggenberger G. and Kaiser K. (2003). Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma. 113 (3), 293-310.

Herbert B. E. and Bertsch P. M. (1995). Characterization of dissolved and colloidal organic matter in soil solution: A Review. In: W.W. McFee, J.M. Kelly, editors, Carbon forms and functions in forest soils, SSSA, Madison, Wl. p. 63-88. DOI: 10.2136/1995.carbonforms.c5

Hernandez-Soriano M.C., Sevilla-Perea A., Kerré B. and Mingorance M.D. (2013). Stability of Organic Matter in Anthropic Soils: A Spectroscopic Approach, Soil Processes and Current Trends in Quality Assessment, Dr. Maria C. Hernandez Soriano (Ed.), InTech, DOI: 10.5772/55632.

Ibarra-Castillo D., Ruiz-Corral J. A., Flores-Garnica J. G. And González-Eguiarte R. D. (2007). Distribución espacial del contenido de materia orgánica de los suelos de Zapopan, Jalisco. Terra Latinoamericana. Órgano Científico de la Sociedad Mexicana de la Ciencia del Suelo, A.C., Abril-Junio, 25 (2), 187-194.

Jiménez B. (2005). Treatment technology and standards for agricultural wastewater reuse: a case study in Mexico. Irrig Drain. 54 (1), 23-35.

Jüeschke E., Marschner B., Tarchitzky J. and Chen Y. (2004). Effects of irrigation with wastewater effluents on chemical and biological properties of organic soil components. In: 12th International Meeting of IHSS, Eds L. Martin-Neto, D. Milori and W.T.L. Da Silva. Embrapa Instrumentacao Agropecuaria, Sao Pedro, Brazil.

Jueschke E., Marschner B., Tarchitzky J. and Chen Y. (2008). Effects of treated wastewater irrigation on the dissolved and soil organic carbon in Israeli soils. Water Sci Technol. 57 (5), 727-733.

Jüschke E. (2009). Effluent irrigation and agricultural soils: effects on the dynamics of organic carbon and microbial activity in agricultural soils in Israel. Verlag Dr. Kovac.

Kalbitz K. and Popp P. (1999). Seasonal impacts on β-hexachlorocyclohexane concentration in soil solution. Environ Pollut. 106 (1), 139-141.

Kalbitz K., Solinger S., Park J. H., Michalzik B. and Matzner E. (2000). Controls on the dynamics of dissolved organic matter in soils: A Review. In: Soil science. Bd. 165 (4), pp 277-304. DOI: 10.1097/00010694-200004000-00001.

Kaushik A., Nisha R., Jagjeeta K. and Kaushik C. P. (2005). Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments. Bioresource Technol. 96 (17), 1860-1866.

Kirkby M.J. and Morgan R. P. (1984) Erosión de suelos. Editorial Limusa, México, 375 pp.

Quanrud D. M., Arnold R. G., Wilson L. G., Gordon H. J., Graham D. W. and Amy G. L. (1996). Fate of organics during column studies of soil aquifer treatment. J Environ Eng. 122 (4), 314-321.

Quanrud D. M., Hafer J., Karpiscak M. M., Zhang J., Lansey K. E. and Arnold R. G. (2003). Fate of organics during soil-aquifer treatment: sustainability of removals in the field. Water Res. 37 (14), 3401-3411.

Lehmann J., Kinyangi J. and Solomon D. (2007). Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry. 85 (1), 45-57.

Levy G., Fine P. and Bar-Tal A. (Eds.). (2011). Treated wastewater in agriculture: use and impacts on the soil environments and crops. John Wiley and Sons. 464 pp.

Lundström C. C., Gill J., Williams Q. and Perfit M. R. (1995). Mantle melting and basalt extraction by equilibrium porous flow. Science. 270 (5244), pp 1958-1961. DOI: 10.1126/science.270.5244.1958.

Mavi M.S. (2012). Dissolved organic matter dynamics and microbial activity in salt-affected soils. Doctoral thesis. Departament soils school of agriculture food and wine. The University of Adelaide Australia. 146 pp.

Mayer L. M. and Xing B. (2001). Organic matter–surface area relationships in acid soils. Soil Sci Soc Am J. 65 (1), 250-258.

Mayer L. M., Schick L. L., Hardy K. R., Wagai R. and McCarthy J. (2004). Organic matter in small mesopores in sediments and soils. Geochim Cosmochim Ac. 68 (19), 3863-3872.

McDowell W. H. and Likens G. E. (1988). Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol Monogr. 58 (3), 177-195.

Meli S., Porto M., Belligno A., Bufo S. A., Mazzatura A. and Scopa A. (2002). Influence of irrigation with lagooned urban wastewater on chemical and microbiological soil parameters in a citrus orchard under Mediterranean condition. Sci Total Environ. 285 (1), 69-77.

Metcalf and Eddy (2003). Wastewater Engineering – Treatment and Reuse. 4a ed. McGraw-Hill, Inc., New York. 1771 pp.

Morugán-Coronado A., García-Orenes F., Mataix-Solera J., Arcenegui V. And Mataix-Beneyto J. (2011). Short-term effects of treated wastewater irrigation on Mediterranean calcareous soil. Soil Till Res. 112 (1), 18-26.

Mostofa K. M.and Sakugawa H. (2009). Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers. Environ Chem. 6 (6), 524-534.

Navarro Blaya S., and Navarro García G. (2003). Química agrícola: el suelo y los elementos químicos esenciales para la vida vegetal. Mundi-Prensa Libros. Madrid, 487 pp.

Nadav I., Tarchitzky J., Lowengart-Aycicegi A. and Chen Y. (2013). Soil surface water repellency induced by treated wastewater irrigation: physico-chemical characterization and quantification. Irrigation Sci. 31 (1), 49-58. DOI 10.1007/s00271 -01 1 -0291 -3.

Nikolskii-Gavrilov I., Aidarov I. P., Landeros-Sanchez C., Herrera-Gomez S. and Bakhlaeva-Egorova O. (2014). Evaluation of Soil Fertility Indices of Freshwater Irrigated Soils in Mexico Across Different Climatic Regions. J Agr Sci. 6 (6), 98.

Ohno T., Fernandez I. J., Hiradate S. and Sherman J. F. (2007). Effects of soil acidification and forest type on water soluble soil organic matter properties. Geoderma. 140 (1), 176-187.

Qualls R. G., Haines B. L. and Swank W. T. (1991). Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology. 72 (1), 254-266.

Prasad R. and Power J.F. (1997). Soil fertility management for sustainable agriculture. Lewis Publishers. New York, USA, 384 pp.

Rice C.W. (2002). Organic matter and nutrient dynamics. In: Encyclopedia of soil science. pp. 925– 928. New York, USA, Marcel Dekker Inc.

Rusan M. J. M., Hinnawi S. and Rousan L. (2007). Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination. 215 (1), 143-152.

Saadi I., Borisover M., Armon R. and Laor Y. (2006). Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere. 63 (3), 530-539.

Salazar-Ledesma M. (2011). Evaluación del grado de contaminación de la zona Noreste del acuífero somero del Valle de San Luis Potosí, asociado al riego con agua residual. Tesis de maestría, Universidad Autónoma de México, UNAM. México.

Sarabia- Meléndez I.F., Cisneros-Almazán R., Aceves de Alba J., Durán-García H.M. and Castro-Larragoitia J. (2011). Calidad del agua de riego en suelos agrícolas y cultivos del Valle de San Luis Potosí, México. Rev. Int. Contam. Ambie. 27 (2):103-113.

Stevenson F. J. (1994). Humus chemistry: genesis, composition, reactions. 2a ed. John Wiley and Sons. 512 pp.

Sustaita F., Ordaz V., Ortiz C. and De León F. (2000). Cambios en las propiedades físicas de dos suelos de la región semiárida debido al uso agrícola. Agrociencia. 34, 379-386.

Thompson L.M. and Troeh F.R. (1988). Los suelos y su fertilidad. 4a ed. Revert S.A. Barcelona. España. 661 pp.

Traversa A., D’Orazio V. and Senesi N. (2008). Properties of dissolved organic matter in forest soils: influence of different plant covering. Forest Ecol and Manag. 256 (12), 2018-2028.

USDA (2015). United States Department of Agriculture. Natural Resources conservation service. Illustrated guide to soil taxonomy. National Soil Survey Center, Lincoln, Nebraska. 681 pp.

Walkley A. and Black I.A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251-263.

Walker S. and Lin H. (2008). Soil property changes after four decades of wastewater irrigation: a landscape perspective. Catena. 73, 63–74.

Westerhoff P. and Pinney M. (2000). Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater. Waste Manage. 20 (1), 75-83.

Xue S., Zhao Q. L., Wei L. L. and Ren N. Q. (2009). Behavior and characteristics of dissolved organic matter during column studies of soil aquifer treatment. Water Res. 43 (2), 499-507.

Xue S., Zhao Q., Wei L., Song Y. and Tie M. (2013). Fluorescence spectroscopic characterization of dissolved organic matter fractions in soils in soil aquifer treatment. Environ Monit Assess. 185 (6), 4591-4603.

Yuan Y., Zhou S.G., Yuan T., Zhuang L. and Li F.B. (2013). Molecular weight-dependent electron transfer capacities of dissolved organic matter derived from sewage sludge compost. J. Soil Sediment. 13, 56–63.

Zech A. and Guggenberger G. (1996). Organic matter dynamics in forest soils of temperate and tropical ecosystems. In: Piccolo, A. (ed.), Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam. pp 101–170. DOI: 10.1016/B978-044481516-3/50004-9.

Zhao Y., He X. S., Xi B. D., Wei D., Wei Z. M., Jiang Y. H. and Yang T. X. (2010). Effect of pH on the fluorescence characteristic of dissolved organic matter in landfill leachate. Guang pu xue yu guang pu fen xi= Guang pu. 30 (2), 382.

Zsolnay A. (2003). Dissolved organic matter: artefacts, definitions, and functions. Geoderma. 113 (3), 187-209.