Estudio experimental del uso de residuos de botellas de plástico en el hormigón convencional

Contenido principal del artículo

Samuel Huaquisto-Cáceres
Darwin Quenta-Flores

Resumen

Improper management of plastic bottle waste is harming the environment. Recycling this waste for inclusion in the concrete matrix is a viable alternative for its final disposal. The objective of this study was to evaluate the mechanical behavior of conventional concrete with the addition of polyethylene terephthalate (PET) fibers, designed according to the procedures established by the American Concrete Institute for a strength of 20 MPa. The analyzed properties of the concrete included consistency, density, compressive strength, and flexural strength. Sixty cylindrical and 60 prismatic specimens with PET fiber additions of 0%, 2%, 4%, 6%, and 8% by weight of cement were prepared for testing at 7, 14, and 28 days of curing. The results indicate that maximum compressive and flexural strengths of 22.79 MPa and 3.19 MPa are achieved at 28 days by adding 2% and 6% PET fibers. Therefore, its application is recommended up to a proportion of 4%, where the corresponding dosage is 15.78 kilograms of PET fibers per cubic meter of concrete with a workable consistency.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a

Samuel Huaquisto-Cáceres, Universidad Nacional del Altiplano Puno, Perú

 

 

Compartir en:

PLUMX metrics

Citas

Abdulridha, M. A., Salman, M. M., & Banyhussan, Q. S. (2020). Prediction the Strength of Fibered Reinforced Concrete Pavement Using Response Surface Methodology: Parametric Study. {IOP} Conference Series: Materials Science and Engineering, 881, 12180. https://doi.org/10.1088/1757-899x/881/1/012180

Aghayan, I., & Khafajeh, R. (2019). Recycling of PET in asphalt concrete. In Use of Recycled Plastics in Eco-efficient Concrete. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102676-2.00012-8

Al-Hadithi, A. I., Noaman, A. T., & Mosleh, W. K. (2019). Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 224, 111021. https://doi.org/https://doi.org/10.1016/j.compstruct.2019.111021

Ali, B., Qureshi, L. A., & Kurda, R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437. https://doi.org/https://doi.org/10.1016/j.coco.2020.100437

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. https://doi.org/https://doi.org/10.1016/j.jmrt.2020.02.090

AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. Journal of Cleaner Production, 288, 125095. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125095

ASTM C143. (2016). Método de ensayo normalizado para asentamiento de concreto de cemento hidráulico. American Society for Testing and Materials (ASTM).

ASTM C33. (2003). Standard Specification for Concrete Aggregates. American Society for Testing and Materials (ASTM).

ASTM C39. (2018). Método de ensayo normalizado para resistencia a la compresión de especímenes cilíndricos de concreto. American Society for Testing and Materials (ASTM).

ASTM C595. (2020). Standard Specification for Blended Hydraulic Cements. American Society for Testing and Materials (ASTM).

ASTM C78. (2002). Standard test method for flexural strength of concrete (using simple beam with third–point loading). American Society for Testing and Materials (ASTM).

Azhdarpour, A. M., Nikoudel, M. R., & Taheri, M. (2016). The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation. Construction and Building Materials, 109, 55–62. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.01.056

Bozyigit, I., Bulbul, F., Alp, C., & Altun, S. (2021). Effect of randomly distributed pet bottle strips on mechanical properties of cement stabilized kaolin clay. Engineering Science and Technology, an International Journal, 24(5), 1090–1101. https://doi.org/https://doi.org/10.1016/j.jestch.2021.02.012

Bui, N. K., Satomi, T., & Takahashi, H. (2018). Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, 79–93. https://doi.org/https://doi.org/10.1016/j.wasman.2018.05.035

Chan, R., Santana, M. A., Oda, A. M., Paniguel, R. C., Vieira, L. B., Figueiredo, A. D., & Galobardes, I. (2019). Analysis of potential use of fibre reinforced recycled aggregate concrete for sustainable pavements. Journal of Cleaner Production, 218, 183–191. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.221

Christ, R., Pacheco, F., Ehrenbring, H., Quinino, U., Mancio, M., Muñoz, Y., & Tutikian, B. (2019). Study of mechanical behavior of ultra - high performance concrete ( UHPC ) reinforced with hybrid fibers and with reduced cement consumption. Revista Ingenieria de Construccion, 34(2), 159–168. https://doi.org/https://doi.org/10.4067/S0718-50732019000200159

Comité ACI 211. (1991). Práctica estándar para seleccionar proporciones para concreto normal, pesado y masivo. Instituto Americano del Concreto, Farmington Hills.

Cui, X., Liu, G., Wang, C., & Qi, Y. (2019). Effects of PET Fibers on Pumpability, Shootability, and Mechanical Properties of Wet-Mix Shotcrete. Advances in Civil Engineering, 2019, 2756489. https://doi.org/10.1155/2019/2756489

Dawood, A. O., AL-Khazraji, H., & Falih, R. S. (2021). Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, e00482. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00482

Fadhil, S., & Yaseen, M. (2015). The Production of Economical Precast Concrete Panels Reinforced by Waste Plastic Fibers. American Journal of Civil Engineering and Architecture, 3, 80–85. https://doi.org/10.12691/ajcea-3-3-4

Farfán, M., & Leonardo, E. (2018). Caucho reciclado en la resistencia a la compresión y flexión de concreto modificado con aditivo plastificante. Revista Ingeniería de Construcción, 33(3), 241–250. https://doi.org/10.4067/s0718-50732018000300241

Fioriti, C., Segantini, R., Pinheiro, J., Akasaki, J., & Spósito, F. (2020). Bloques de mampostería de hormigón liviano fabricados con caucho de neumáticos y metacaolín. Revista Ingeniería de Construcción, 35(3), 295–307. https://doi.org/10.4067/s0718-50732020000300295

Foti, D. (2019). Recycled waste PET for sustainable fiber-reinforced concrete. In F. Pacheco-Torgal, J. Khatib, F. Colangelo, & R. Tuladhar (Eds.), Use of Recycled Plastics in Eco-efficient Concrete (pp. 387–410). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-102676-2.00018-9

Hameed, A. M., & Fatah Ahmed, B. A. (2019). Employment the plastic waste to produce the light weight concrete. Energy Procedia, 157, 30–38. https://doi.org/https://doi.org/10.1016/j.egypro.2018.11.160

Hassouna, F. M. A., & Jung, Y. W. (2020). Developing a Higher Performance and Less Thickness Concrete Pavement: Using a Nonconventional Concrete Mixture. Advances in Civil Engineering, 2020, 8822994. https://doi.org/10.1155/2020/8822994

Hussain, I., Ali, B., Akhtar, T., Jameel, M. S., & Raza, S. S. (2020). Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Studies in Construction Materials, 13, e00429. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00429

Islam, M. J., Meherier, M. S., & Islam, A. K. M. R. (2016). Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete. Construction and Building Materials, 125, 946–951. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.08.128

Khan, M. I., Umair, M., Shaker, K., Basit, A., Nawab, Y., & Kashif, M. (2020). Impact of waste fibers on the mechanical performance of concrete composites. The Journal of The Textile Institute, 111(11), 1632–1640. https://doi.org/10.1080/00405000.2020.1736423

Khatab, H. R., Mohammed, S. J., & Hameed, L. A. (2019). Mechanical Properties of Concrete Contain Waste Fibers of Plastic Straps. {IOP} Conference Series: Materials Science and Engineering, 557, 12059. https://doi.org/10.1088/1757-899x/557/1/012059

Macedo, A., & Lorenzetti, A. (2021). Behavior analysis of high strength concrete containing macro-polymeric fibers based on workability and mechanical properties. Revista Ingeniería de Construcción, 36(2), 142–156. https://doi.org/http://dx.doi.org/10.4067/S0718-50732021000200142

Małek, M., Jackowski, M., Łasica, W., & Kadela, M. (2020). Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement. Materials, 13(8). https://doi.org/10.3390/ma13081827

Martínez-Soto, I. E., & Mendoza-Escobedo, C. J. (2006). Comportamiento mecánico de concreto fabricado con agregados reciclados. Ingeniería Investigación y Tecnología, 7(3), 151–164. https://doi.org/https://doi.org/10.22201/fi.25940732e.2006.07n3.012

Meza de Luna, A., & Shaikh, F. U. A. (2020). Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction and Building Materials, 265, 120331. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120331

Mohammed, A. A., & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244, 118350. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118350

Mohseni, E., Kazemi, M. J., Koushkbaghi, M., Zehtab, B., & Behforouz, B. (2019). Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Construction and Building Materials, 209, 532–540. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.03.067

Ojeda, J. P., & Mercante, I. T. (2021). Reciclaje de residuos plásticos para la producción de agregados livianos. Revista Internacional de Contaminación Ambiental, 37, 489–499. https://doi.org/10.20937/rica.54081

Sharma, R., & Bansal, P. P. (2016). Use of different forms of waste plastic in concrete – a review. Journal of Cleaner Production, 112, 473–482. https://doi.org/https://doi.org/10.1016/j.jclepro.2015.08.042

Shubbar, S. D. A., & Al-Shadeedi, A. S. (2017). Utilization of waste plastic bottles as fine aggregate in concrete. Kufa Journal of Engineering, 8(2), 132–146. https://www.iasj.net/iasj/download/3e4ebf31139fc017

Subramani, T., & Rahman, A. F. (2017). An Experimental Study On The Properties Of Pet Fibre Reinforced Concrete. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 6(3), 58–66. https://www.ijaiem.org/Volume6Issue3/IJAIEM-2017-03-14-18.pdf

Thomas, L. M., & Moosvi, S. A. (2020). Hardened properties of binary cement concrete with recycled PET bottle fiber: An experimental study. Materials Today: Proceedings, 32, 632–637. https://doi.org/https://doi.org/10.1016/j.matpr.2020.03.025

Torres, D. A., Bastidas, J. G., & Ruge Cárdenas, J. C. (2018). Reinforced Concrete with Synthetic Fibers (PET+PP) for Rigid Pavement Structures. 2018 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1–5. https://doi.org/10.1109/CONIITI.2018.8587056

Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.05.105

Zeyad, A. M., Khan, A. H., & Tayeh, B. A. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806–818. https://doi.org/https://doi.org/10.1016/j.jmrt.2019.11.021

Zhao, Z., Xiao, F., & Amirkhanian, S. (2020). Recent applications of waste solid materials in pavement engineering. Waste Management, 108, 78–105. https://doi.org/https://doi.org/10.1016/j.wasman.2020.04.024