Estudio experimental del uso de residuos de botellas de plástico en el hormigón convencional

Contenido principal del artículo

Samuel Huaquisto-Cáceres
Darwin Quenta-Flores


Improper management of plastic bottle waste is harming the environment. Recycling this waste for inclusion in the concrete matrix is a viable alternative for its final disposal. The objective of this study was to evaluate the mechanical behavior of conventional concrete with the addition of polyethylene terephthalate (PET) fibers, designed according to the procedures established by the American Concrete Institute for a strength of 20 MPa. The analyzed properties of the concrete included consistency, density, compressive strength, and flexural strength. Sixty cylindrical and 60 prismatic specimens with PET fiber additions of 0%, 2%, 4%, 6%, and 8% by weight of cement were prepared for testing at 7, 14, and 28 days of curing. The results indicate that maximum compressive and flexural strengths of 22.79 MPa and 3.19 MPa are achieved at 28 days by adding 2% and 6% PET fibers. Therefore, its application is recommended up to a proportion of 4%, where the corresponding dosage is 15.78 kilograms of PET fibers per cubic meter of concrete with a workable consistency.


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a

Samuel Huaquisto-Cáceres, Universidad Nacional del Altiplano Puno, Perú



Compartir en:

PLUMX metrics


Abdulridha, M. A., Salman, M. M., & Banyhussan, Q. S. (2020). Prediction the Strength of Fibered Reinforced Concrete Pavement Using Response Surface Methodology: Parametric Study. {IOP} Conference Series: Materials Science and Engineering, 881, 12180.

Aghayan, I., & Khafajeh, R. (2019). Recycling of PET in asphalt concrete. In Use of Recycled Plastics in Eco-efficient Concrete. Elsevier Ltd.

Al-Hadithi, A. I., Noaman, A. T., & Mosleh, W. K. (2019). Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 224, 111021.

Ali, B., Qureshi, L. A., & Kurda, R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437.

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643.

AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. Journal of Cleaner Production, 288, 125095.

ASTM C143. (2016). Método de ensayo normalizado para asentamiento de concreto de cemento hidráulico. American Society for Testing and Materials (ASTM).

ASTM C33. (2003). Standard Specification for Concrete Aggregates. American Society for Testing and Materials (ASTM).

ASTM C39. (2018). Método de ensayo normalizado para resistencia a la compresión de especímenes cilíndricos de concreto. American Society for Testing and Materials (ASTM).

ASTM C595. (2020). Standard Specification for Blended Hydraulic Cements. American Society for Testing and Materials (ASTM).

ASTM C78. (2002). Standard test method for flexural strength of concrete (using simple beam with third–point loading). American Society for Testing and Materials (ASTM).

Azhdarpour, A. M., Nikoudel, M. R., & Taheri, M. (2016). The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation. Construction and Building Materials, 109, 55–62.

Bozyigit, I., Bulbul, F., Alp, C., & Altun, S. (2021). Effect of randomly distributed pet bottle strips on mechanical properties of cement stabilized kaolin clay. Engineering Science and Technology, an International Journal, 24(5), 1090–1101.

Bui, N. K., Satomi, T., & Takahashi, H. (2018). Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, 79–93.

Chan, R., Santana, M. A., Oda, A. M., Paniguel, R. C., Vieira, L. B., Figueiredo, A. D., & Galobardes, I. (2019). Analysis of potential use of fibre reinforced recycled aggregate concrete for sustainable pavements. Journal of Cleaner Production, 218, 183–191.

Christ, R., Pacheco, F., Ehrenbring, H., Quinino, U., Mancio, M., Muñoz, Y., & Tutikian, B. (2019). Study of mechanical behavior of ultra - high performance concrete ( UHPC ) reinforced with hybrid fibers and with reduced cement consumption. Revista Ingenieria de Construccion, 34(2), 159–168.

Comité ACI 211. (1991). Práctica estándar para seleccionar proporciones para concreto normal, pesado y masivo. Instituto Americano del Concreto, Farmington Hills.

Cui, X., Liu, G., Wang, C., & Qi, Y. (2019). Effects of PET Fibers on Pumpability, Shootability, and Mechanical Properties of Wet-Mix Shotcrete. Advances in Civil Engineering, 2019, 2756489.

Dawood, A. O., AL-Khazraji, H., & Falih, R. S. (2021). Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, e00482.

Fadhil, S., & Yaseen, M. (2015). The Production of Economical Precast Concrete Panels Reinforced by Waste Plastic Fibers. American Journal of Civil Engineering and Architecture, 3, 80–85.

Farfán, M., & Leonardo, E. (2018). Caucho reciclado en la resistencia a la compresión y flexión de concreto modificado con aditivo plastificante. Revista Ingeniería de Construcción, 33(3), 241–250.

Fioriti, C., Segantini, R., Pinheiro, J., Akasaki, J., & Spósito, F. (2020). Bloques de mampostería de hormigón liviano fabricados con caucho de neumáticos y metacaolín. Revista Ingeniería de Construcción, 35(3), 295–307.

Foti, D. (2019). Recycled waste PET for sustainable fiber-reinforced concrete. In F. Pacheco-Torgal, J. Khatib, F. Colangelo, & R. Tuladhar (Eds.), Use of Recycled Plastics in Eco-efficient Concrete (pp. 387–410). Woodhead Publishing.

Hameed, A. M., & Fatah Ahmed, B. A. (2019). Employment the plastic waste to produce the light weight concrete. Energy Procedia, 157, 30–38.

Hassouna, F. M. A., & Jung, Y. W. (2020). Developing a Higher Performance and Less Thickness Concrete Pavement: Using a Nonconventional Concrete Mixture. Advances in Civil Engineering, 2020, 8822994.

Hussain, I., Ali, B., Akhtar, T., Jameel, M. S., & Raza, S. S. (2020). Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Studies in Construction Materials, 13, e00429.

Islam, M. J., Meherier, M. S., & Islam, A. K. M. R. (2016). Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete. Construction and Building Materials, 125, 946–951.

Khan, M. I., Umair, M., Shaker, K., Basit, A., Nawab, Y., & Kashif, M. (2020). Impact of waste fibers on the mechanical performance of concrete composites. The Journal of The Textile Institute, 111(11), 1632–1640.

Khatab, H. R., Mohammed, S. J., & Hameed, L. A. (2019). Mechanical Properties of Concrete Contain Waste Fibers of Plastic Straps. {IOP} Conference Series: Materials Science and Engineering, 557, 12059.

Macedo, A., & Lorenzetti, A. (2021). Behavior analysis of high strength concrete containing macro-polymeric fibers based on workability and mechanical properties. Revista Ingeniería de Construcción, 36(2), 142–156.

Małek, M., Jackowski, M., Łasica, W., & Kadela, M. (2020). Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement. Materials, 13(8).

Martínez-Soto, I. E., & Mendoza-Escobedo, C. J. (2006). Comportamiento mecánico de concreto fabricado con agregados reciclados. Ingeniería Investigación y Tecnología, 7(3), 151–164.

Meza de Luna, A., & Shaikh, F. U. A. (2020). Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction and Building Materials, 265, 120331.

Mohammed, A. A., & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244, 118350.

Mohseni, E., Kazemi, M. J., Koushkbaghi, M., Zehtab, B., & Behforouz, B. (2019). Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Construction and Building Materials, 209, 532–540.

Ojeda, J. P., & Mercante, I. T. (2021). Reciclaje de residuos plásticos para la producción de agregados livianos. Revista Internacional de Contaminación Ambiental, 37, 489–499.

Sharma, R., & Bansal, P. P. (2016). Use of different forms of waste plastic in concrete – a review. Journal of Cleaner Production, 112, 473–482.

Shubbar, S. D. A., & Al-Shadeedi, A. S. (2017). Utilization of waste plastic bottles as fine aggregate in concrete. Kufa Journal of Engineering, 8(2), 132–146.

Subramani, T., & Rahman, A. F. (2017). An Experimental Study On The Properties Of Pet Fibre Reinforced Concrete. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 6(3), 58–66.

Thomas, L. M., & Moosvi, S. A. (2020). Hardened properties of binary cement concrete with recycled PET bottle fiber: An experimental study. Materials Today: Proceedings, 32, 632–637.

Torres, D. A., Bastidas, J. G., & Ruge Cárdenas, J. C. (2018). Reinforced Concrete with Synthetic Fibers (PET+PP) for Rigid Pavement Structures. 2018 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1–5.

Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188.

Zeyad, A. M., Khan, A. H., & Tayeh, B. A. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806–818.

Zhao, Z., Xiao, F., & Amirkhanian, S. (2020). Recent applications of waste solid materials in pavement engineering. Waste Management, 108, 78–105.