Potencial del arbusto Lantana camara L. (Verbenaceae) para la fitoestabilización y volatilización de mercurio

Contenido principal del artículo

Carlos Narváez Romero
Carolina Kalinhoff Rojas
Aminael Sánchez Rodríguez

Resumen

Mercury (Hg) is the most harmful heavy metal for living beings due to its high toxicity, persistence, and bioaugmentation in the food web. Lantana camara has been considered promising for the phytoremediation of different metals, but its response to Hg has not been characterized. The objective of this study was to evaluate the effectiveness of L. camara to bioaccumulate, translocate, and volatilize Hg in artificially contaminated soils (1.0 and 8.0 mg/kg Hg). After two months of treatment, the dry weight was measured and the Hg present in stems, roots, leaves, and atmosphere was quantified using atomic absorption spectroscopy. The volatilized Hg was captured in hermetic chambers with continuous airflow, connected to a trap solution (5 % KMnO4 dissolved in H2SO4). The translocation factor was < 1, and the bioaccumulation factor was > 1 in both treatments. The Hgº values volatilized in high mercury indicate that approximately 7.1 µg/g plant/day can be released into the atmosphere. Our results indicate that L. camara accumulates Hg mainly in the root, showing potential for phytostabilization, but the observed volatilization rates point towards a more restricted use of this species in phytoremediation strategies.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Compartir en:

PLUMX metrics

Citas

• Adriano D.C. (2001). Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability, and Risk of Metals. Mercury. 2da ed, New York, NY, Springer-Verlag, 867 pp.

• Alaribe F.O. y Agamuthu P. (2015). Assessment of phytoremediation potentials of Lantana camara in Pb impacted soil with organic waste additives. Ecological Engineering 83, 513–520. https://doi.org/10.1016/j.ecoleng.2015.07.001

• Arathi T., Rahna K.P., Sebastian D.P., y George S. (2021). Assessment of Heavy Metal and Pesticide Contamination in Banana Fields and Development of Phytoremediation System in Kozhikode District, Kerala, India. Nature Environment and Pollution Technology, 20(3), 1251-1256. https://doi.org/10.46488/NEPT.2021.v20i03.035

• Brooks R.R. (1998). Plants that hyperaccumulate heavy metals. En: Plants and the Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicity. (M. E. Farago, Ed.). Wallingford: CAB International. Greenland DJ. 87-105 pp. http://doi.org/10.1002/9783527615919.ch4

• Chamba I., Rosado D., Kalinhoff C., Thangaswamy S., Sánchez-Rodríguez A. y Gazquez M. J. (2017). Erato polymnioides–A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. Chemosphere 188, 633-641. http://doi.org/10.1016/j.chemosphere.2017.08.160

• Conesa H.M., Faz Á. y Arnaldos R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain), Sci. Total Environ 366, 1-11. http://doi.org/10.1016/j.scitotenv.2005.12.008

• Covarrubias S. y Peña-Cabriales J. (2017). Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Revista Internacional de Contaminación Ambiental 33, 7-21. https://doi.org/10.20937/RICA.2017.33.esp01.01

• Day M., Wiley C.J., Playford J. y Zalucki M.P. (2003). Lantana: Current Management Status and Future Prospects. ACIAR Monograph 102, Australian Centre for International Agricultural Research, Canberra, Australia, 128 pp.

• Fernández-Martínez R., Larios R., Gómez-Pinilla I., Gómez-Mancebo B., López-Andrés S., Loredo J., Ordoñez A. y Rucandio I. (2015). Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253, 30-38. https://doi.org/10.1016/j.geoderma.2015.04.005

• González R.C. y González-Chávez M.C. (2006). Metal accumulation in wild plants surrounding mining wastes, Environmental pollution 144, 84-92. http://doi.org/10.1016/j.envpol.2006.01.006

• Greger M., Wang Y.D. y Neuschutz C. (2005). Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environ Pollut 134 (2), 201–208. http://doi.org/10.1016/j.envpol.2004.08.007

• Hutchison A.R. y Atwood D.A. (2003). Mercury pollution and remediation: the chemist’s response to a global crisis. J Chem Crystal 33, 631-645. http://doi.org/10.1023/A:1024906212586

• Jusselme M.D., Miambi E., Mora P., Diouf M. y Rouland-Lefèvre C. (2013) Increased lead availability and enzyme activities in root-adhering soil of Lantana camara during phytoextraction in the presence of earthworms. Science of The Total Environment 445–446, 101-109. http://doi.org/10.1016/j.scitotenv.2012.12.054

• Kabata-Pendias, A. y Pendias, H. (2011) Trace Elements in Soils and Plants. 4th Edition, CRC Press, Boca Raton. http://doi.org/10.1201/b10158

• Kahangwa C.A., Nahonyo C.L., Sangu G. y Nassary E.K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7 (9), e07979. https://doi.org/10.1016/j.heliyon.2021.e07979

• Kramer U. (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61, 517-534. https://www.annualreviews.org/doi/abs/10.1146/annurev-arplant-042809-112156

• Le Jeune A.H., Bourdio F., Aldamman L., Perron T., Amyot M. y Pinel-Alloul B. (2012). Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus. Environmental Pollution 165, 100-108. http://doi.org/10.1016/j.envpol.2012.02.003

• Leonard T.L., Taylor Jr. G.E., Gustin M.S. y Fernandez G.C.J. (1998). Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environmental Toxicology and Chemistry 17, 2063–2071. https://doi.org/10.1002/etc.5620171024

• Liu S., Ali S., Yang R., Tao J. y Ren B. (2019). A newly discovered Cd-hyperaccumulator Lantana camara L. Journal of Hazardous Materials 371, 233-242. https://doi.org/10.1016/j.jhazmat.2019.03.016

• Liu Z., Chen B., Wang L. A., Urbanovich O., Nagorskaya L., Li X., y Tang L. (2020). A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 400, 123138. http://doi.org/10.1016/j.jhazmat.2020.123138

• Long X., Ni W., Ye Z. y Yang X. (2002). Effect of organic acids application on zinc uptake and accumulation by two ecotypes of Sedum alfredii Hance. Plant Nutrition and Fertitizer Science 8(4), 467-472.

• Marrugo-Negrete J., Marrugo-Madrid S., Pinedo-Hernández J., Durango-Hernández J. y Díez S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the total environment 542, 809-816. http://doi.org/10.1016/j.scitotenv.2015.10.117

• Mensah A.K., Marschner B., Antoniadis V., Stemn E., Shaheen S.M. y Rinklebe J. (2021). Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Science of The Total Environment, 798, 149272. http://doi.org/10.1016/j.scitotenv.2021.149272

• Moreno F.N., Anderson C.W., Stewart R.B., y Robinson B.H. (2005). Mercury volatilisation and phytoextraction from base-metal mine tailings. Environmental pollution 136 (2), 341-352. https://doi.org/10.1016/j.envpol.2004.11.020

• Nedjimi B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences 3, 286. https://doi.org/10.1007/s42452-021-04301-4

• Negi G., Sharma S., Vishvakarma S.C., Samant S.S., Maikhuri R.K., Prasad R.C. y Palni L. (2019). Ecology and use of Lantana camara in India. The Botanical Review 85, 109-130. http://doi.org/10.1007/s12229-019-09209-8

• Pandey S.K., Bhattacharya T. y Chakraborty S. (2016). Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. International journal of phytoremediation, 18(1), 87-93. http://doi.org/10.1080/15226514.2015.1064353

• Raskin I. y Ensley B.D. Eds. (2000). Rationale for use of phytoremediation. In Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Wiley: New York, NY, USA. pp. 3–11.

• Rodallega Nazarit S.E. (2015). Aislamiento y caracterización de bacterias capaces de degradar cianuro presente en tanques de almacenamiento de cianuro en una mina de oro del municipio de Buenos Aires Cauca. Trabajo de grado de título de pregrado en Química Farmacéutica. Universidad Icesi Facultad de Ciencias Naturales. Santiago de Cali, Colombia, 47pp.

• Shahid M., Khalid S., Bibi I., Bundschuh J., Niazi N. K. y Dumat C. (2020). A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Science of the total environment. 711, 134749. https://doi.org/10.1016/j.scitotenv.2019.134749

• Sahoo S. (2017) Phytoremediation potential of some native plants growing in the vicinity of sponge iron industry. Pollution Research Volume 36 (2), 333-339.

• Sharma G.P., Raghubanshi A.S. y Singh J.S. (2005). Lantana invasion: An overview. Weed Biology and Management 5, 157-165. https://doi.org/10.1111/j.1445-6664.2005.00178.x

• Swain E.B., Jakus P.M., Rice G., Lupi F., Maxson P.A., Pacyna J.M., Penn A., Spiegel S.J. y Veiga M.M. (2007). Socioeconomic consequences of mercury use and pollution. Ambio 36 (1), 45-61. http://doi.org/10.1579/0044-7447(2007)36[45:scomua]2.0.co;2.

• Tahtamouni R.W., Shibli R.A., Younes L.S., Abu-Mallouh S., & Al-Qudah T.S. (2020). Responses of Lantana Camara Linn. Callus Cultures to Heavy Metals Added to the Culture Media. Jordan Journal of Biological Sciences, 13(4). https://jjbs.hu.edu.jo/files/vol13/n4/Paper%20Number%2018.pdf

• Vasudevan P. y Jain S.K. (1991). Utilization of exotic weeds: an approach to control. En: Ecology of Biological Invasion in the Tropics. (Ramakrishnan P.S. Ed.). International Scientific Publishers, New Delhi, India. pp. 157-175.

• Verma, S. (2018). Medicinal potential of lantana camara: Verbenaceae. Journal of Drug Delivery and Therapeutics 8 (4), 62-64. https://doi.org/10.22270/jddt.v8i4.1771

• Welna M. y Pohl P. (2017). Potential of the hydride generation technique coupled to inductively coupled plasma optical emission spectrometry for non-chromatographic As speciation. Journal of Analytical Atomic Spectrometry, 32, 1766–1779. https://doi.org/10.1039/C7JA00107J

• Wu W., Wang J., Yu Y., Jiang H., Liu N., Bi J. y Liu M. (2018). Optimizing critical source control of five priority-regulatory trace elements from industrial wastewater in China: implications for health management. Environ Pollut 235, 761-770. https://doi.org/10.1016/j.envpol.2018.01.005

• Xie Y.-H., Zhang M.-H., Xiong R., Li T., Pu Y.-L., Xu X.-X., Li F., Zhang S.-R. y Jia Y.-X. (2021). Study on the tolerance and detoxification mechanisms of lantana camara under the combined stress of cadmium, lead and zinc. Journal of Ecology and Rural Environment. 37 (9), 1209-1217. http://doi.org/10.19741/j.issn.1673-4831.2020.1027

• Yu Y., Zhang S. y Huang H. (2010). Behavior of mercury in a soil–plant system as affected by inoculation with the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza, 20(6), 407-414. http://doi.org/10.1007/s00572-009-0296-4