Atmospheric particulate matter deposition in herbaceous species on a university campus in Colombia

Contenido principal del artículo

Manuela Vásquez-Bedoya
Luisa María Arboleda-Restrepo
Angélica Posada-Bermúdez
L. Alejandro Giraldo
Valentina Mejía-Calderón
Andrea Ramírez-Villa
David Jiménez-Londoño
Estela Quintero-Vallejo

Resumen

Atmospheric particulate matter (PM) is one of the most harmful atmospheric pollutants with implications for human health. Plants have been used as an alternative for the removal of atmospheric PM in urban environments. The removal of PM depends on different plant morphological traits, including trichomes and epicuticles evaluated on trees. However, leaf traits for herbaceous plants commonly used in urban gardens have not been fully explored. This study used filtering to quantify the PM deposition and to describe leaf morphological traits throughout optical devices on 20 leaves from six herbaceous species –Calathea rufibarba, Calathea zebrina, Heliconia psittacorum, Heliconia rostrata, Philodendron sp. and Dieffenbachia sp. Our results suggest that structures such as trichomes –C. rufibarba– and epicuticle –H. psittacorum– play a role in PM deposition. On the other hand, large leaf size did not influence the deposition of PM per leaf unit area. Therefore, for improving city air quality, our study suggests selecting species with epidermal traits independent of leaf area. This is the first study focusing on ornamental herbaceous species ability for PM deposition in urban environments in Medellín, Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Compartir en:

PLUMX metrics

Citas

Andersson-Sköld Y, Thorsson S, Rayner D, Lindberg F, Janhäll S, Jonsson A., … Granberg, M.

An integrated method for assessing climate-related risks and adaptation alternatives in urban areas. Climate Risk Management, 7: 31–50, 2015. https://doi.org/10.1016/J.CRM.2015.01.003

Área Metropolitana del Valle de Aburrá, Monitoreo de la calidad del aire. 2017. http://www.metropol.gov.co/CalidadAire/Paginas/monitoreocalidadaire.aspx

Baldauf R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transportation Research Part D: Transport and Environment, 52: 354–361, 2017. https://doi.org/10.1016/J.TRD.2017.03.013

Barima Y. S. S, Angaman D. M, N’gouran K. P, Koffi N. A, Tra Bi F. Z, Samson R. Involvement of leaf characteristics and wettability in retaining air particulate matter from tropical plant species, Environ. Eng. Res., 21(2): 121-131, 2016.

Bedoya J and Martínez E. Calidad del aire en el Valle de Aburrá Antioquia -Colombia. Dyna, 76(158): 7-15, 2009.

Bonn, B., E. von Schneidemesser, D. Andrich, J. Quedenau, H. Gerwig, A. Lüdecke, J. Kura, A. Pietsch, C. Ehlers, D. Klemp, C. Kofahl, R. Nothard, A. Kerschbaumer, W. Junkermann, R. Grote, T. Pohl, K. Weber, B. Lode, P. Schönberger, G. Churkina, T. M. Butler, and M. G. Lawrence. 2016. BAERLIN2014 - The influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin. Atmospheric Chemistry and Physics 16:7785-7811.

Boletín Climatológico Mensual -Climatológico mensual - IDEAM. Ideam.gov.co. http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual.

Burkhardt J. Hygroscopic particles on leaves: nutrients or desiccants?. Ecological Monographs, 80(3): 369-399, 2010. https://doi.org/10.1890/09-1988.1

Cadavid N and Ospina J.P. ¿Cómo se prepara el valle de aburrá para enfrentar el cambio climático? propuestas desde el Plan Bio 2030. Dyna, 80(179): 176-185, 2013.

Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environmental Pollution, 183: 71–80, 2013. https://doi.org/10.1016/j.envpol.2013.03.012

Chen L, Liu C, Zhang L, Zou R, Zhang Z. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM 2.5). Scientific Reports, 7(1): 1–11, 2017. https://doi.org/10.1038/s41598-017-03360-1

Corada, K., Woodward, H., Alaraj, H., Collins, C. M., & de Nazelle, A. (2020). A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environmental Pollution, 116104. doi:10.1016/j.envpol.2020.116104.

Dzierżanowski K, Popek R, Gawro H, Sæbø A, Gawroński S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. International Journal of Phytoremediation, 13: 37–41, 2011. http://doi.org/10.1080/15226514.2011.552929

EAFIT, U. Campus EAFIT - Acerca de EAFIT / Campus EAFIT - Universidad EAFIT. Eafit.edu.co. http://www.eafit.edu.co/campus-eafit

El-Fadel M, Massoud M. Particulate matter in urban areas: health-based economic assessment.

Science of the Total Environment, 257(2-3): 133-146, 2000 https://doi.org/10.1016/S00489697(00)00503-9

El-Khatib, A. A., El-Rahman, A. M., & Elsheikh, O. M. (2011). Leaf geometric design of urban trees: Potentiality to capture airborne particle pollutants. J. Environ. Stud, 7, 49-59.

Escobedo, F. J., Kroeger, T., & Wagner, J. E. Urban forests and pollution mitigation : Analyzing ecosystem services and disservices. Environmental Pollution, 159(8-9): 2078–2087, 2011. http://doi.org/10.1016/j.envpol.2011.01.010.

Fallmann J., Renate Forkel, Stefan Emeis. Secondary effects of urban heat island mitigation measures on air quality. Atmospheric Environment. 125(A):199-211, 2016. 2016 https://doi.org/10.1016/j.atmosenv.2015.10.094.

Grote R, Samson R, Alonso R, Amorim J.H, Cariñanos P, Churkina, G, … Calfapietra, C. Functional traits of urban trees: air pollution mitigation potential. Frontiers in Ecology and the Environment, 14(10): 543–550, 2016. https://doi.org/10.1002/fee.1426

Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055 doi:https://doi.org/10.1016/j.scitotenv.2017.01.158.

Hermelin M. (2007). Entorno natural de 17 ciudades de Colombia. Ediciones EAFIT, Medellín Colombia. pp 187-195 ISBN: 978-958-8281-70-4

Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM. Medellín, Colombia. 2018. Retrieved from http://www.ideam.gov.co/

Janhäll S. Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmospheric Environment, 105: 130–137, 2015. https://doi.org/10.1016/j.atmosenv.2015.01.052

Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric environment, 60, 504-526.

Kim, J. J., Park, J., Jung, S. Y., & Lee, S. J. (2020). Effect of trichome structure of Tillandsia usneoides on deposition of particulate matter under flow conditions. Journal of hazardous materials, 393, 122401.

Kleerekoper, L., Van Esch, M., & Salcedo, T. B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30-38.

Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure – A case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599–600, 1728–1739, doi:https://doi.org/10.1016/j.scitotenv.2017.05.051.

Kwak, M. J., Lee, J., Kim, H., Park, S., Lim, Y., Kim, J. E., ... & Woo, S. Y. (2019). The removal efficiencies of several temperate tree species at adsorbing airborne particulate matter in urban forests and roadsides. Forests, 10(11), 960.

Leonard, R.J., McArthur, C., Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban Forestry & Urban Greening. 20: 249-253, 2016. https://doi.org/10.1016/j.ufug.2016.09.008.

Li, Y., S. Wang, and Q. Chen. 2019. Potential of thirteen urban greening plants to capture particulate matter on leaf surfaces across three levels of ambient atmospheric pollution. International Journal of Environmental Research and Public Health 16:402

Lopez-Restrepo, S.; Yarce, A.; Pinel, N.; Quintero, O.L.; Segers, A.; Heemink, A.W. Forecasting PM10 and PM2.5 in the Aburrá Valley (Medellín, Colombia) via EnKF based data assimilation. Atmos. Environ. 2020, 232, 117507, doi:https://doi.org/10.1016/j.atmosenv.2020.117507.

Muhammad, S., Wuyts, K., & Samson, R. (2019). Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment. Atmospheric Environment, 202, 328-344.

Mukherjee, A.; Agrawal, M. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects BT - Reviews of Environmental Contamination and Toxicology Volume 244. In; de Voogt, P., Ed.; Springer International Publishing: Cham, 2018; pp. 5–51 ISBN 978-3-31966875-8.

Murray E.D. Air movement: guidelines. Editor(s): T.W. Tibbitts., T.T. Kozlowski. Controlled Environment Guidelines for Plant Research, Academic Press, Pages 381-390, 1979. https://doi.org/10.1016/B978-0-12-690950-0.50030-2.

Nowak, D., & Heisler, G. (2010). Air quality effects of urban trees and parks. Research Series Monograph. Ashburn, VA: National Recreation and Parks Association Research Series Monograph. 44 p., 1-44.

Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ... & Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust. Bot. 61, 167–234.

Prajapati S.K., Tripathi B.D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. Journal of Environmental Quality, 37(3): 865–870, 2008. https://doi.org/10.2134/jeq2006.0511.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. https://www.R-project.org/.

Rendón A.M, Salazar J.F. & Wirth V. Daytime air pollution transport mechanisms in stable atmospheres of narrow versus wide urban valleys. Environ Fluid Mech, 20: 1101–1118. 2020. https://doi.org/10.1007/s10652-020-09743-9

Rivera B & Guarin F. Intercepción de partículas suspendidas totales (PST) por cinco especies de árboles urbanos en el Valle de Aburrá. Rev. Fac. Ing. Univ. Antioquia, 47, 2009.

Sæbø A, Popek R, Nawrot B, Hanslin H.M., Gawronska H, Gawronski, S. W. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment,427-428: 347–354, 2012. http://doi.org/10.1016/j.scitotenv.2012.03.084

Salgado-Negret B.E, Martínez-Anzola J.C, Cubillos C. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad protocolos y aplicaciones Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. (primera; Beatriz Salgado Negret, ed.). Bogotá, Colombia. 2016. Retrieved from https://openlibrary.org/books/OL26381232M/La_ecología_funcional_como_aproximación_al_estudio_manejo_y_conservación_de_la_biodiversidad_protoco

Schneider C.A, Rasband W.S, Eliceiri, K.W. "NIH Image to ImageJ: 25 years of image analysis". Nature Methods 9, 671-675, 2012.

Sgrigna, G., Baldacchini, C., Dreveck, S., Cheng, Z., & Calfapietra, C. (2020). Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Science of The Total Environment, 718, 137310.

Shao, F., L. Wang, F. Sun, G. Li, L. Yu, Y. Wang, X. Zeng, H. Yan, L. Dong, and Z. Bao. 2019. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Science of the Total Environment 652:939-951.

Song Y, Maher B.A, Li F, Wang X, Sun X, Zhang H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environment, 105: 53–60, 2015. https://doi.org/10.1016/j.atmosenv.2015.01.032

Vos P.E.J, Maiheu B, Vankerkom J, Janssen S. Improving local air quality in cities: To tree or not to tree? Environmental Pollution, 183: 113–122, 2013. https://doi.org/10.1016/J.ENVPOL.2012.10.021

Voutsa D, Samara C. Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric environment, 36(22): 3583-3590, 2002. https://doi.org/10.1016/S1352-2310(02)00282-0

Weber F, Kowarik I, Säumel I. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environmental Pollution, 186: 234–240, 2014. https://doi.org/10.1016/j.envpol.2013.12.011

Wang, J., Huang, J., Wang, L., Chen, C., Yang, D., Jin, M., ... & Song, Y. (2017). Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. Journal of thoracic disease, 9(11), 4398.

Weerakkody U, Dover J.W., Mitchell P, Reiling K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Science of The Total Environment. 635: 1012-1024, 2018a. https://doi.org/10.1016/j.scitotenv.2018.04.106.

Weerakkody U, Dover J.W, Mitchell P, Reiling K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban Forestry and Urban Greening, 30: 98–107, 2018b. https://doi.org/10.1016/j.ufug.2018.01.001

World Health Organization. (2006). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre: actualización mundial 2005 (No. WHO/SDE/PHE/OEH/06.02). Ginebra: Organización Mundial de la Salud. Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa. pdf?sequence=1.

Yu X, Nguyen T.T, Zhang H.X. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Epicuticular Waxes of Urban Forest Species in Summer and Fall in Beijing, China. International Journal of Sciences, 3(4): 12–22, 2014. https://ssrn.com/abstract=2573647

Zhang W, Zhang Z, Meng H, Zhang T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests, 9: 681, 2018.