Mineralization of microalgal carbon and nitrogen in sodic soils

Contenido principal del artículo

Ileana Castro-González
Héctor Iván Bedolla-Rivera
María de la Luz Xochilt Negrete-Rodríguez
Omar S. Castillo
Dioselina Álvarez-Bernal
Eloy Conde-Barajas

Resumen

Sodic soils pose a challenge for the agricultural production due to their lack of nutrients, poor structure, low organic matter content, and susceptibility to erosion (water and wind). Their recovery is carried out by soil washing and applying calcium salts, which are sometimes unprofitable processes. A low-cost and environmentally friendly alternative to remedy adverse soil conditions is bioremediation using microorganisms or organic amendments. For this reason, this study intended to evaluate the effects of the addition of dry microalgal biomass on sodic soils and suggest its use as an organic amendment. The effect of the microalgal biomass was studied through the mineralization dynamics of carbon and nitrogen sources in short-term experiments. All experiments were performed at laboratory scale. Microalgal biomass was obtained from a consortium grown in dairy wastewater and subsequently dried and pulverized. Four different treatments of dry microalgal biomass were applied to 50 g of sodic soil, and high microbial activity was observed in the soil (obtaining a production of 240 mg C-CO2/kg dry soil), along with the production of nitrates (presenting values 33.8-1.45 mg N-NO3+/kg dry soil) via the release of ammonia (obtaining 5.46 mg N-NH3+/kg dry soil), and mineralization of organic N into ammonium (producing 1071.92 mg N-NH4+/kg dry soil). The microalgal biomass as an organic amendment showed to be prone to mineralization and release of carbon and nitrogen sources, improving the microbial activity in a soil with sodicity problems.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Compartir en:

PLUMX metrics

Citas

Abera, G., Wolde-meskel, E., and Bakken, L. R. (2012). Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biology and Fertility of Soils, 48(1), 51–66. https://doi.org/10.1007/s00374-011-0607-8

Alef, K., and Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-513840-6.X5014-9

Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M., and Gardner, R. D. (2021). Microalgae, soil, and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 54, 102200. https://doi.org/10.1016/j.algal.2021.102200

Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., and EL-Shershaby, N. A. (2022). Algae as Bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020

Ankeny, M. D., Ahmed, M., Kaspar, T. C., and Horton, R. (1991). Simple Field Method for Determining Unsaturated Hydraulic Conductivity. Soil Science Society of America Journal, 55(2), 467–470. https://doi.org/10.2136/sssaj1991.03615995005500020028x

Aytenew, M., and Bore, G. (2020). Effects of Organic Amendments on Soil Fertility and Environmental Quality: A Review. Journal of Plant Sciences, 8(5), 112. https://doi.org/10.11648/j.jps.20200805.12

Barsanti, L., and Gualtieri, P. (2014). Algae: Anatomy, Biochemistry, and Biotechnology, Second Edition (Second Edition). CRC Press, Tylor and Fancis group.

Bedolla-Rivera, H. I., Xochilt Negrete-Rodríguez, M. de la L., Medina-Herrera, M. del R., Gámez-Vázquez, F. P., Álvarez-Bernal, D., Samaniego-Hernández, M., Gámez-Vázquez, A. J., and Conde-Barajas, E. (2020). Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators. Sustainability, 12(22), 9754. https://doi.org/10.3390/su12229754

Beltrán-Hernández, R. I., Luna-Guido, M. L., and Dendooven, L. (2007). Emission of carbon dioxide and dynamics of inorganic N in a gradient of alkaline saline soils of the former lake Texcoco. Applied soil ecology, 35(2), 390–403. https://doi.org/10.1016/j.apsoil.2006.07.005

Black, C. (1965). Method of Soil Analysis Part 2. Chemical and Microbiological Properties, 9, 1387–1388. https://cir.nii.ac.jp/crid/1571417124426361344

Blake, G. R., and Hartge, K. H. (1986). Particle Density. In Methods of Soil Analysis (pp. 377–382). John Wiley and Sons, Ltd. https://doi.org/10.2136/sssabookser5.1.2ed.c14

Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

Brar, A., Kumar, M., and Pareek, N. (2019). Comparative Appraisal of Biomass Production, Remediation, and Bioenergy Generation Potential of Microalgae in Dairy Wastewater. Frontiers in Microbiology, 10, 678. https://doi.org/10.3389/fmicb.2019.00678

Bremner, J. M. (1996). Nitrogen-Total. In Methods of Soil Analysis (pp. 1085–1121). John Wiley and Sons, Ltd. https://doi.org/10.2136/sssabookser5.3.c37

Bridgewater, L. L., Baird, R. B., Eaton, A. D., Rice, E. W., American Public Health Association, American Water Works Association, and Water Environment Federation (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition). American Public Health Association.

Brusseau, M. L., Glenn, E. P., and Pepper, I. L. (2019). Reclamation and Restoration of Disturbed Systems. In Environmental and Pollution Science (pp. 355–376). Elsevier. https://doi.org/10.1016/B978-0-12-814719-1.00020-3

Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., and Balagurusamy, N. (2019). Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Frontiers in Materials, 6, 126. https://doi.org/10.3389/fmats.2019.00126

Chaney, R., Slonim, S., and Slonim, S. (1982, enero 1). Determination of Calcium Carbonate Content in Soils. https://www.astm.org/stp28907s.html

Chatterjee, A., Singh, S., Agrawal, C., Yadav, S., Rai, R., and Rai, L. C. (2017). Role of Algae as a Biofertilizer. Algal Green Chemistry (pp. 189–200). Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00010-2

Chávez-García, E., and Siebe, C. (2019). Rehabilitation of a highly saline-sodic soil using a rubble barrier and organic amendments. Soil and Tillage Research, 189, 176–188. https://doi.org/10.1016/j.still.2019.01.003

Conde, E., Cardenas, M., Ponce-Mendoza, A., Luna-Guido, M. L., Cruz-Mondragón, C., and Dendooven, L. (2005). The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and priming effect in salsaline-alkalineil. Soil Biology and Biochemistry, 37(4), 681–691. https://doi.org/10.1016/j.soilbio.2004.08.026

Cook, S., Peacock, M., Evans, C. D., Page, S. E., Whelan, M. J., Gauci, V., and Kho, L. K. (2017). Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy. Water Research, 115, 229–235. https://doi.org/10.1016/j.watres.2017.02.059

Cottenie, A. (1980). Soil and plant testing as a basis of fertilizer recommendations. FAO soils bulletin, 38/2. pp. 64-65.

Cristóbal-Acevedo, D., Álvarez-Sánchez, M. E., Hernández-Acosta, E., Améndola-Massiotti, R., Cristóbal-Acevedo, D., Álvarez-Sánchez, M. E., Hernández-Acosta, E., and Améndola-Massiotti, R. (2011). Concentración de nitrógeno en suelo por efecto de manejo orgánico and convencional. Terra Latinoamericana, 29(3), 325–332. http://www.scielo.org.mx/scielo.php?script=sci_abstractypid=S0187-57792011000300325ylng=esynrm=isoytlng=es

Daneshvar, E., Zarrinmehr, M. J., Koutra, E., Kornaros, M., Farhadian, O., and Bhatnagar, A. (2019). Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment, and biochemical composition. Bioresource Technology, 273, 556–564. https://doi.org/10.1016/j.biortech.2018.11.059

Datta, A., Setia, R., Barman, A., Guo, Y., and Basak, N. (2019). Carbon Dynamics in Salt-affected Soils. En J. C. Dagar, R. K. Yadav, and P. C. Sharma (Eds.), Research Developments in Saline Agriculture (pp. 369–389). Springer Singapore. https://doi.org/10.1007/978-981-13-5832-6_12

Díez López, J. A. (1999). Optimización de la fertilización nitrogenada: Procedimientos de análisis del suelo, toma de muestra y elección del tipo de fertilizante. Edafología, vol. 6, pp. 73-84

Falciani, R., Novaro, E., Marchesini, M., and Gucciardi, M. (2000). Multi-element analysis of soil and sediment by ICP-MS after a microwave-assisted digestion method. Journal of Analytical Atomic Spectrometry, 15(5), 561–565. https://doi.org/10.1039/b000742k

García-Gozalbes, C. C., Arbib, Z., and Perales-Vargas-Machuca, J. A. (2015). Cinéticas de crecimiento y consumo de nutrientes de microalgas en aguas residuales urbanas con diferentes niveles de tratamiento. Tecnología y ciencias del agua, 6(1), 49-68. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222015000100003&lng=es&tlng=es.

Gougoulias, N., Papapolymerou, G., Karayannis, V., Spiliotis, X., and Chouliaras, N. (2018). Effects of manure enriched with algae Chlorella vulgaris on soil chemical properties. Soil and Water Research, 13(1), 51–59. https://doi.org/10.17221/260/2016-SWR

Hach, C. (1999). Wastewater and Biosolids Analysis Manual. 1 ed, 49028–88.

Hach, C. (2015). Hach Method 10267 Spectrophotometric Measurement of Total Organic Carbon (TOC) in Finished Drinking Water. Revision 1.2, 9.

Handayani, T., Mulyanto, A., Priyanto, F. E., and Nugroho, R. (2020). Utilization of Dairy Industry Wastewater for Nutrition of Microalgae Chlorella vulgaris. Journal of Physics: Conference Series, 1655(1), 012123. https://doi.org/10.1088/1742-6596/1655/1/012123

Hendrickx, J. M. H., Das, B., Corwin, D. L., Wraith, J. M., and Kachanoski, R. G. (2002). Relationship between soil water solute concentration and apparent soil electrical conductivity. Methods of Soil Analysis: Part, 4, 1275–1282. https://doi. org/10.2136/sssabookser5.4

ISO. (2018). ISO 18400-104:2018(en), Soil quality—Sampling—Part 104: Strategies. International Organization for Standardization. https://www.iso.org/obp/ui/#iso:std:iso:18400:-104:ed-1:v1:en

Keeney, D. r., and Nelson, D. w. (1983). Nitrogen—Inorganic Forms. In Methods of Soil Analysis (pp. 643–698). John Wiley and Sons, Ltd. https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Lage, S., Gojkovic, Z., Funk, C., y Gentili, F. (2018). Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy. Energies, 11(3), 664. https://doi.org/10.3390/en11030664

Leogrande, R., y Vitti, C. (2019). Use of organic amendments to reclaim saline and sodic soils: A review. Arid Land Research and Management, 33(1), 1–21. https://doi.org/10.1080/15324982.2018.1498038

Liyanage, M., Hanafi, M. M., Sulaiman, M. F., Ismail, R., Gunaratne, G., Dharmakeerthi, S., Rupasinghe, G., and Mayakaduwa, A. (2022). Consequences of nitrogen mineralization dynamics for soil health restoration of degraded tea-growing soil using organic amendments. Chilean Journal Of Agricultural Research, 82(2), 199-210. http://dx.doi.org/10.4067/S0718-58392022000200199

Mahapatra, D. M., Chanakya, H. N., Joshi, N. V., Ramachandra, T. V., and Murthy, G. S. (2018). Algae-Based Biofertilizers: A Biorefinery Approach. In D. G. Panpatte, Y. K. Jhala, H. N. Shelat, and R. V. Vyas (Eds.), Microorganisms for Green Revolution: Volume 2: Microbes for Sustainable Agro-ecosystem (pp. 177–196). Springer. https://doi.org/10.1007/978-981-10-7146-1_10

Medina-Herrera, M. del R., Rodríguez, M. de la L. X. N., Vázquez, F. P. G., Bernal, D. Á., and Barajas, E. C. (2020). La Aplicación de Lodos Residuales Afecta, a Corto Plazo, la Biomasa Microbiana y su Actividad en Suelos Sódicos. Revista Internacional de Contaminación Ambiental, 36(3), 577–591. https://doi.org/10.20937/RICA.53425

Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 1–9. https://doi.org/10.1155/2019/5794869

Nichols, K., Olson, M., and Ayers, A. D. (2020). Microalgae as a Beneficial Soil Amendment. 22.

Noori, Z., Delavar, M. A., Safari, Y., and Alavi-Siney, S. M. (2021). Reclamation of a calcareous sodic soil with combined amendments: Interactive effects of chemical and organic materials on soil chemical properties. Arabian Journal of Geosciences, 14(3), 166. https://doi.org/10.1007/s12517-021-06485-w

Osman, K. T. (2018). Saline and Sodic Soils. In K. T. Osman (Ed.), Management of Soil Problems (pp. 255–298). Springer International Publishing. https://doi.org/10.1007/978-3-319-75527-4_10

Oviedo, C. V. R. (2020). Precipitación de carbonatos inducida microbiológicamente como alternativa para remediar entornos naturales contaminados con metales y metaloides tóxicos. Tesis de maestría. Universidad Nacional de Colombia Facultad de Ciencias Departamento de Química Bogotá, Colombia, 122 p.

Page, A. L., Miller, R. H., Keeney, D. R., Baker, D. E., Ellis, R., y Rhoades, J. D. (1982). Methods of soil analysis. Part, 2(1982), 403-430

Patel, A. K., Joun, J., and Sim, S. J. (2020). A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation, and lucrative biofuels. Bioresource Technology, 313, 123681. https://doi.org/10.1016/j.biortech.2020.123681

Read, J. W., and Ridgell, R. H. (1922). On the use of the conventional carbon factor in estimating soil organic matter. Soil Science, 13(1), 1–6. https://journals.lww.com/soilsci/citation/1922/01000/on_the_use_of_the_conventional_carbon_factor_in.1.aspx

Romano-Armada, N., Yañez-Yazlle, M. F., Irazusta, V. P., Rajal, V. B., and Moraga, N. B. (2020). Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens, 9(2), 117. https://doi.org/10.3390/pathogens9020117

Schulte, E. E., and Hopkins, B. G. (1996). Estimation of Soil Organic Matter by Weight Loss-On-Ignition. En Soil Organic Matter: Analysis and Interpretation (pp. 21–31). John Wiley and Sons, Ltd. https://doi.org/10.2136/sssaspecpub46.c3

Simonne, A. H., Simonne, E. H., Eitenmiller, R. R., Mills, H. A., and Cresman, C. P. Ii. (1997). Could the Dumas method replace the Kjeldahl digestion for nitrogen and crude protein determinations in foods? Journal of the Science of Food and Agriculture, 73(1), 39–45. https://doi.org/10.1002/(sici)1097-0010(199701)73:1<39::aid-jsfa717>3.0.co;2-4

Soil Science Division Staff, and United States Department of Agriculture. (2017). Soil Survey Manual. USDA Handbook, 18, 603

Srivastava, N. (2020). Reclamation of Saline and Sodic Soil Through Phytoremediation. In V. Shukla and N. Kumar (Eds.), Environmental Concerns and Sustainable Development: Volume 2: Biodiversity, Soil and Waste Management (pp. 279–306). Springer. https://doi.org/10.1007/978-981-13-6358-0_11

Sulok, K. M. T., Ahmed, O. H., Khew, C. Y., Zehnder, J. A. M., Jalloh, M. B., Musah, A. A., and Abdu, A. (2021). Chemical and Biological Characteristics of Organic Amendments Produced from Selected Agro-Wastes with Potential for Sustaining Soil Health: A Laboratory Assessment. Sustainability, 13(9), 4919. https://doi.org/10.3390/su13094919

Talapatra, N., Gautam, R., Mittal, V., and Ghosh, U. K. (2021). A comparative study of the growth of microalgae-bacteria symbiotic consortium with the axenic culture of microalgae in dairy wastewater through extraction and quantification of chlorophyll. Materials Today: Proceedings, S2214785321045995. https://doi.org/10.1016/j.matpr.2021.06.227

Terkula Iber, B., Azman Kasan, N., Torsabo, D., and Wese Omuwa, J. (2022). A Review of Various Sources of Chitin and Chitosan in Nature. Journal of Renewable Materials, 10(4), 1097–1123. https://doi.org/10.32604/jrm.2022.018142

Thomas, G. W. (1996). Soil pH and Soil Acidity. In Methods of Soil Analysis (pp. 475–490). John Wiley and Sons, Ltd. https://doi.org/10.2136/sssabookser5.3.c16

U.S. Environmental Protection Agency’s, (EPA’s), Office of Water, (OW), and, Engineering, and Analysis Division, (EAD). (2001). METHOD 1684 Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. EPA-821-R-01-015, 16.

Villegas Hurtado, D. A., Dussán Currea, S. L., and Miranda Lasprilla, D. (2016). Efecto de la deficiencia de N, P, K, Mg, Ca y B sobre la acumulación y distribución de la masa seca en plantas de guayaba (Psidium guajava L.) var. Ica Palmira II en fase de vivero. Revista Colombiana de Ciencias Hortícolas, 10(1). https://doi.org/10.17584/rcch.2016v10i1.4277

Walkley, A., and Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://journals.lww.com/soilsci/citation/1934/01000/an_examination_of_the_degtjareff_method_for.3.aspx

Wijitkosum, S. (2020). Applying Rice Husk Biochar to Revitalise Saline Sodic Soil in Khorat Plateau Area – A Case Study for Food Security Purposes. In J. S. Singh and C. Singh (Eds.), Biochar Applications in Agriculture and Environment Management (pp. 1–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-40997-5_1

Yilmaz, E., and Sönmez, M. (2017). The role of organic/bio–fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil and Tillage Research, 168, 118–124. https://doi.org/10.1016/j.still.2017.01.003

Zalba, P., Bravo, O., Amiotti, N., and Peinemann, N. (2002). Métodos alternativos para determinar las disponibilidades de fosforo en suelos agrícolas. Ciencias del Suelo, 20(1)

Zhang, W.-Y., Wei, Z.-W., Wang, B.-H., and Han, X.-P. (2016). Measuring mixing patterns in complex networks by Spearman rank correlation coefficient. Physica A: Statistical Mechanics and its Applications, 451, 440–450. https://doi.org/10.1016/j.physa.2016.01.056

Zhao, Q., Tang, J., Li, Z., Yang, W., and Duan, Y. (2018). The Influence of Soil Physico-Chemical Properties and Enzyme Activities on Soil Quality of Saline-Alkali Agroecosystems in Western Jilin Province, China. Sustainability, 10(5), 1529. https://doi.org/10.3390/su10051529

Zimmerman, D. W., and Zumbo, B. D. (1993). Relative Power of the Wilcoxon Test, the Friedman Test, and Repeated-Measures ANOVA on Ranks. The Journal of Experimental Education, 62(1), 75–86. https://doi.org/10.1080/00220973.1993.9943832