Inducción de micronúcleos en células meristemáticas de la raíz de Vicia faba tratadas con diferentes concentraciones de Marvel®

Contenido principal del artículo

Juana Sánchez Alarcón
Monica Pérez-Sánchez
José Luis Gómez-Olivares
Rosa María López-Durán
José Mariano Rigoberto Montiel-González
Rafael Alexander Valencia-Sánchez
Hipólito Muñoz-Nava
Guillermo Alejandro Pérez Flores
Rafael Valencia-Quintana

Resumen

El empleo de plaguicidas ha ido aumentando al paso del tiempo. A pesar de los beneficios aportados por los agroquímicos tanto en la agricultura como en el ámbito doméstico, muchos de ellos pueden representar peligros potenciales para la salud y el ambiente. En la actualidad es manifiesto el interés creciente en la determinación de biomarcadores que permitan la medición y estimación de una exposición activa y/o pasiva a contaminantes ambientales con capacidad tóxica, como los plaguicidas. Este estudio analiza el daño al ADN que causa el herbicida comercial Marvel® a través del ensayo de micronúcleos (MN), en células meristemáticas de la raíz de Vicia faba. Raíces de entre 2-3 cm fueron expuestas durante 4 horas, con 18 y 44 horas de recuperación a diferentes concentraciones de Marvel®, equivalentes a las siguientes combinaciones de atrazina/dicamba: 62.5/31.25; 125/62.5; 250/125; 1000/400; 2000/1000; 3000/1500 y 4000/2000 mg de ingrediente activo/L de agua destilada (mg I.A./L). Las células fueron expuestas a agua destilada, como testigo negativo y a dicromato de potasio 0.05%, como testigo positivo, bajo las mismas condiciones experimentales. Con excepción de la concentración más baja [62.5/31.25 mg I.A./L], todas las concentraciones probadas presentaron un daño significativo (p<0.05). Con respecto al testigo negativo, el daño fue mayor a las 18 horas de recuperación, al paso de 44 horas, el daño se vio disminuido en todas las concentraciones probadas. El índice mitótico (IM) también se modificó, mostrándose una menor división dependiente de la concentración y tiempo de recuperación. Las concentraciones de 2000/1000; 3000/1500 y 4000/2000, mg I.A./L, produjeron un daño mayor que el encontrado en el testigo positivo. Los datos sugieren que el herbicida comercial Marvel® produce daño al ADN y es citotóxico en Vicia faba.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a

Juana Sánchez Alarcón, Universidad Autónoma de Tlaxcala

No está en el SNI pero la sugiere el Dr. Waliszewski y tiene varias publicaciones con el Dr. Rafael Valencia Quintana

Hipólito Muñoz-Nava, Universidad Autónoma de Tlaxcala

Licenciatura en Ciencias Ambientales

Facultad de Agrobiología

Universidad Autónoma de Tlaxcala

Compartir en:

PLUMX metrics

Citas

Agromich (2017). Marvel®. Ficha técnica. Agroquímicos de Michoacán SA de CV http://www.agromich.com/imagenes/productos/marvel/43.pdf. Consultado el 18 de febrero de 2017.

Bolognesi C, Peluso M, Degan P, Rabboni R, Munnia A, Abbondandolo A. Genotoxic effects of the carbamate insecticide methomyl. II. In vivo studies with pure compound and the technical formulation “Lannate 25”. Environ Mol Mutagen 1994;24:235-42. doi: 10.1002/em.2850240313

Brand RM, Mueller C (2002). Transdermal penetration of atrazine, alachlor, and trifluralin: effect of formulation. Toxicol Sci 68:18-23. doi: 10.1093/toxsci/68.1.18

Brusick DJ (1994). An assessment of the genetic toxicity of atrazine: relevance to human health and environmental effects. Mutat. Res. 317: 133-144. doi.org/10.1016/0165-1110(94)90021-3

Campos-Pereira FD, Oliveira CA, Pigoso AA, Silva-Zacarin EC, Barbieri R, Spatti EF, Marin-Morales MA, Severi-Aguiar GD (2012). Early cytotoxic and genotoxic effects of atrazine on Wistar rat liver: a morphological, immunohistochemical, biochemical, and molecular study. Ecotoxicol Environ Saf. 78: 170-177. doi: 10.1016/j.ecoenv.2011.11.020

Çavuşoğlu K., Kaya A., Yilmaz F. y Yalçin E. (2012). Effects of cypermethrin on Allium cepa. Environ. Toxicol. 27: 583-589. doi: 10.1002/tox.20681

Çayır A, Coşkun M, Coşkun M (2016). Genotoxicity of commercial fungicide Cabrio Plus on human cell. Cytotechnology. 68: 1697-1704. doi: 10.1007/s10616-015-9919-0.

Cenkci S, Yildiz M, Ciğerci IH, Bozdağ A, Terzi H, Terzi ES (2010). Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicol Environ Saf. 73: 1558-1564. doi: 10.1016/j.ecoenv.2010.07.033.

Costa C, Teixeira JP, Silva S, Roma-Torres J, Coelho P, Gaspar J, Alves M, Laffon B, Rueff J, Mayan O (2006). Cytogenetic and molecular biomonitoring of a Portuguese population exposed to pesticides. Mutagenesis 21: 343-350. doi:10.1093/mutage/gel039

Costa C, Silvari V, Melchini A, Catania S, Heffron JJ, Trovato A, De Pasquale R. Genotoxicity of imidacloprid in relation to metabolic activation and composition of the commercial product. Mutat Res 672: 40-44. doi: 10.1016/j.mrgentox.2008.09. 018

Cox C y Surgan M (2006). Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114:1803. doi: 10.1289/ehp.9374

Feffstrup TK, Larsen JC, Meyer O (2010). Risk assessment of mixtures of pesticides. Current approaches and future strategies Regulat Toxicol Pharmacol 56: 174-192. doi.org/10.1016/j.yrtph.2009.09.013

Filkowski J, Besplug J, Burke P, Kovalchuk I, Kovalchuk O (2003). Genotoxicity of 2,4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers. Mutat Res. 542: 23-32. doi.org/10.1016/j.mrgentox. 2003.07.008

Gómez-Arroyo S, Villalobos-Pietrini R. Chromosomal aberrations and sister chromatid exchanges in Vicia faba as genetic monitors of environmental pollutants. In: Butterworth FM, Corkum LD, Guzmán-Rincón J, editors. Biomonitors and biomarkers as indicator of environmental change. New

York (NY): Plenum Press; 1995. p. 95-113

González NV, Soloneski S, Larramendy ML (2007). The chlorophenoxy herbicide dicamba and its commercial formulation banvel induce genotoxicity in Chinese hamster ovary cells. Mutat Res 634:60-68. doi:10.1016/j.mrgentox.2007.06.001

González NV, Soloneski V, Larramendy ML (2009). Dicamba-induced genotoxicity in chinese hamster ovary (CHO) cells is prevented by vitamin E. J. Hazard. Mater. 163: 337-343. doi: 10.1016/j.jhazmat.2008.06.097

Granby K, Vahl M (2001) Investigation of herbicide glyphosate and plant growth regulators chlormequat and mepiquat in cereals produced in Denmark. Food Addit Contam 18:898-905. DOI: 10.1080/02652030119594

Hansen A, Treviño-Quintanilla I, Márquez-Pacheco H, Villada-Canela M, González-Márquez LC, Guillén-Garcés RA, Hernández-Antonio A (2013). Atrazina un herbicida polémico. Rev. Int. Contam. Ambie. 29(Número especial sobre plaguicidas): 65-84.

Heddle JA (1973). A rapid in vivo test for chromosomal damage. Mutat. Res., 1973, vol. 18, pp. 187–190. doi.org/10.1016/0027-5107(73)90035-3

Ismail C, Atilla Y, Yusuf T, Levent O (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium and iron in non-glyphosate resistant soybean. Eur J Agro 31: 114-119. doi.org/10.1016/j.eja.2009.07.001

Jain M, y Bhalla-Sarin N (2001). Glyphosate-Induced Increase in Glutathione S-Transferase Activity and Glutathione Content in Groundnut (Arachis hypogaea L.) Pest. Biochem. Physiol.69: 143-152. doi.org/10.1006/pest.2000.2535

Kligerman A, Doerr D, Tennant AH, Peng B (2000). Cytogenetic studies of three triazine herbicides II. In vivo micronucleus studies in mouse bone marrow. Mutat. Res. 471: 107-112. doi.org/10.1016/S1383-5718(00)00124-8

Koller VJ, Fürhacker M, Nersesyan A, Mišík M, Eisenbauer M, Knasmueller S (2012). Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch Toxicol 86:805-813. doi: 10.1007/s00204-012-0804-8

Lee WJ, Cha ES, Park J, Ko Y, Kim HJ, Kim J (2012). Incidence of acute occupational pesticide poisoning among male farmers in South Korea. Am J Ind Med. 2012; 55: 799-807 (ISSN: 1097-0274). DOI: 10.1002/ajim.22024

Ma T.-H. (1999). The international program on plant bioassays and the report of the follow-up study after the hands-on workshop in China. Mutat. Res. 426, 103-106. doi.org/10.1016/S0027-5107(99)00049-4

Marc J, Mulner-Lorillon O, Boulben S, Hureau D, Durand G, Belle R (2002). Pesticide roundup provokes cell division dysfunction at the level of CDK1/Cyclin B activation. Chem Res Toxicol

:326-331. DOI: 10.1021/tx015543g

Marc J, Mulner-Lorillon O, Belle R (2004a). Glyphosate-based pesticides affect cell cycle regulation. Biol Cell 96:245-249. DOI: 10.1016/j.biolcel.2003.11.010

Marc J, Belle R, Julia M, Patrick C, Lorillon OM (2004b). Formulated glyphosate activates the DNA-response check point of the cell cycle leading to the prevention of G2/M transition. Toxicol Sci 82:436-442. doi.org/10.1093/toxsci/kfh281

Miteva, L., Tsoneva, J., Ivanov, S., and Alexieva, V., (2005). Alterations of the Content of Hydrogen Peroxide and Malondialdehyde and the Activity of Some Antioxidant Enzymes in the Roots and Leaves of Pea and Wheat Plants Exposed to Glyphosate. Compt. Rend. Acad. Bulg. Sci., 58: 733-738.

Miteva LPE, Ivanov SV, Alexieva VS (2010) Alterations in glutathione pool and some related enzymes in leaves and roots of pea plants treated with herbicide glyphosate. Russ J Plant

Physiol 57:131-136. doi:10.1134/S1021443710010188

Molinari G, Soloneski S, Reigosa MA, Larramendy ML. In vitro genotoxic and cytotoxic effects of ivermectin and its formulation ivomec® on Chinese hamster ovary (CHOK1) cells. J Hazard Mater 2009;165:1074-82. doi: 10.1016/j.jhazmat.2008.10.083

Nikoloff N, Escobar L, Soloneski S, Larramendy ML 2013a. Comparative study of cytotoxic and genotoxic effects induced by herbicide S-metolachlor and its commercial formulation

Twin Pack Gold® in human hepatoma (HepG2) cells. Food Chem Toxicol 62: 777-781. doi: 10.1016/j.fct.2013.10.015

Nikoloff N, Natale GS, Marino D, Soloneski S, Larramendy ML (2014). Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae). Ecotoxicol Environ Saf 2014;100:275-281. doi: 10.1016/j.ecoenv.2013. 10.021

Nwani CD, Nagpure NS, Kumar R, Kushwaha B, Kumar P, Lakra WS (2011). Mutagenic and genotoxic assessment of atrazine-based herbicide to freshwater fish Channa punctatus (Bloch) using micronucleus test and single cell gel electrophoresis. Environ Toxicol Pharmacol 31:314-322. doi: 10.1016/j.etap.2010.12.001.

Padula G, Ponzinibbio MV, Picco S, Seoane A (2012). Assessment of the adverse effects of the acaricide amitraz: in vitro evaluation of genotoxicity. Toxicol Mech Methods 22: 657-661. doi: 10.3109/15376516.2012.666683

Pérez DJ, Lukaszewicz G, Menone ML, V Amé M, Camadro EL (2014). Genetic and biochemical biomarkers in the macrophyte Bidens laevis L. exposed to a commercial formulation of endosulfan. Environ Toxicol 29: 1063-1071. doi: 10.1002/tox.21836

Pérez-Iglesias JM, Ruiz de Arcaute C, Nikoloff N, Dury L, Soloneski S, Natale GS, Larramendy ML. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ

Saf 104:120-106. doi: 10.1016/j.ecoenv. 2014.03.002

Petriccione M., Forte V., Valente D. y Ciniglia C. (2013). DNA integrity of onion root cells under cathechol influence. Environ. Sci. Pollut. Res. 20: 4859-4871. doi: 10.1007/s11356-012-1422-y.

Ramos-Chavez LA, Sordo M, Calderon-Aranda E, Castañeda-Saucedo E, Ostrosky-Wegman P, Moreno-Godinez ME. A permethrin/allethrin mixture induces genotoxicity and cytotoxicity in human peripheral blood lymphocytes. J Toxicol Environ Health A 78:7-14. doi: 10.1080/15287394.2015.956025

Rannug A, Rannug U. Enzyme inhibition as a possible mechanism of the mutagenicity of dithiocarbamic acid derivatives in Salmonella typhimurium. Chem Biol Interact 49:329-340. doi: 10.1016/0009-2797(84)90106-6

Rasgele PG, Muranli FD, Kekeçoğlu M (2014). Assessment of the genotoxicity of propineb in mice bone marrow cells using micronucleus assay. Cytol Genet 48: 233-237. doi:10.3103/S0095452714040045

Reynoso MS, Alvarez CM, De la Cruz L, Escoto MD, Sánchez JJG. (2015). Evaluation of the genotoxic activity of dicamba and atrazine herbicides in several Mexican and South American varieties of sweetcorn (Zea mays L.). Gen Mol Res 16585-16593. doi: 10.4238/2015

Ribas G, Frenzilli G, Barale R, Marcos R (1995). Herbicide-induced DNA damage in human lymphocytes evaluated by the single-cell gel electrophoresis (SCGE) assay. Mutat. Res. 344: 41-54. doi.org/10.1016/0165-1218(95)90037-3

Ruiz de Arcaute C, Soloneski S, Larramendy ML. Evaluation of the genotoxicity of a herbicide formulation containing 3,6-dichloro-2-metoxybenzoic acid (dicamba) in circulating blood cells of the tropical fish Cnesterodon decemmaculatus. Mutat Res 773:1-8. doi: 10.1016/j.mrgentox.2014.08.001

Schmid W (1975). The micronucleus test. Mutat Res, l. 31, pp. 9.15. doi.org/10.1016/0165-1161(75)90058-8

Siddiqui S1, Meghvansi MK, Khan SS (2012). Glyphosate, alachor and maleic hydrazide have genotoxic effect on Trigonella foenum-graecum L. Bull Environ Contam Toxicol. 88: 659-665. doi: 10.1007/s00128-012-0570-6.

Song Y, Zhu LS, Wang J, Wang JH, Liu W, Xie H (2009). DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine. Soil Biol Biochem 41: 905-909. doi.org/10.1016/j.soilbio.2008.09.009

Srivastava K, Mishra KK (2009). Cytogenetic effects of cormmercially formulated atrazine on the somatic cells of Allium cepa and Vicia faba. Pest. Biochem. Physiol. 93: 8-12. doi.org/10.1016/j.pestbp.2008.08.001

Valencia-Quintana R, Sánchez Alarcón J, Gómez-Arroyo S, Cortés Eslava J, Waliszewski SM, Fernández S, Villalobos-Pietrini R. (2013). Genotoxicidad de plaguicidas en sistemas vegetales. Rev. Int. Contam. Ambie. 29 (Número especial sobre plaguicidas) 133-157. 370/37028958008/index.html

Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón J, Milić M, Gómez-Olivares JL, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME (2016a). Assessment of genotoxicity of Lannate-90® and its plant and animal metabolites in human lymphocyte cultures. Arh Hig Rada Toksikol 67: 116-125. doi: 10.1515/aiht-2016-67-2763.

Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón J, Milić M, Gómez-Olivares JL, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME (2016b). Genotoxic effects of the carbamate insecticide Pirimor-50® in Vicia faba root tip meristems and human lymphocyte culture after direct application and treatment with its metabolic extracts. Arh Hig Rada Toksikol. 67:266-276. doi: 10.1515/aiht-2016-67-2809.

Yadav SS (2013). Toxic and genotoxic effects of Roundup on tadpoles of the Indian skittering frog (Euflictis cyanophlyctis) in the presence and absence of predator stress. Aquat Toxicol

;132-133:1-8. doi: 10.1016/j.aquatox.2013.01.016

Želježić D, Garaj-Vrhovac V, Perković P. Evaluation of DNA damage induced by atrazine and atrazine-based herbicide in human lymphocytes in vitro using a comet and DNA diffusion assay. Toxicol In Vitro 2006;20:923-35. doi: 10.1016/ j.tiv.2006.01.017