Surface shortwave cloud radiative effect of Cumulus (Cu) and Stratocumulus-Cumulus (Sc-Cu) cloud types in the Caribbean area (Camagüey Cuba, 2010-2016).

Main Article Content

Boris Barja González
https://orcid.org/0000-0002-8600-0815
Jorge Rosas Santana
https://orcid.org/0000-0001-8945-7768
Victoria Eugenia Cachorro
https://orcid.org/0000-0002-4627-9444
Carlos Toledano
https://orcid.org/0000-0002-6890-6648
Juan Carlos Antuña-Marrero
https://orcid.org/0000-0002-7037-015X
Rene Estevan Arredondo
https://orcid.org/0000-0003-0170-3616
Ángel Máximo de Frutos
https://orcid.org/0000-0001-5748-5078

Abstract

The effects of cumulus clouds (Cu) and the combination of stratocumulus-cumulus clouds (Sc-Cu) on the solar radiation at the earth’s surface were evaluated at Camagüey (Cuba) for a 6-year period (from June 2010 to May 2016). Two methods to calculate the cloud radiative effect (CRE) were employed. The first method (CREm) uses solar irradiances in cloudy conditions from actinometric observations, where cloud information was also reported by visual observation. In the second method (CRE0) surface solar irradiances were estimated for both cloudy and clear sky conditions using a 1-D radiative transfer model, and cloud optical depth (COD) retrieved from an AERONET sun-photometer as the main input.

A temporal correspondence criterion between COD retrievals and actinometric observations was performed in order to classify COD of each cloud type. After the application of this criterion, the COD belonging to the optically thin clouds was removed. Finally, 255 and 732 COD observations for Cu and Sc-Cu respectively, were found.

Results show statistically significant difference at the 95% confidence level between CRE calculated for Sc-Cu and Cu, using the both methods. Mean values of CREm and CRE0 for Cu (Sc-Cu) were −442 W/m2 (−390 W/m2) and −460 W/m2 (−417 W/m2), respectively. CRE0 shows a linear relation with ln(COD), with stronger correlation at lower solar zenith angle. The shortwave cloud effect efficiency (CEE) for the two cloud types sharply decreases with the increase of the COD up to the value of 20. For larger COD, the CEE is less sensitive to the increase of COD.

Downloads

Download data is not yet available.

Article Details

Author Biographies

Boris Barja González, University of Magallanes. Av. Bulnes 01855 Punta Arenas Chile

Boris Barja is an Associated Researcher at the Mathematic and Physic Department, University of Magallanes. Boris does research in Atmospheric Physics and Chemistry, Atmospheric measurements (aerosols, clouds and solar radiation), and Climatology. He work in many projects as SAVERNET, DACAPO-PESO, FONDECYT 11181335. He is the Principal researcer in the Lidar Station of Punta Arenas. Also, with this responsibility he is part of the Latin American Lidar Network (LALINET).

Jorge Rosas Santana, Grupo de Óptica Atmosférica de Camagüey, Centro Meteorológico de Camagüey, Av. Finlay km 7 ½, Camagüey, 70100, Cuba.

PhD. Student at The Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG), University of Sao Paulo, Brazil.

Victoria Eugenia Cachorro, Grupo de Óptica Atmosférica (GOA-UVA), Departamento de Física Teórica, Atómica y Óptica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain.

Dra Victoria E. Cachorro, Graduate in Physic in the Universidad de Valladolid (UVA) in 1978, PhD in Sciences in 1985 and obtaining in 2002 the Position of Professor, belongs to the Staff of the UVA since 1989. Expert in spectral radiation measurements, calibration procedures in radiometry, radiative transfer modelling and remote sensing techniques for aerosol studies. More than 100 peer reviewer articles in collaboration with different institutions in Spain and other countries. She is the Manager of RIMA (Red Ibérica de Medida Fotométrica de Aerosoles) which is federated into AERONET and part of the AERONET/EUROPE infrastructure. Member of the USP for ARI and eARI projects (ALOMAR Facility Users Panel). Ex-Member of the International Radiation Commission (IRS). Ex-Member of “Consejo Asesor de Medio Ambiente” of the Regional Government of “Junta de Castilla y León”, as Research Environmental Experts.

Carlos Toledano, Grupo de Óptica Atmosférica (GOA-UVA), Departamento de Física Teórica, Atómica y Óptica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain.

Graduate in Physics at Complutense University in Madrid (1999) and PhD at University of Valladolid in 2005. For 2 years he was postdoctoral fellow at the Meteorological Institute, University of Munich (Germany), where he participated in projects such as SAMUM and EARLINET. Then he obtained a postdoctoral researcher position at the Group of Atmospheric Optics, University of Valladolid (Spain) within the “Juan de la Cierva” program of the Spanish Research Council (2008). His research is concentrated in the investigation of the atmospheric aerosol by optical methods, regarding aerosol characterization, data quality assurance and field campaigns. Especial interest is devoted to desert dust and Arctic environment. He has more than 70 peer-reviewed publications in SCI journals and received the 3M Foundation Award 2006 for Environmental science. Currently he is in charge of the operations, calibration and quality assurance of the Iberian Network for Sun photometer Aerosol Measurements (RIMA), federated to AERONET. In 2011 he obtained a researcher position at GOA-UVA within the “Ramon y Cajal” program of the Spanish Research Council. Since 2017 is associate professor at University of Valladolid.

Juan Carlos Antuña-Marrero, Grupo de Óptica Atmosférica (GOA-UVA), Departamento de Física Teórica, Atómica y Óptica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain.

Colaborador Honorífico Departamento de Física Teórica, Atómica y Óptica Universidad de Valladolid

Rene Estevan Arredondo, Grupo de Óptica Atmosférica de Camagüey, Centro Meteorológico de Camagüey, Av. Finlay km 7 ½, Camagüey, 70100, Cuba.

Doctor en Ciencias Meteorológicas (2010), por más de 20 años vinculado a la meteorología y las ciencias atmosféricas, en el estudio de los aerosoles tanto estratosféricos como troposféricos, con el empleo de diversas técnicas de detección: lidar, fotometría solar, impactadores de partícula de bajo volumen, etc. Estos estudios han estado encaminados a la determinación de las propiedades microfísicas y ópticas de los aerosoles y su influencia sobre la radiación solar, así como el efecto de estos en los procesos de transferencia radiativa de la atmósfera. Con el empleo de algunas de las técnicas antes mencionadas ha participado en los estudios de las propiedades ópticas de las nubes y sus efectos sobre la radiación solar y los proceso de transferencia radiativa vinculados a estas. El estudio de la radiación solar, a partir de mediciones actinométricas de superficie, ha sido otra de las líneas de trabajo abordadas en los últimos años, así como el establecimiento de la climatología de la radiación solar (1981-2010) para la ciudad de Camagüey, Cuba. Recientemente, a partir de la instalación de un GPS en el Grupo de Óptica Atmosférica de Camagüey (GOAC), participa en los estudios del contenido integral de vapor de agua en la atmósfera y su influencia en los procesos de transferencia radiativa y los huracanes tropicales.

Ángel Máximo de Frutos, Grupo de Óptica Atmosférica (GOA-UVA), Departamento de Física Teórica, Atómica y Óptica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011, Valladolid, Spain.

Catedrático de Universidad en Universidad de Valladolid

Sharing on: