Satellite-based estimation of NO2 concentrations using a machine-learning model: A case study on Rio Grande do Sul, Brazil
Main Article Content
Abstract
Nitrogen dioxide (NO2) is one of the most important atmospheric pollutants, affecting human health (increasing susceptibility to respiratory infections) and the environment (soil and water acidification). In many regions of Brazil, NO2 measurements at ground level meet difficulties because monitoring stations are few and unevenly distributed. Satellite observations combined with machine learning models can mitigate this lack of data. This paper report results from an investigation on the ability of a machine learning approach (a non-linear statistical Random Forest algorithm, hereafter RF) to reconstruct the long-term spatiotemporal ground-level NO2 from 2006 to 2019 using as input parameters NO2 data retrieved from the Ozone Monitoring Instrument (OMI) sensor aboard Aura satellite, besides meteorological covariates and localized ground-level NO2 measurements. Results show that the RF model predicts NO2 with an accuracy expressed by an R2 = 0.68 correlation based on a 10-fold cross-validation. The model also predicted a mean NO2 concentration of 18.73 ± 3.86 μg m–3. The total NO2 concentration over the entire region analyzed showed a decreasing trend (2.9 μg m–3 yr–1), being 2006 the year with the higher concentrations and 2017 with the lowest. This study suggests that non-linear statistical algorithm reconstructions using RF can be complementary tools to in situ and satellite observations for NO2 mapping.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics