Solution of advection-diffusion-reaction problems on a sphere: High-resolution numerical experiments
Main Article Content
Abstract
The implicit and unconditionally stable numerical method proposed in Skiba (2015) is applied to solve linear advection-diffusion-reaction problems and nonlinear diffusion-reaction problems on a sphere. Numerical experiments carried out on a high-resolution spherical mesh show the effectiveness of the method in modelling linear advection-diffusion processes on a sphere (dispersion of pollution in the atmosphere), and nonlinear diffusion processes (propagation of nonlinear temperature waves, blow-up regimes of combustion, and chemical reactions in the Gray-Scott model). The method correctly describes the mass balance of a substance in forced and dissipative systems and conserves the total mass and norm of the solution in the absence of forcing and dissipation.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics