Development and evaluation of a bulk three-moment parameterization scheme incorporating the processes of sedimentation and collision-coalescence
Main Article Content
Abstract
There are a few three-moment schemes that consider other processes besides sedimentation. Thus, a performance assessment of these types of schemes due to the combined effect of sedimentation and other microphysical processes is a matter of interest. In this study, a warm rain bulk three-moment parameterized scheme was developed and evaluated through a detailed comparison with a bin microphysical scheme. To evaluate the impact of sedimentation and the combined effect of sedimentation and collision-coalescence on the droplet size distribution (DSD), a rain shaft model was applied to the DSD with different initial values of the shape parameter. For pure sedimentation, a good correspondence was obtained between the three-moment scheme and the explicit model, with a practically perfect coincidence of bulk quantities for larger values of the gamma distribution’s initial shape parameter and, in general, the three-moment parameterization scheme performing much better than the two-moment scheme. The simulations performed for this case confirm (as reported in previous studies) that for pure sedimentation, the three-moment parameterization schemes deliver a physically more complete representation of the evolution of droplet size distribution. The impact of the combined effect of sedimentation and collision-coalescence processes on DSD was also assessed. We could observe that certain differences arise between the parameterized scheme and the spectral model when the collision-coalescence process is incorporated, as the onset of precipitation occurs earlier in the three-moment parameterized scheme. It can be concluded that, in general, the three-moment warm rain bulk microphysics scheme is able to reproduce the results of the reference bin microphysical model.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics