Simulation and synoptic investigation of a severe dust storm originated from the Urmia Lake in the Middle East

Main Article Content

Nasim Hossein Hamzeh
Abbas Ranjbar Saadat Abadi
Karim Abdukhakimovich Shukurov
Alaa Mhawish
Khan Alam
Christian Opp

Abstract

Dried lake beds are one of the largest sources of dust in the world, causing environmental problems in the surrounding areas. In this study, the desiccated Urmia Lake was the primary source of dust for all nearby synoptic stations during the April 24-25, 2017 dust episode. Synoptic analysis revealed that the heavy dust storm was triggered by a strong Black Sea cyclone and a low-pressure system over central Iraq in conjunction with a vast high-pressure system. HYSPLIT-based trajectory analysis showed that high PM10 recorded over the Urmia Lake region on April 23-26, 2017, influenced western Azerbaijan, the south of the Caspian Sea, southwestern Kazakhstan, northwestern Uzbekistan, and western Turkmenistan. The dustiest air masses (PM10 > 400 µg m–3) affected the south of the Caspian Sea and western Azerbaijan. Furthermore, the WRF-Chem model was run to evaluate the spatial distribution of dust particles in the study region. The vertical profile revealed that the simulated dust concentration ascended to 5 km from the lake. The WRF-Chem dust schemes accurately simulated dust propagation and the vertical dust profile over Urmia Lake; however, the AFWA and GOCART dust schemes showed that PM10 fluctuating changes were earlier than the measured surface PM10 at five stations around Urmia Lake on April 23-26, 2017. Furthermore, the maximum amount anticipated by the model simulation was 12 h earlier than the maximum surface mass concentration of measured PM10 at the stations throughout the period.

Downloads

Download data is not yet available.

Article Details

Sharing on:

PLUMX metrics

References

Tegen, I. Modeling the mineral dust aerosol cycle in the climate system. Quat.Sci. Rev. 2003, 22, 1821–1834.

Yang, B.; Bräuning, A.; Zhang, Z.; Dong, Z.; Esper, J. Dust storm frequency and its relation to climate changes in Northern China during the past 1000 years. Atmos. Environ. 2007, 41, 9288-9299.

An, L.; Che, H.; Xue, M.; Zhang, T.; Wang, H.; Wang, Y.; Zhou, C.; Zhao, H.; Gui, K.; Zheng, Y.; Sun, T. Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Rela-tionships with surface conditions and climate change. Sci. Total Environ. 2018, 633, 452-462.

Salehi, S.; Ardalan, A.; Ostadtaghizadeh, A.; Garmaroudi, G.; Zareiyan, A.; Rahimiforoushani, A. Con-ceptual definition and framework of climate change and dust storm adaptation: a qualitative study. J. Environ. Sci. Health, Part A. 2019, 17, 797-810.

Schepanski, K. Transport of mineral dust and ist impact on climate. Geoscience. 2018,8, 151, doi:10.3390/geosciences8050151.

Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F. Toxicity of atmospheric aerosols on marine phytoplankton. PROG NAT SCI, 2009, 106, 4601-4605.

Bali, K.; Mishra, A.K.; Singh, S.; Chandra, S.; Lehahn, Y. Impact of dust storm on phytoplankton bloom over the Arabian Sea: a case study during March 2012. Environ. Sci. Poll. Res. 2019, 26, 11940-11950.

Yorks, J.E., McGill, M., Rodier, S., Vaughan, M., Hu, Y. and Hlavka, D., 2009. Radiative effects of African dust and smoke observed from Clouds and the Earth's Radiant Energy System (CERES) and Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Journal of Geophysical Research: Atmospheres, 114(D4).

Stocker, T.F., Qin, D., Plattner, G.K., Alexander, L.V., Allen, S.K., Bindoff, N.L., Bréon, F.M., Church, J.A., Cubasch, U., Emori, S. and Forster, P., 2013. Technical summary. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergov-ernmental Panel on Climate Change (pp. 33-115). Cambridge University Press.

Abuduwaili, J., DongWei, L.I.U. and GuangYang, W.U., 2010. Saline dust storms and their ecological impacts in arid regions. Journal of arid land, 2(2), pp.144-150.

Hamza, W., 2021. Dust Storms and Its Benefits to the Marine Life of the Arabian Gulf. In The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures (pp. 141-160). Springer, Cham.

Neelamani, S. and Al-Dousari, A., 2016. A study on the annual fallout of the dust and the associated elements into the Kuwait Bay, Kuwait. Arabian Journal of Geosciences, 9(3), pp.1-11.

Khusfi, Zohre Ebrahimi, Mohammad Khosroshahi, Fatemeh Roustaei, and Maryam Mirakbari. "Spatial and seasonal variations of sand-dust events and their relation to atmospheric conditions and vegetation cover in semi-arid regions of central Iran." Geoderma 365 (2020): 114225.

Kimura, R., Bai, L. and Wang, J., 2009. Relationships among dust outbreaks, vegetation cover, and sur-face soil water content on the Loess Plateau of China, 1999–2000. Catena, 77(3), pp.292-296.

Zou, X.K. and Zhai, P.M., 2004. Relationship between vegetation coverage and spring dust storms over northern China. Journal of Geophysical Research: Atmospheres, 109(D3).

Ghosh, T.; Pal, I. Dust storm and its environmental implications. J. Eng. Comput. Appl. Sci. 2014, 3, 30-37.

Naji, H.; Taherpour, M. The effect of simulated dust storm on wood development and leaf stomata in Quercus brantii L. Des. 2019, 24, 43-49.

Griffin, D.W.; Kellogg, C.A. Dust storms and their impact on ocean and human health: dust in Earth’s atmosphere. EcoHealth. 2004, 1, 284-295.

Ardon-Dryer, K.; Mock, C.; Reyes, J.; Lahav, G. The effect of dust storm particles on single human lung cancer cells. Environ. Res. 2020, 181, 108891-108910. doi:10.1016/ j.envres.2019.108891.

Hashizume, M.; Ueda, K.; Nishiwaki, Y.; Michikawa, T.; Onozuka, D. Health effects of Asian dust events: a review of the literature. Nihon eiseigaku zasshi. Jpn. J. Hygiene. 2010, 65, 413-421.

Yu, H. L.; Chien, L.C.; Yang, C.H. Asian dust storm elevates children’s respiratory health risks: a spati-otemporal analysis of children’s clinic visits across Taipei (Taiwan). 2012, e41317.

Semenov, O.E., 2012. Dust storms and sandstorms and aerosol long-distance transport. In Aralkum-a Man-Made Desert (pp. 73-82). Springer, Berlin, Heidelberg.

Zhang, B., Tsunekawa, A. and Tsubo, M., 2008. Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006. Global and Planetary Change, 60(3-4), pp.487-504.

Tanaka, T.Y., Kurosaki, Y., Chiba, M., Matsumura, T., Nagai, T., Yamazaki, A., Uchiyama, A., Tsun-ematsu, N. and Kai, K., 2005. Possible transcontinental dust transport from North Africa and the Middle East to East Asia. Atmospheric Environment, 39(21), pp.3901-3909.

Sugimoto, N., Shimizu, A., Nishizawa, T., Jin, Y. and Yumimoto, K., 2020. Long-Range-Transported Mineral Dust From Africa and Middle East to East Asia Observed with the Asian Dust and Aerosol Lidar Observation Network (AD-Net). In EPJ Web of Conferences (Vol. 237, p. 05009). EDP Sciences.

Ansmann, A., Baars, H., Tesche, M., Müller, D., Althausen, D., Engelmann, R., Pauliquevis, T. and Ar-taxo, P., 2009. Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophysical Research Letters, 36(11).

Gangoiti, G., Alonso, L., Navazo, M., Garcia, J.A. and Millán, M.M., 2006. North African soil dust and European pollution transport to America during the warm season: Hidden links shown by a passive tracer simulation. Journal of Geophysical Research: Atmospheres, 111(D10).

Creamean, J.M., Suski, K.J., Rosenfeld, D., Cazorla, A., DeMott, P.J., Sullivan, R.C., White, A.B., Ralph, F.M., Minnis, P., Comstock, J.M. and Tomlinson, J.M., 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. science, 339(6127), pp.1572-1578.

Chen, S.P., Lu, C.H., McQueen, J. and Lee, P., 2018. Application of satellite observations in conjunction with aerosol reanalysis to characterize long-range transport of African and Asian dust on air quality in the contiguous US. Atmospheric Environment, 187, pp.174-195.

Shao, Y., Klose, M. and Wyrwoll, K.H., 2013. Recent global dust trend and connections to climate forcing. Journal of Geophysical Research: Atmospheres, 118(19), pp.11-107.

Field, J.P., Belnap, J., Breshears, D.D., Neff, J.C., Okin, G.S., Whicker, J.J., Painter, T.H., Ravi, S., Re-heis, M.C. and Reynolds, R.L., 2010. The ecology of dust. Frontiers in Ecology and the Environment, 8(8), pp.423-430.

Goudie, A.S.; Middleton, N.J. Desert dust in the global system. Springer Science & Business Media, 2006.

Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Zh.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cyle: An emerging core theme in Earthsystem science. Aeo. Res. 2011, 2: pp. 181–204.

Middleton, N. J. Desert dust hazards: A global review. Aeo. Res. 2017, 24, 53–63

Opp, Ch.; Groll, M.; Aslanov, I.; Lotz, T.; Vereshagina. Aeolian dust deposition in the Southern Aral Sea region (Uzbekistan)—ground-based monitoring results from the LUCA project. Quatern. Int. 2016, doi:10.1016/ j.quaint.2015.12.103.

Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci., 2007, 35, 47-72.

Opp, Ch.; Wagemann, J.; Banedjshafi, Sh.; Abbasi, H. R. Aral Sea Syndrome and Lake Urmia crisis. A Comparison of causes, effects and strategies for problem solutions. In Geoparks and Geotourism in Iran. Schriften zur Internationalen Entwicklungs- und Umweltforschung. Edited by Dittmann, A. vol. 34, Zentrum für Internationale Entwicklungs- und Umweltforschung, Universität Gießen, Gießen. 2017, 169–83.

Hamzeh, N.H.; Ranjbar, A.S.; Gee, M. O.; Habibi, M.; Schöner, W. Analyses of a Lake Dust Source in the Middle East through Models Performance. Remo. Sense. 2022, 50, 100679.

Farebrother, W., Hesse, P.P., Chang, H.C. and Jones, C., 2017. Dry lake beds as sources of dust in Aus-tralia during the Late Quaternary: A volumetric approach based on lake bed and deflated dune volumes. Quaternary Science Reviews, 161, pp.81-98.

Gillette, D., Ono, D. and Richmond, K., 2004. A combined modeling and measurement technique for estimating windblown dust emissions at Owens (dry) Lake, California. Journal of Geophysical Research: Earth Surface, 109(F1).

Zhao, F., Liu, H., Yin, Y., Hu, G. and Wu, X., 2011. Vegetation succession prevents dry lake beds from becoming dust sources in the semi‐arid steppe region of China. Earth Surface Processes and Landforms, 36(7), pp.864-871.

Funk, R., Reuter, H.I., Hoffmann, C., Engel, W. and Öttl, D., 2008. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 33(12), pp.1851-1863.

Xi, X. and Sokolik, I.N., 2016. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. Journal of Geophysical Research: Atmospheres, 121(20), pp.12-270.

Prins, M.A., Zheng, H., Beets, K., Troelstra, S., Bacon, P., Kamerling, I., Wester, W., Konert, M., Huang, X., Ke, W. and Vandenberghe, J., 2009. Dust supply from river floodplains: the case of the lower Huang He (Yellow River) recorded in a loess–palaeosol sequence from the Mangshan Plateau. Journal of Qua-ternary Science: Published for the Quaternary Research Association, 24(1), pp.75-84.

Bullard, J.E. and Austin, M.J., 2011. Dust generation on a proglacial floodplain, West Greenland. Aeolian Research, 3(1), pp.43-54.

Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S.P., Prentice, I.C., Schulz, M. and Rodhe, H., 1999. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research: Atmospheres, 104(D13), pp.15895-15916.

Cao, H., Amiraslani, F., Liu, J. and Zhou, N., 2015. Identification of dust storm source areas in West Asia using multiple environmental datasets. Science of the Total Environment, 502, pp.224-235.

Jish Prakash, P., Stenchikov, G., Tao, W., Yapici, T., Warsama, B. and Engelbrecht, J.P., 2016. Arabian Red Sea coastal soils as potential mineral dust sources. Atmospheric Chemistry and Physics, 16(18), pp.11991-12004.

Rousseau, D.D., Chauvel, C., Sima, A., Hatté, C., Lagroix, F., Antoine, P., Balkanski, Y., Fuchs, M., Mellett, C., Kageyama, M. and Ramstein, G., 2014. European glacial dust deposits: Geochemical con-straints on atmospheric dust cycle modeling. Geophysical Research Letters, 41(21), pp.7666-7674.

Basile, I., Grousset, F.E., Revel, M., Petit, J.R., Biscaye, P.E. and Barkov, N.I., 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth and Planetary Science Letters, 146(3-4), pp.573-589.

Prospero, J.M. and Lamb, P.J., 2003. African droughts and dust transport to the Caribbean: Climate change implications. Science, 302(5647), pp.1024-1027.

Indoitu, R., Kozhoridze, G., Batyrbaeva, M., Vitkovskaya, I., Orlovsky, N., Blumberg, D. and Orlovsky, L., 2015. Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Research, 17, pp.101-115.

Karami, S.; Hamzeh, N.H.; Abadi, A. R. S; Madhavan, B.L. Investigation of a severe frontal dust storm over the Persian Gulf in February 2020 by CAMS model. Arab. J. Geosci. 2021, 14, 1-12.

Williams, G., 2020. Great Salt Lake and Utah Lake Statistical Analysis: Vol II Utah Lake.

Karami, S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Alam, K.; Ranjbar, A. Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeo. Res. 2021, 50, 100679.

Soleimani Sardoo, F., Hosein Hamzeh, N., Karami, S., Nateghi, S. and Hashemi Nezhad, M., 2022. Emission and transport of dust particles in Jazmourian basin (Case study: Dust storm 24 to 26 November 2016). Journal of Climate Research, 1400(48), pp.41-54.

Rashki, A., Arjmand, M. and Kaskaoutis, D.G., 2017. Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran. Aeolian Research, 24, pp.145-160.

Karimzadeh, S. and Taghizadeh, M.M., 2019. Potential of dust emission resources using small wind tunnel and GIS: case study of Bakhtegan playa, Iran. Applied Water Science, 9(8), pp.1-8.

Ranjbar, A.S.; Hamzeh, N.H.; Shukurov, K.; Opp, C.; Umesh, C. Long term investigation of two intense lake dust sources, the Urmia Lake and the Aral Sea in Central Asia in 2000-2021. Remo. Sense. 2022, 50, 100679.

Delju, A.H.; Ceylan, A.; Piguet, E.; Rebetez, M. Observed climate variability and change in Urmia Lake Basin, Iran. Theor. Appl. Clim. 2013, 111, 285-296.

Yasi, M. and Ashori, M., 2017. Environmental flow contributions from in-basin rivers and dams for saving Urmia Lake. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41(1), pp.55-64.

Ahmady-Birgani, H.; Ravan, P.; Schlosser, J.S.; Cuevas-Robles, A.; AzadiAghdam, M.; Sorooshian. On the chemical nature of wet deposition over a major desiccated lake: Case study for Lake Urmia basin. Atmos. Res. 2020, 234, 104762-104774/ doi.org/10.1016/j.atmosres.2019.104762

Marjani, A. and Jamali, M., 2014. Role of exchange flow in salt water balance of Urmia Lake. Dynamics of atmospheres and oceans, 65, pp.1-16.

Zarghami, M.; AmirRahmani, M. A system dynamics approach to simulate the restoration plans for Urmia Lake, Iran. Optim. dyn.app.,2017, 309-326.

Hamidi-Razi, H.; Mazaheri, M.; Carvajalino-Fernández, M; Vali-Samani, J.Investigating the restoration of Lake Urmia using a numerical modelling approach. J. Great Lakes Res. 2019, 45, 87-97.

Foroushani, M. A.; Opp, Ch.; Groll, M.; Nikfal, A. Evaluation of WRF-Chem Prediction for Dust Dep-osition in Southwestern Iran. Atmos. 2020. doi: 10.3390/atmos11070757: 1-25

Eimanifar, A.; Mohebbi, F. Urmia Lake (Northwest Iran): a brief review. Saline Sys, 2007, 3, 1-8.

Soudi, M.; Ahmadi, H.; Yasi, M.; Hamidi, S.A. Sustainable restoration of the Urmia Lake: History, threats, opportunities and challenges. Eur. Water. 2017, 60, 341-347.

Gholampour, A.; Nabizadeh, R.; Hassanvand, M.S.; Taghipour, H.; Nazmara, S.; Mahvi, A.H. Charac-terization of saline dust emission resulted from Urmia Lake drying. J. Environ. Sci. Health Eng. 2015, 13, 1-11.

Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer,P.; Bechtold, P.; Beljaars, A.C.M.; van de Berg, L.; Bidlot, J.; Bormann, N.; Delsol, C.; Dragani, R.; Fuentes, M.; Geer, A.J.; Haimberger, L.; Healy, S.B.; Hersbach, H.; Hólm, E.V.; Isak-sen, L.; Kållberg, P.; Köhler, M.; Matricardi, M.; McNally, A.P.; Monge-Sanz, B.M.; Morcrette, J.-J.; Park, B.-K.; Peubey, C.; deRosnay, P.; Tavolato, C.; Thépaut, J.-N.; Vitart, F. TheERA-Interim reanalysis: configuration and performance of thedata assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597.

Hersbach, H.; Bell, B., Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P.; Dee, D.; Diamantakis, M.; Dragani, R.; Flemming, J.; Forbes, R.; Fuentes, M.; Geer, A.; Haimberger, L.; Healy, S.; Hogan, R. J.; Hólm, E.; Jan-isková, M.; Keeley, S.; Laloyaux, P.; Lopez, P.; Lupu, C.; Radnoti, G.; de Rosnay, P.; Rozum, I.; Vam-borg, F.; Villaume, S.; Thépaut, J. N.; The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049/doi:10.1002/qj.3803.

Marticorena, B.; and Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil‐derived dust emission scheme. J. Geophys. Res., [Atmos.]. 1995, 100, 16415-16430.

Kawamura, R. Study on sand movement by wind. Rept. Inst. Sci. Technol. 1951, 5, 95-112.

Kok, J.F.; Albani, S.; Mahowald, N.M. Ward, D.S. An improved dust emission model–Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 2014, 14, 13043-13061.

Gillette, D.A.; Passi, R. Modeling dust emission caused by wind erosion. J. Geophys. Res., [Atmos.]. 1988, 93, 14233-14242

Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distribu-tions of dust aerosols simulated with the GOCART model J. Geophys. Res., [Atmos.]. 2001, 106, 20255-20273.

Draxler, R.R., and Hess, G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dis-persion, and deposition. Austral. Meteorol. Mag. 1998, 47, 295–308.

Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015. 96, 2059-2077.

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas0p5

Shukurov, K.A., Borovski, A.N., Postylyakov, O.V., Grechko, E.I., Dzhola, A.V., Kanaya, Y. Potential sources of tropospheric nitrogen dioxide for Western Moscow Region, Russia. Proc. SPIE. 2018, 10833, 108337N, doi: 10.1117/12.2504138

Shukurov, K.A., Chkhetiani, O.G. Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region. Proc. SPIE. 2017. 10466. 104663V; doi: 10.1117/12.2287932

Hsu, Y.-K., Holsen, T., Hopke, P. Comparison of hybrid receptor models to locate PCB sources in Chi-cago. Atmos. Environ. 2003. 7, 545–562.

Cheng, I. & Zhang, Leiming & Blanchard, P. & Dalziel, J. & Tordon, Robert. Concentration-weighted trajectory approach to identifying sources of Speciated Atmospheric Mercury at an Urban Coastal Site in Nova Scotia, Canada. Atmos. Chem. Phys. 2013. 13. 4183-4219. 10.5194/acpd-13-4183-2013.

Shukurov K. A., Shukurova L. M. The fields of mean concentration in potential sources of ammonium sulphate, ammonium nitrate and natural silicates for the west of Moscow region. Proc. SPIE. 2017. 10466. 104663U. doi: 10.1117/12.2287931

Zachary, Misiani & Lun, Yin & Mwai, Zacharia. Application of PSCF and CWT to Identify Potential Sources of Aerosol Optical Depth in ICIPE Mbita. OALib. 2018. 05. 1-12. 10.4236/oalib.1104487.

Dimitriou, K. The Dependence of PM Size Distribution from Meteorology and Local-Regional Contri-butions, in Valencia (Spain) – A CWT Model Approach. Aerosol and Air Quality Research, 2015. 15, 1979–1989, 2015

Li, C., Dai, Z., Liu, X., Wu, P. Transport Pathways and Potential Source Region Contributions of PM2.5 in Weifang: Seasonal Variations. Appl. Sci. 2020, 10, 2835; doi:10.3390/app10082835

Habibi, M.; Babaeian, I.; Schöner, W. Changing Causes of Drought in the Urmia Lake Basin—Increasing Influence of Evaporation and Disappearing Snow Cover. Water, 2021, 13,3273.

Mardi, A.H.; Khaghani, A.; MacDonald, A.B.; Nguyen, P.; Karimi, N.; Heidary, P.; Karimi, N.; Saemian, P.; Sehatkashani, S.; Tajrishy, M.; Sorooshian, A. The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Sci. Tot. Environ. 2018, 633, 42-49.

Harati, H.; Kiadaliri, M.; Tavana, A.; Rahnavard, A.; Amirnezhad, R. Urmia Lake dust storms occur-rences: investigating the relationships with changes in water zone and land cover in the eastern part using remote sensing and GIS. Environ. Monitor. Ass. 2021, 193, 1-16.

Maghrabi, A.; Alharbi, B.; Tapper, N. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos. Environ. 2011, 45, 2164-2173.

Saeed, T.M.; Al-Dashti, H.; pyrou, C. Aerosol's optical and physical characteristics and direct radiative forcing during a shamal dust storm, a case study. Atmos. Chem. Phys. 2014, 14, 3751-3769.

Hamzeh, N.H.; Karami, S.; Opp, C.; Fattahi, E.; Jean-François, V. Spatial and temporal variability in dust storms in the Middle East, 2002–2018: three case studies in July 2009. Arab. J. Geosci. 2021, 14, 1-14.

Karami, S.; Hamzeh, N.H.; Alam, K.; Noori, F.; Abadi, A.R.S. Spatio-temporal and synoptic changes in the dust at the three islands in the Persian Gulf region. J. Atmos. Sol.-Terr. Phys. 2021, 214, 105539.

Hamzeh, N.H.; Karami, S.; Kaskaoutis, D.G.; Tegen, I.; Moradi, M.; Opp, C., Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region. Atmos. 2021, 12, 125.

Basart, S., Vendrell, L. and Baldasano, J.M., 2016. High-resolution dust modelling over complex terrains in West Asia. Aeolian research, 23, pp.37-50.

Hamzeh, N.H.; Karami, S.; Ranjbar, A. Simulation of a severe dust storm with different dust emission schemes. E3S Web of Conferences, 2019, 99, 02013-02018.

Shao, Y. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res., [At-mos.]. 2004, 109(D10).

Shao, Y.; Ishizuka, M.; Mikami, M.; Leys, J.F. Parameterization of size‐resolved dust emission and val-idation with measurements. J. Geophys. Res., [Atmos.]. 2011, 116(D8).

Mhawish, A. ; Sorek-Hamer, M. ; Chatfield, R. ; Banerjee, T. ; Bilal, M. ; Kumar, M. ; Sarangi, C. ; Franklin, M. ; Chau, K. ; Garay, M. ; Kalashnikova, O. Aerosol characteristics from earth observation systems: A comprehensive investigation over South Asia (2000–2019). Remot. Sens. Environ. 2021, 259, 112410-112426.