Chemical composition and trajectories of atmospheric particles at the Machu Picchu Peruvian Antarctic scientific station (62.09º S, 58.47º W)

Main Article Content

Daniel Alvarez-Tolentino
Luis Suarez Salas
Jose Pomalaya-Valdez
Boris Barja

Abstract

Antarctica is a remote and relatively pristine region, but the regional transport of aerosols may be a source of pollution, especially in the Antarctic Peninsula. Few studies have characterized atmospheric aerosols and evaluated the contribution of their emission sources. The Peruvian Antarctic research station Machu Pichu (ECAMP, by its Spanish acronym) is located on King George Island in the Antarctic Peninsula. During February 2020, atmospheric particulate mass (PM10 and PM2.5) was sampled and analyzed to characterize its elemental composition and was supplemented by measurements of equivalent black carbon and aerosol size distributions. Chemical elements were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), multivariate techniques, and enrichment factors. The most abundant elements in PM10 and PM2.5 were Na, Fe, Mg, and Si, with the most important local sources being marine (Na, Mg, Mn, Ca) and crustal (Fe, Al, P). Sources of weathering (Ba and Si) from glacial thawing and sources of combustion linked to the use of oil (V) and emission of black carbon were recorded. Air mass back-trajectory analysis using the HYSPLIT model helped identify external sources of particulate matter in the air masses reaching the ECAMP site. Overall, this study supports the growing evidence of the anthropogenic impact of distant and local sources on the white continent.

Downloads

Download data is not yet available.

Article Details

Sharing on:

PLUMX metrics

References

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson‐Parris, D., ... & Stevens, B. (2020). Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics, 58(1), e2019RG000660. doi: https://doi.org/10.1029/2019RG000660

Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J., Irvine, P., Jones, A., Lawrence, M. G., MacCracken, M., Muri, H., Moore, J. C., Niemeier, U., Phipps, S. J., Sillmann, J., Storelvmo, T., Wang, H., & Watanabe, S. (2015). The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results. Geoscientific Model Development, 8, 3379–3392 DOI: https://doi.org/10.5194/gmd-8-3379-2015

Lachlan-Cope, T., Beddows, D., Brough, N., Jones, A. E., Harrison, R. M., Lupi, A., ... & Dall'Osto, M. (2020). On the annual variability of Antarctic aerosol size distributions at Halley Research Station. Atmospheric Chemistry and Physics, 20(7), 4461-4476. DOI: https://doi.org/10.5194/acp-20-4461-2020

Kennicutt II, M. C., Bromwich, D., Liggett, D., Njåstad, B., Peck, L., Rintoul, S. R., ... & Chown, S. L. (2019). Sustained Antarctic research: a 21st century imperative. One Earth, 1(1), 95-113.doi: https://doi.org/10.1016/j.oneear.2019.08.014

Luis, Alvarinho J. (2013). Past, present and future climate of Antarctica. Página web: https://www.scirp.org/html/4-2800529_35848.htm

Marina-Montes, C., Pérez-Arribas, L. V., Escudero, M., Anzano, J., & Cáceres, J. O. (2020). Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region. Science of the total Environment, 721, 137702.DOI: https://doi.org/10.1016/j.scitotenv.2020.137702

Zhong, J., Zhang, X., Wang, Y., Wang, J., Shen, X., Zhang, H., Wang, T., Xie, Z., Liu, C., Zhang, H., Zhao, T., Sun, J., Fan, S., Gao, Z., Li, Y., and Wang, L. (2019). The two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China, Atmos. Chem. Phys., 19, 3287–3306, https://doi.org/10.5194/acp-19-3287-2019.

Xiong, J., Zhao, T., Bai, Y., Liu, Y., Han, Y., & Guo, C. (2020). Climate characteristics of dust aerosol and its transport in major global dust source regions. Journal of Atmospheric and Solar-Terrestrial Physics, 209, 105415. DOI: https://doi.org/10.1016/j.jastp.2020.105415

Bargagli, R. (2016). Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas. Chemosphere, 163, 202-208. DOI https://doi.org/10.1016/j.chemosphere.2016.08.007

Anzano, J., Abás, E., Marina-Montes, C., del Valle, J., Galán-Madruga, D., Laguna, M., Cabredo, S. , Perez-Arribas, L.-V., Cacéres, J. & Anwar, J. (2022). A Review of Atmospheric Aerosols in Antarctica: From Characterization to Data Processing. Atmosphere, 13(10), 1621. DOI: https://doi.org/10.3390/atmos13101621

Yang, Y., Zhao, C., Wang, Q., Cong, Z., Yang, X., & Fan, H. (2021). Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmospheric Chemistry and Physics, 21(6), 4849-4868. DOI: https://doi.org/10.5194/acp-21-4849-2021C

Angeles Suazo, J. M., Suarez Salas, L., Huaman De La Cruz, A. R., Angeles Vasquez, R., Rosales Aylas, G., Rocha Condor, A., ... & Abi Karam, H. (2020). Direct radiative forcing due to aerosol properties at the peruvian antarctic station and metropolitan huancayo area. DOI; https://doi.org/10.11137/2020_4_404_412

Jia, W., & Zhang, X. (2020). The role of the planetary boundary layer parameterization schemes on the meteorological and aerosol pollution simulations: A review. Atmospheric Research, 239, 104890. DOI: https://doi.org/10.1016/j.atmosres.2020.104890

Gonçalves Jr, S. J., Magalhaes, N., Charello, R. C., Evangelista, H., & Godoi, R. H. (2022). Relative contributions of fossil fuel and biomass burning sources to black carbon aerosol on the Southern Atlantic Ocean Coast and King George Island (Antarctic Peninsula). Anais da Academia Brasileira de Ciências, 94. DOI: https://doi.org/10.1590/0001-3765202220210805

Hong, S. B., Yoon, Y. J., Becagli, S., Gim, Y., Chambers, S. D., Park, K. T., ... & Griffiths, A. D. (2020). Seasonality of aerosol chemical composition at King Sejong Station (Antarctic Peninsula) in 2013. Atmospheric Environment, 223, 117185. DOI: https://doi.org/10.1016/j.atmosenv.2019.117185

Polyakov, V., Abakumov, E., & Mavlyudov, B. (2020). Black carbon as a source of trace elements and nutrients in ice sheet of King George Island, Antarctica. Geosciences, 10(11), 465. DOI: https://doi.org/10.3390/geosciences10110465

Fan, S., Gao, Y., Sherrell, R. M., Yu, S., & Bu, K. (2021). Concentrations, particle-size distributions, and dry deposition fluxes of aerosol trace elements over the Antarctic Peninsula in austral summer. Atmospheric Chemistry and Physics, 21(3), 2105-2124. DOI: https://doi.org/10.5194/acp-21-2105-2021

Szumińska, D., Potapowicz, J., Szopińska, M., Czapiewski, S., Falk, U., Frankowski, M., & Polkowska, Ż. (2021). Sources and composition of chemical pollution in Maritime Antarctica (King George Island), part 2: Organic and inorganic chemicals in snow cover at the Warszawa Icefield. Science of The Total Environment, 796, 149054. DOI: https://doi.org/10.1016/j.scitotenv.2021.149054