The effects of climate warming on large-scale atmospheric systems of the Northern Hemisphere

Main Article Content

Zahra Mahavarpour
Javad Khoshhal Dastjerdi
Seyed Abolfazl Masoodian
Mohammad Ali Nasresfahani

Abstract

In the present study, we examine the impact of climate warming on the variability of the main climatic drivers in the northern hemisphere, using 40 years (1979-2018) of ERA-Interim reanalysis data. We applied Sen’s slope estimator and the Mann-Kendall significance test to identify regions with significant variability of 500-1000 hPa thickness. The findings reveal that climate warming is particularly pronounced at latitudes ranging from 80º to 90º and also in subtropical regions. The increase in thickness is most notable in mid-latitudes during the summer season, owing to climate warming. The steeper trend slope observed in autumn indicates a faster warming rate compared to other seasons. Moreover, despite climate warming, significant trends in large-scale atmospheric circulation systems demonstrate the strengthening of the Siberian high-pressure in winter and autumn. Additionally, a segment of the core of the Azores high-pressure system has also experienced strengthening during winter. Conversely, the monsoon and Aleutian low-pressure systems have weakened in spring and winter, respectively. The subtropical high-pressure system exhibits a positive and significant trend in winter, spring, and summer, aligning with the positive significant trends observed in atmospheric thickness, thereby confirming the effects of climate warming.

Downloads

Download data is not yet available.

Article Details

Sharing on:

PLUMX metrics

References

Anscombe, F. J., & Tukey, J. W. (1963). The Examination and Analysis of Residuals. Technometrics, 5(2), 141-160. https://doi.org/10.1080/00401706.1963.10490071.

Banda, V., Dzwairo, B., Singh, S., & Thokozani, K. (2021). Trend analysis of selected hydro-meteorological variables for the Rietspruit sub-basin, South Africa. Journal of Water and Climate Change, 12. https://doi.org/10.2166/wcc.2021.260.

Bjerknes, J. A. B. (1968). Atmospheric Teleconnections from the Equatorial Pacific. RAND Corporation. https://www.rand.org/pubs/papers/P3882.html.

Boo, K.-O., Booth, B. B. B., Byun, Y.-H., Lee, J., Cho, C., Shim, S., & Kim, K.-T. (2015). Influence of aerosols in multidecadal SST variability simulations over the North Pacific. Journal of Geophysical Research: Atmospheres, 120(2), 517-531. doi:https://doi.org/10.1002/2014JD021933.

Branstator, G. (2002). Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation. J. Climate, 15. https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

Castruccio, F. S., Ruprich-Robert, Y., Yeager, S. G., Danabasoglu, G., Msadek, R., & Delworth, T. L. (2019). Modulation of Arctic Sea Ice Loss by Atmospheric Teleconnections from Atlantic Multidecadal Variability. Journal of Climate, 32(5), 1419-1441. doi:https://doi.org/10.1175/JCLI-D-18-0307.1.

Cohen, J., & Entekhabi, D. (1999). Eurasian snow cover variability and northern hemisphere climate predictability. Geophysical Research Letters, 26(3), 345-348. doi:https://doi.org/10.1029/1998GL900321.

Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., & Cherry, J. E. (2012). Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7. doi:10.1088/1748-9326/7/1/014007.

D'Arrigo, R., Jacoby, G., Wilson, R., & Panagiotopoulos, F. (2005). A reconstructed Siberian High index since A. D. 1599 from Eurasian and North American tree rings [Article]. Geophysical Research Letters, 32(5), -. https://doi.org/10.1029/2004GL022271.

Deser, C., Phillips, A., Bourdette, V., & Teng, H.(2012). Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38(3), 527-546. https://doi.org/10.1007/s00382-010-0977-x.

Dong, W., Lin, Y., Wright, J., Xie, Y., Xu, F., Xu, W., & Yan, W. (2017). Indian Monsoon Low-Pressure Systems Feed Up-and-Over Moisture Transport to the Southwestern Tibetan Plateau: Up-and-Over Moisture Transport. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1002/2017JD027296.

Dong, W., Ming, Y., & Ramaswamy, V. (2020). Projected Changes in South Asian Monsoon Low-pressure Systems [Journal Article]. Journal of Climate, 33(17). https://doi.org/10.1175/JCLI-D-20-0168.1.

Edwards, M., Beaugrand, G., Kléparski, L., Hélaouët, P., & Reid, P. C. (2022). Climate variability and multi-decadal diatom abundance in the Northeast Atlantic. Communications Earth & Environment, 3(1), 162. doi:10.1038/s43247-022-00492-9.

Eichler, P., Pimenta, F., Eichler, B., & Vital, H. (2014). Living Bulimina marginata in the SW Atlantic Continental margin: Effect of the Subtropical Shelf Front and South Atlantic Central Water. Continental Shelf Research, 71, 1. doi:10.1016/j.csr.2013.09.027.

Falarz, M. (2019). Azores High and Hawaiian High: correlations, trends and shifts (1948–2018).Theoretical and Applied Climatology, 138. https://doi.org/10.1007/s00704-019-02837-5.

Fu, Q., Johanson, C. M., Wallace, J. M., & Reichler, T. (2006). Enhanced Mid-Latitude Tropospheric Warming in Satellite Measurements. Science, 312(5777), 1179-1179. doi:doi:10.1126/science.1125566.

Fu, Q., & Lin, P. (2011). Poleward Shift of Subtropical Jets Inferred from Satellite-Observed Lower-Stratospheric Temperatures. Journal of Climate, 24, 5597-5603. doi:10.1175/JCLI-D-11-00027.1.

Gan, B., Wu, L., Jia, F., Li, S., Cai, W., Nakamura, H., Alexander, M. A., & Miller, A. J. (2016). On the Response of the Aleutian Low to Greenhouse Warming https://ui.adsabs.harvard.edu/abs/2016AGUFM.A23H0324G.

Gan, T. Y. (1998). Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resources Research, 34, 3009-3015. https://doi.org/10.1029/98wr01265.

Gascard, J. C., Zhang, J., & Rafizadeh, M. (2019). Rapid decline of Arctic sea ice volume: Causes and consequences. The Cryosphere Discuss., 2019, 1-29. doi:10.5194/tc-2019-2.

Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric Statistical Inference. In M. Lovric (Ed.), International Encyclopedia of Statistical Science (pp. 977-979). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_420.

Gillett, N. P., Allan, R. J., & Ansell, T. J. (2005). Detection of external influence on sea level pressure with a multi-model ensemble. Geophysical Research Letters, 32.

Gong, D. Y., & Ho, C. H. (2002). The Siberian High and climate change over middle to high latitude Asia. Theoretical and Applied Climatology, 72(1), 1-9. https://doi.org/10.1007/s007040200008.

Haby , j. Reading Thickness Lines. Temperature Gradients, Heights and Thicknesses, NOAA. https://doi.org/http://www.weather.gov/source/zhu/ZHU_Training_Page/Miscellaneous/Heights_Thicknesses/thickness_temperature.htm.

Hannigan, A., & Godek, M. (2020). The Utility of 1000 - 500 mb Thickness and Weather Type as a Rain-Snow Divide: A 30-Year Study at Albany, NY. Atmospheric and Climate Sciences, 10, 372-391. https://doi.org/10.4236/acs.2020.103021.

Hirsch, R., Slack, J., & Smith, R. (1982). Techniques of Trend Analysis for Monthly Water Quality Data. Water Resources Research, 18, 107-121. https://doi.org/10.1029/WR018i001p00107.

Hoerling, M. P., Hurrell, J. W., & Xu, T. (2001). Tropical origins for recent North Atlantic climate change. Science, 292(5514),90-92. https://doi.org/10.1126/science.1058582 .

Horel, J., & Wallace, J. (1981). Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation. Monthly Weather Review, 109, 813-829. https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

Hunt, K., Turner, A., Inness, P., Parker, D., & Levine, R. (2016). On the Structure and Dynamics of Indian Monsoon Depressions. Monthly Weather Review, 144, 160204142546002. https://doi.org/10.1175/MWR-D-15-0138.1 .

Hurley, J. V., & Boos, W. R.(2015). A global climatology of monsoon low pressure systems. Quarterly Journal of the Royal Meteorological Society, 141.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. doi:10.1017/9781009157896.

Jeong, J.-H., Ou, T., Linderholm, H., Kim, B. M., Kim, S.-J., Kug, J. S., & Chen, D. (2011). Recent recovery of the Siberian High intensity. Journal of Geophysical Research, 116, D23102. https://doi.org/10.1029/2011jd015904.

Kamae, Y., Li, X., Xie, S.-P., & Ueda, H. (2017). Atlantic effects on recent decadal trends in global monsoon. Climate Dynamics, 49(9), 3443-3455. doi:10.1007/s00382-017-3522-3.

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., . . . Vertenstein, M. (2015). The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteorological Society, 96(8), 1333-1349. doi:https://doi.org/10.1175/BAMS-D-13-00255.1.

Latif, M., & Barnett, T. P. (1996). Decadal Climate Variability over the North Pacific and North America: Dynamics and Predictability. Journal of Climate, 9(10), 2407-2423. doi:10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2.

Lu, Jian., Greatbatch, R. J., & Peterson, K. A. (2004). Trend in Northern Hemisphere Winter Atmospheric Circulation during the Last Half of the Twentieth Century. Journal of Climate, 17, 3745-3760.

Maheras, P., Flocas, H., Patrikas, I., & Anagnostopoulou, C. (2001). A 40 year objective climatology of surface cyclones in the Mediterranean region: Spatial and temporal distribution. International Journal of Climatology, 21, 109-130. https://doi.org/10. 1002/joc.599.

McCabe, G., Palecki, M., & Betancourt, J. (2004). Pacific and Atlantic Ocean Influences on Multidecadal Drought Frequency in the United States. Proceedings of the National Academy of Sciences of the United States of America, 101, 4136-4141. doi:10.1073/pnas.0306738101.

Mori, M., Kosaka, Y., Watanabe, M., Nakamura, H., & Kimoto, M. (2019). A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nature Climate Change, 9(2), 123-129. doi:10.1038/s41558-018-0379-3.

Mori, M., Watanabe, M., Shiogama, H., Inoue, J., & Kimoto, M. (2014). Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7(12), 869-873. doi:10.1038/ngeo2277.

NOAA, NWS, N. (2019). Constant Pressure Charts: Thickness. https://doi.org/https://www.weather.gov/jetstream/thickness.

Oshima, K., Tanimoto, Y., & Xie, S.-P. (2012). Regional Patterns of Wintertime SLP Change over the North Pacific and Their Uncertainty in CMIP3 Multi-Model Projections. Journal of the Meteorological Society of Japan, 90A. https://doi.org/10.2151/jmsj.2012-A23.

Panagiotopoulos, F., Shahgedanova, M., Hannachi, A., & Stephenson, D. B. (2005). Observed Trends and Teleconnections of the Siberian High: A Recently Declining Center of Action. Journal of Climate, 18(9), 1411-1422. https://doi.org/10.1175/JCLI3352.1.

Patil, S. D., Singh, H. N., Bansod, S. D., & Singh, N. (2011). Trends in extreme mean sea level pressure and their characteristics during the summer monsoon season over the Indian region. International Journal of Remote Sensing, 32(3), 701-715. https://doi.org/10.1080/01431161.2010.517793.

Rajendran, K., Kitoh, A., Srinivasan, J., Mizuta, R., & Krishnan, R. (2012). Monsoon circulation interaction with Western Ghats orography under changing climate. Theoretical and Applied Climatology, 110(4), 555-571. doi:10.1007/s00704-012-0690-2.

Sandeep, S., & Ajayamohan, R. S. (2015). Poleward shift in Indian summer monsoon low level jetstream under global warming. Climate Dynamics, 45(1), 337-351. doi:10.1007/s00382-014-2261-y.

Seidel, D. J., & Randel, W. J. (2007). Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res, 112. doi:10.1029/2007JD008861

Semenov, V. A., Park, W., & Latif, M. (2009). Barents Sea inflow shutdown: a new mechanism for rapid climate changes. Geophys. Res. Lett., 36. doi:10.1029/2009GL038911.

Sikka, D. R. (1977).Some aspects of the life history, structure and movement of monsoon depressions. pure and applied geophysics, 115(5), 1501-1529. https://doi.org/10.1007/BF00874421 .

Sooraj, K. P., Terray, P., & Mujumdar, M. (2015). Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Climate Dynamics, 45(1), 233-252. doi:10.1007/s00382-014-2257-7

Sørland, S. L., & Sorteberg, A. (2015). The dynamic and thermodynamic structure of monsoon low-pressure systems during extreme rainfall events. Tellus A: Dynamic Meteorology and Oceanography, 67(1), 27039. https://doi.org/10.3402/tellusa.v67.27039.

Sun, J., & Wang, H. (2006). Relationship between Arctic Oscillation and Pacific Decadal Oscillation on decadal timescale. Chinese Science Bulletin, 51(1), 75-79. doi:10.1007/s11434-004-0221-3.

Swart, N. C., Fyfe, J. C., Gillett, N., & Marshall, G. J. (2015). Comparing Trends in the Southern Annular Mode and Surface Westerly Jet. Journal of Climate, 28(22), 8840-8859. doi:https://doi.org/10.1175/JCLI-D-15-0334.1.

Trenberth, K. E., & Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9(6), 303-319. https://doi.org/10.1007/BF00204745.

Trigo, I. F., Davies, T. D., & Bigg, G. R. (2000). Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophysical Research Letters, 27.

Vicente-Serrano, S., & López-Moreno, J. I. (2006). The influence of atmospheric circulation at different spatial scales on winter drought variability through a Semi-Arid Climatic Gradient in Northeast Spain. International Journal of Climatology, 26. https://doi.org/10.1002/joc.1387.

Wallace, J. M., Fu, Q., Smoliak, B. V., Lin, P., & Johanson, C. M. (2012). Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proceedings of the National Academy of Sciences, 109(36), 14337-14342. https://doi.org/10.1073/pnas.1204875109.

Wang, B., Liu, J., Kim, H.-J., Webster, P. J., Yim, S.-Y., & Xiang, B. (2013). Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proceedings of the National Academy of Sciences, 110(14), 5347-5352. doi:doi:10.1073/pnas.1219405110.

Wang, P., Wang, J. X. L., Zhi, H., Wang, Y., & Sun, X. (2012). Circulation indices of the Aleutian low pressure system: Definitions and relationships to climate anomalies in the northern hemisphere. Advances in Atmospheric Sciences, 29(5), 1111-1118. doi:10.1007/s00376-012-1196-7.

Wang, T., Otterå, O. H., Gao, Y., & Wang, H. (2012). The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Climate Dynamics, 39(12), 2917-2936. doi:10.1007/s00382-012-1373-5.

Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. Journal of Climate, 23(4), 966-986. https://doi.org/10.1175/2009JCLI3329.1.

Yeager, S. G., Karspeck, A. R., & Danabasoglu, G. (2015). Predicted slowdown in the rate of Atlantic sea ice loss. Geophysical Research Letters, 42(24), 10,704-710,713. doi:https://doi.org/10.1002/2015GL065364.

Yeh, S.-W., Kim, W.-M., Kim, Y. H., Moon, B.-K., Park, R. J., & Song, C.-K. (2013). Changes in the variability of the North Pacific sea surface temperature caused by direct sulfate aerosol forcing in

Zhang, T., Stamnes, K., & Bowling, S. A. (2001). Impact of the Atmospheric Thickness on the Atmospheric Downwelling Longwave Radiation and Snowmelt under Clear-Sky Conditions in the Arctic and Subarctic. Journal of Climate, 14(5), 920-939. https://doi.org/10.1175/1520-0442(2001)014<0920:IOTATO>2.0.CO;2 .