Enhancing geostatistical precipitation estimations for the Santiago River basin, Mexico
Main Article Content
Abstract
Accurate precipitation estimation is crucial for understanding the hydrological cycle, its applications in basin-specific planning, and outliers event prediction. Multivariate geostatistics leverage correlated variables, such as terrain elevation and shoreline distance, to reduce estimation error uncertainty. However, the distinct characteristics of humid and dry seasons demand specific estimation approaches. Precise precipitation estimation poses a challenge in the vast and diverse Santiago River basin (SRB) along Mexico’s west coast. This study assessed precipitation estimates for dry and humid seasons using ordinary kriging and ordinary cokriging with altitude and shoreline distance as auxiliary variables. Evaluation of error metrics revealed superior results incorporating shoreline distance as a covariable in the wet month of July, especially after logarithmic transformation, yielding a 17% improvement in average standardized error compared to the univariate approach. Conversely, optimal results were achieved for the dry month (February) using ordinary kriging excluding outliers’ values, effectively reducing the average squared error.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Ajami NK, Hornberger GM, Sunding DL. 2008. Sustainable water resource management under hydrological uncertainty. WaterResourcesResearch 44 (11): 1–10.https://doi.org/10.1029/2007WR006736
Ávila-Carrasco JR, Júnez-Ferreira HE, González-Trinidad J, Villalobos De Alba AA, Bautista-Capetillo CF. 2016. Comparison of univariate and bivariate approaches to map precipitation using geostatistics and the kalman filter. Applied Ecology and Environmental Research 14 (3).https://doi.org/10.15666/aeer/1403_735751
Boushaki FI, Hsu K-L, Sorooshian S, Park G-H, Mahani S, Shi W. 2009. Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement: A Case Study Evaluation over the Southwestern United States. Journal of Hydrometeorology 10 (5): 1231–1242.https://doi.org/10.1175/2009JHM1099.1
Cavazos, T. and S. Hastenrath, 1990. Convection and Rainfall over México and Their Modulation by the Southern Oscillation. International journal of climatology 10:377–386.
CONAGUA. 2014. Programa de medidas preventivas y de mitigación de la sequía Consejo de Cuenca Río Santiago. Comision Nacional del Agua, Mexico, D.F. Available at: https://www.gob.mx/cms/uploads/attachment/file/99956/PMPMS_CC_R_o_Santiago_R.pdf (accessed 2023 July26)
Díaz Castro, S.C., 2010. Variabilidad de los ciclones tropicales que afectan a méxico. Interciencia 35:306–310.
Cunha A de M, Lani JL, dos Santos GR, Filho EIF, Trindade FS, de Souza E. 2013. Espacialização da precipita̧ão pluvial por meio de krigagem e cokrigagem. Pesquisa Agropecuaria Brasileira 48 (9): 1179–1191.https://doi.org/10.1590/S0100-204X2013000900001
Giarno G, Didiharyono D, Fisu AA, Mattingaragau A. 2020. Influence Rainy and Dry Season to Daily Rainfall Interpolation in Complex Terrain of Sulawesi. In IOP Conference Series: Earth and Environmental ScienceInstitute of Physics Publishing.https://doi.org/10.1088/1755-1315/469/1/012003
Gómez-Balandra MA, Díaz-Pardo E, Gutiérrez-Hernández A. 2012. Composición de la comunidad íctica de la Cuenca del Río Santiago, México, durante su desarrollo hidráulico. Hidrobiologica 22 (1): 62–78
Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228 (1–2): 113–129.https://doi.org/10.1016/S0022-1694(00)00144-X
Hayward D, Clarke RT. 2009. Relationship between rainfall , altitude and distance from the sea in the Freetown Peninsula , Sierra Leone. Hydrological Sciences Journal 41 (3): 377–384.https://doi.org/10.1080/02626669609491509
Hevesi, J.A., J.D. Istok, and A.L. Flint, 1992. Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural Analysis. Journal of Applied Meteorology 31:661–676.
Holawe F, Dutter R. 1999. Geostatistical study of precipitation series in Austria : time and space. Journal of Hydrology 219 (1–2): 70–82.https://doi.org/10.1016/S0022-1694(99)00046-3
Huang, B. and T. Hu, 2009. Spatial Interpolation of Rainfall Based on DEM. Advances in Water Resources and Hydraulic Engineering - Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS., pp. 77–81.
Jalili F, Modarres R. 2020. Geostatistical and deterministic methods for rainfall interpolation in the Zayandeh ARTICLE HISTORY. Hydrological Sciences Journal 65 (16): 2678–2692
Johansson B, Chen D. 2003. The influence of wind and topography on precipitation distribution in Sweden: Statistical analysis and modelling. International Journal of Climatology 23 (12): 1523–1535.https://doi.org/10.1002/joc.951
Li M, Shao Q. 2010. An improved statistical approach to merge satellite rainfall estimates and raingauge data. Journal of Hydrology 385 (1–4): 51–64.https://doi.org/10.1016/j.jhydrol.2010.01.023
Majani. BS, Stein A, Dadhwal VK, Jeganathan C. 2007. Analysis of External Drift Kriging Algorithm with application to precipitation estimation in complex orography
Mendez-Gonzales, J., J. de J. Navar-Chairez, and V. Gonzales-Ontiveros, 2008. Analysis of Rainfall Trends. Investigaciones Geograficas, Boletin del instituto de Geografia UNAM. 65: 38-55. . https://doi.org/10.14350/rig.17973
McMillan HK, Westerberg IK, Krueger T. 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water 5 (6): 1–14.https://doi.org/10.1002/WAT2.1319
Ogino SY, Yamanaka MD, Mori S, Matsumoto J. 2016. How much is the precipitation amount over the tropical coastal region? Journal of Climate 29 (3): 1231–1236.https://doi.org/10.1175/JCLI-D-15-0484.1
Portalés C, Boronat N, Pardo-Pascual JE, Balaguer-Beser A. 2010. Seasonal precipitation interpolation at the Valencia region with multivariate methods using geographic and topographic information. International Journal of Climatology 30 (10): 1547–1563.https://doi.org/10.1002/joc.1988
Ropelewski, C.F., D.S. Gutzler, R.W. Higgins, and C.R. Mechoso, 2016. The north american monsoon system. :1–12.
Sideris, I. V., Foresti, L.,Nerini, D., Germann, U. 2020. NowPrecip: localized precipitation nowcasting in the complex terrain of Switzerland . Quarterly Journal of the Royal Meteorological Society. 146 (729): 1768-1800. https://doi.org/10.1002/qj.3766
Sordo-Ward Á, Granados I, Martín-Carrasco F, Garrote L. 2016. Impact of Hydrological Uncertainty on Water Management Decisions. Water Resources Management 30 (14): 5535–5551 .https://doi.org/10.1007/s11269-016-1505-5
Subyani AM. 2004. Geostatistical study of annual and seasonal mean rainfall patterns in southwest Saudi Arabia / Distribution géostatistique de la pluiemoyenneannuelle et saisonnière dans le Sud-Ouest de l’ArabieSaoudite. Hydrological Sciences Journal 49 (5) .https://doi.org/10.1623/hysj.49.5.803.55137
Subyani AM, Al-Dakheel AM. 2009. Multivariate geostatistical methods of mean annual and seasonal rainfall in southwest Saudi Arabia. Arabian Journal of Geosciences 2 (1): 19–27.https://doi.org/10.1007/s12517-008-0015-z
Verdin A, Funk C, Rajagopalan B, Kleiber W. 2016. Kriging and Local Polynomial Methods for Blending Satellite-Derived and Gauge Precipitation Estimates to Support Hydrologic Early Warning Systems. IEEE Transactions on Geoscience and Remote Sensing 54 (5): 2552–2562 Available at: http://ieeexplore.ieee.org/document/7387758/(accessed 2023 July 26)
Vischel T, Lebel T, Massuel S, Cappelaere B. 2009. Conditional simulation schemes of rain fields and their application to rainfall-runoff modeling studies in the Sahel. Journal of Hydrology 375 (1–2): 273–286.https://doi.org/10.1016/j.jhydrol.2009.02.028
Waylen PR, Quesada ME, Caviedes CN. 1996. Temporal and spatial variability of annual precipitation in Costa Rica and the Southern Oscillation. International Journal of Climatology 16: 173–193.https://doi.org/10.1002/(SICI)1097-0088(199602)16:2<173::AID-JOC12>3.0.CO;2-R
Webster R, Oliver MA. 2007. Geostatistics for Environmental Scientists. John Wiley & Sons, Ltd: Chichester, United Kingdom.
Woldemeskel FM, Sivakumar B, Sharma A. 2013. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia. JournalofHydrology 499: 167–176. https://doi.org/10.1016/j.jhydrol.2013.06.039